

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1035

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.7716449

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Nofiya Yousuf Mir1, Anwaar Ahmad Wani2
1 Senior Assistant Professor, Islamia College of Science & Commerce, Srinagar, UT-

J&K, India, email:- Ayifon15@gmail.com
2Assistant Professor (C), Higher Education Department, Government of J&K, Srinagar,

UT- J&K, India, email:- anwaar1007@gmail.com

Abstract- Today we live in the world which is revolutionised by technology. Technology has
become part of our everyday life: from accomplishing a simple task like turning on a light bulb
to launching satellites, technology has become an inseparable part of everyone’s life. In order
to be able to use this technology reliably, the software which with we interact with technology
needs to be reliable. Software reliability refers to probability that a software execution will be
as expected under specified terms and conditions in a given amount of time without any fail.
Software reliability is measured using software reliability growth models. Overtime hundreds
of models have been developed so far. This paper aims to review and examine several different
non-homogenous Poisson process software reliability growth models.
Keywords— Software reliability, non-homogenous Poisson process, Software Reliability
Growth Models.
I. Introduction
Software in today’s technological world is an integral part of our day to day life. We interact
with technology at out homes, in school, in our offices even in our cars; from searching on
Alexa to teaching students on smart boards and finding routes on GPS or doing complex
financial transactions we are rely on technology. We interact with technology by means of
software’s. In order to be able to use this software for carrying out our chores efficiently &
reliably, the software needs to possess certain characteristics or qualities [1] which include
 Functionality
 Usability
 Efficiency
 Maintainability
 Probability
 Reliability
Out of all the characteristics mentioned above Reliability is widely considered as key quality
parameter. Software Reliability is defined as the “Degree to which a system, product or
component performs specified functions under specified conditions for a specified period of
time. This characteristic is composed of the following sub- characteristics: Maturity,
Availability, Fault tolerance and Recoverability”[2] as per ISO standards. Software
Reliability being an intangible in nature is a bit tedious to measure. Since 1960s several
scientists have established Models called the software reliability growth models (SRGM) that
calculate reliability of the software in terms of time for which software is expected to run
reliably without any flaw. SRGMs also help software practitioner’s in determining the right
time to stop testing as to when the reliability is achieved and hence releasing the software[3].

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1036

The main objective of this paper is to go through a systematic approach for readers to gain
knowledge about the software reliability, NHPP SRGMs and also put forward a critical review
of what a particular model lacks and how consequent modeling technique overcame that/those
drawback(s).This review paper also aims to present to readers , young scholars , researchers
an insight into the growth, development of SRGMs in general. Thus it will also aim to persuade
researcher to study existing model from a critical point of view motivating him/her to develop
better models for Software Reliability.
II. Classification of SRGMs
Based on the parameters taken into consideration for measurement of reliability , this paper
discusses SRGMs belonging to 3 categories as listed below:
1. PERFECT DEBUGGING MODELS
Models under this category assume that a failure when encountered is removed in entirety in
no time in addition to assumptions listed below:
 The failures are governed by non- homogenous Poisson process (NHPP).
 A failure once detected is removed immediately.
 Removal of failure is completely perfect.
 All faults in software are mutually independent.

This category is further divided into two sub categories based on the fact whether time is
calculated in terms of execution time of software or calendar time.
Perfect debugging models are described by a general formula

Where
y(t) is no. of expected failures at time t
a is the estimated total no. of failures at an infinite time i.e
y(∞) =a

X is parameter defined differently by each models discussed below and summarized in Table
1

Execution time model
J D Musa [4] devised the basic execution model in which time t is expressed in execution units.
The mean value function for failure occurrence for software under this model is given by
formula

λο is initial failure intensity .
Calendar time model
Goel Okumoto (GO Model) [5]also known as exponential model , is defined by Non-

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1037

homogenous Poisson Process (NHPP)in which failures are given by

 (1.1) where b is the fault removal rate,
t is time expressed in calendar units.

Delayed S-Shaped Model
Then came the model given by Yamada & Osaki called the delayed S-shaped Model[6] which
described testing as a 2- step process

Step I: fault detection Step II: fault removal

For step I y(t) is same as that for GO i.e

While for step II X is given as

Table1

 Value for X Formula

Basic time execution

model[4]

𝜆𝑜 𝑡

−()

𝑒 𝑎

𝜆𝑜 𝑡

y(t)=a(1-𝑒−(𝑎))

GO model[5] 𝑒−𝑏𝑡 y(t)=a(1-𝑒−𝑏𝑡)

Delayed S-shaped

model Step I[6]
𝑒−𝑏𝑡 y(t)=a(1-𝑒−𝑏𝑡)

Delayed S-shaped

model Step II[6]
(1+𝑏𝑡)𝑒−𝑏𝑡 y(t)=a(1-(1+𝑏𝑡)𝑒−𝑏𝑡)

They [6] further enhanced their model with better estimation techniques [7]Following GO,
Ohba[8] proposed hyper exponential model that assumed software to contain independent
clusters of independent units/modules. Each unit having a different initial number of errors
and a different failure rates, such as new and existing/reused units, simple and composite units,
and interactive units and units which do not interact.

Further Yamada & Osaki [9] assumed software to contain two types of faults; ones easy to
detect and correct and another difficult to detect which resulted in a model called Fault
Categorization Model. On the similar lines Erlang Model[10] assumed software to contain 3
types of faults ; simple, hard& complex. Kapur & Garg [11]Another remarkable Model was

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1038

added by Bittanti et al.[12] that replaced constant error rate b by initial and final Fault

detection rates bi & bf. With mean value for occurrence of failures given by

Recently Hanagal and Bhalerao[13],[14],[15]obtained SRGMs based on general inverse
exponential distribution & extended inverse exponential distributions.
All of the models discussed above lack one thing i.e the presumption that the errors as and when
found are debugged immediately which is unrealistic.
This is the critique point for most of the conventional SRGMs including the ones discussed
above.The models discussed in the next segment try to overcome this by taking into account
the imperfection debugging as a parameter for SRGMs.
2. IMPERFECT DEBUGGING MODELS
As the name implies this section discusses models where debugging process is not perfect as
assumed in models we discussed above.Models that work on the principle
a) that a debugging process can induce new faults into the software and /or
b) detected faults are not removed completely
are known as Imperfect debugging models. The models described here under this category are
based on the general assumptions of NHPP SRGMs listed in the first section except that the
debugging process is not at all perfect which is quite realistic. In addition to listed assumption,
each model discussed below have some additional conditions.

 Pure error generation Model
Ohba & Chou [16] formulated a model under imperfect debugging that induced new faults
during the debugging process. The inductions of new faults were assumed to occur at a
constant rate ‘α’. The overall mean value fault function for model is given by

 Pure Imperfect Debugging Model
Kapur & Garg[17] incorporated imperfect debugging by assuming that there exists a
probability p that an error is perfectly detected & removed and hence the mean value function
formodel is given separately for fault detection and fault removal and are defined by

Where yd(t) is the function for error detection
& yr(t) is the function for error removal at time t. This model was further improvised by
Yamada et al.[18] by assuming fault introduction as exponential in pure error generation model.

 Testing Efficiency Model
Zhang et al.[19] developed a model that incorporated features from both the models discussed
above i.e a)introduction of new faults from Ohba & Chou[16] & b)probabilistic removal of

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1039

faults from Kapur & Garg[11]. The mean value fault function for model is given by

Another remarkable Model called PNZ[20] Model incorporated fault introduction probability
into imperfect debugging.Kumar et al.[21] incorporated imperfect debugging into Yamada[6]
Model called the delayed S-shaped model with pure error generation. This way the researchers
introduced imperfect debugging into SRGMs. In reality error detection and correction is a
tedious and time consuming process. It takes expertise and considerable amount of time to fix
an error which to some extent is accounted in the next section.

3. TESTING EFFORT BASED SRGMS
Testing is an integral part of Software Development Life Cycle and heart & soul of SRGMs.
The idea behind development of testing effort based SRGMs was to incorporate testing
resources(manpower, hardware and software)into regular SRGMs. Putnam[22] proposed use
of Rayleigh model to describe the test-effort expenses time-dependent behavioral which is
given by cumulative distribution of test efforts as

(2.1)

Yamada et al. [23] presumed the fault detection rate is dependent to the amount of test effort
used during the testing phase and is proportionate to the present failure content .Thus the
amount of test effort used throughout the software testing phase was incorporated into a
software-reliability growth model. The model is devised using a non- homogeneous Poisson
process. Yamada[23] incorporated z(t) from “(2.1)” in GO model yielding

Where b is the fault detection/removal rate per remaining error.

The technique for data analysis for measuring software dependability is built using the model.
This model is used to anticipate the cost of further test efforts needed to meet the objective
number of software testing faults found, as well as the best time to end software testing before
a release.Yamada [24] soon developed model calculating test effort using Weibull distribution
and incorporating it in SRGM as above. On the similar lines, Bokhari & Ahmad[25] used
formulated Log Logistic Test Effort model followed by Kapur et al.[26] and Khatri[27], [28].
They didn’t stopped here Khatri[29] began studying Ohba & Chou Imperfect Debugging
Model.They came up with [30]Model beautifully quantifying Software Reliability under
imperfect debugging and incorporating testing effort ‘z(t)’ in Ohba & Chou[16]as

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1040

The next step in SRGM development was to incorporate Testing effort in imperfect
debugging Models and initiated by Kapur et al.[31] This was followed by incorporating test
effort and imperfect debugging in Yamada’s Delayed S-shaped SRGM [6], [32]Later
Khatri[33] Kapur et al.[34] proposed a generalized framework utilizing Test effort for
modeling multi release of a software introducing the effect of fault reduction factor.
The question still remains that even with better test efforts; testing process is never going to
be simple, it is still going to be complex & time consuming. In SRGMs discussed above
certain factors are assumed to remain constant over time. However it may not be the case ,
which is why the next category of Models came into existence.
4. CHANGE POINT MODELS
In the applications of SRGM it is assumed that the debugging /testing environment stays same.
In reality this environment changes over time e.g test teams/tools/resources can change
affecting the error detection rate.Change Point Models capture such transitions and incorporate
them into SRGMs.
Exponential Change Point Model
This model was given by Chang[35] suggesting single change point ‘𝜌’ in basic GO [5] such

that the rate of failure detection b before and after single change point is b1 and b2
respectively.
Using in 1.1, we have,

S-shaped Change Point model
Inoue & Yamada [36] devised a model by incorporating single change point in delayed S-
shaped Model[6]‘𝜌’ .The mean value fault function for model is given by

This was followed by Kapur[37] who devised model with single change points where failures
followed different probability distributions before and after change point.In the similar manner
Exponential Change point Model [38]under imperfect debugging with different fault induction
rates before and after Change point followed by[39]. Recent advances[40] uses test effort with
fault reduction factor, under imperfect debugging in change point.A pioneering breakthrough
was led by Huang[41] introducing Multiple Change Points. Later Kapur &
Khatri[42],[43],[44],[45][46] introduced multiple change point by means of categorisation of
faults as easy and difficult faults.

III. Conclusion:
Some of major NHPP models that have appeared in literature are discussed in this paper.
Reliability models are a powerful tool for estimating, administering and examining software
reliability. They are especially useful to describe reliability growth and fault deterioration,

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1041

making it simple to analyse software reliability & predict software release . In this paper, we
first studied the basic execution model followed by GO model to provide a quantification for
software reliability. In order to capture both execution and calendar time, we looked at a few
widely used variations of NHPP models based on time-dependent transition probabilities.
Then, we studied the modelling approach utilising test efforts. We further discussed model
incorporating much more realistic imperfect debugging in which the earlier models can be
tailored using probabilities of fault correction. Finally, we discussed change point models
where in , the change(s) in software environment is included in estimation of failures. By
increasing the testing effort intensity and properly allocating and managing the testing
resources and by adding more realistic parameters to these SRGMs can aid in the removal of
flaws, assisting software practitioners in determining when a software system is prepared for
release and if its reliability has reached a predetermined threshold

REFERENCES
[1] P. K. Kapur, G. Singh, N. Sachdeva, and A. Tickoo, “Measuring software testing
efficiency using two-way assessment technique,” in Proceedings of 3rdInternational
Conference on Reliability , Infocom Technologies and Optimization, IEEE, Oct. 2014, pp. 1–6.
doi: 10.1109/ICRITO.2014.7014679.
[2] “Reliability ISO.”https://iso25000.com/index.php/en/is o-25000-standards/iso-
25010/62-
reliability (accessed Jan. 12, 2023).
[3] R. Majumdar, P. K. Kapur, and S. K.Khatri, “Measuring testing efficiency &
effectiveness for software upgradation and its impact on CBP,” in 2016 International
Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), IEEE, Feb.
2016, pp. 123–128. doi: 10.1109/ICICCS.2016.7542347.
[4] J. D. Musa, “A theory of software reliability and its application,” IEEETransactions on
Software Engineering, vol. SE-1, no. 3, pp. 312–327, Sep. 1975, doi:
10.1109/TSE.1975.6312856.
[5] A. L. Goel and K. Okumoto, “Time-Dependent Error-Detection Rate Model for
Software Reliability and OtherPerformance Measures,” IEEE Trans Reliab, vol. R-28, no. 3,
pp. 206–211, Aug. 1979, doi:10.1109/TR.1979.5220566.
[6] S. Yamada, M. Ohba, and S. Osaki, “s- Shaped Software Reliability Growth Models
and Their Applications,” IEEE Trans Reliab, vol. R-33, no. 4, pp. 289– 292, Oct. 1984, doi:
10.1109/TR.1984.5221826.
[7] S. Yamada and S. Osaki, “Software Reliability Growth Modeling: Models and
Applications,” IEEE Transactions on Software Engineering, vol. SE-11, no. 12, pp. 1431–1437,
Dec. 1985, doi: 10.1109/TSE.1985.232179.
[8] M. Ohba, “Software reliability analysis models,” IBM J Res Dev, vol. 28, no. 4, pp. 428–
443, Jul. 1984, doi: 10.1147/rd.284.0428.
[9] S. Yamada and S. Osaki, “Optimal software release policies with simultaneous cost and
reliability requirements,” Eur J Oper Res, vol. 31, no. 1, pp. 46–51, Jul. 1987, doi:
10.1016/0377-2217(87)90135-4.
[10] P. K. Kapur, S. Younes, and S. Agarwala, “A General Discrete Software Reliability

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1042

Growth Model,” International Journal of Modelling and Simulation, vol. 18, no. 1, pp. 60–65,
Jan. 1998, doi: 10.1080/02286203.1998.11760358.
[11] P. K. Kapur and R. B. Garg, “A software reliability growth model for an error- removal
phenomenon,” Software Engineering Journal, vol. 7, no. 4, p. 291, 1992, doi:
10.1049/sej.1992.0030.
[12] S. Bittanti, P. Bolzern, E. Pedrotti, M. Pozzi, and R. Scattolini, “A flexible modeling
approach for software reliability growth,” in Software Reliability Modelling and Identification,
Berlin/Heidelberg: Springer-Verlag, pp. 101–140. doi: 10.1007/BFb0034288.
[13] D. D. Hanagal and N. N. Bhalerao, “Modeling and Statistical Inference on Generalized
Inverse Weibull Software Reliability Growth Model,” Journal of the Indian Society for
Probability and Statistics, vol. 17, no. 2, pp. 145–160, Dec. 2016, doi: 10.1007/s41096-016-
0010-8.
[14] D. D. Hanagal and N. N. Bhalerao, “Analysis of delayed s shaped software reliability
growth model with time dependent fault content rate function,” Journal of Data Science, vol.
16, no. 4, 2018.
[15] D. D. Hanagal and N. Bhalerao, “MODELING ON GENERALIZED EXTENDED
INVERSE WEIBULL SOFTWARE RELIABILITY GROWTH MODEL.,” Journal of Data
Science . Jul2019, Vol. 17 Issue 3, p573-589, vol. 17, no. 3, pp. 573–589, 2019.
[16] M. Ohba and Xiao-Mei Chou, “Does Imperfect Debugging Affect Software Reliability
Growth?,” in 11th International Conference on Software Engineering, IEEE, 1989, pp. 237–
244. doi: 10.1109/ICSE.1989.714425.
[17] Kapur P.K. and Garg R. B., “ Optimal sofware release policies for software reliability
growth models under imperfect debugging. (1990) no. 3, pp. 295-305. ,” RAIRO – Operations
Research - Recherche Opérationnelle, Volume 24 , pp. 295–305, 1990.
[18] S. YAMADA, K. TOKUNO, and S. OSAKI, “Imperfect debugging models with fault
introduction rate for software reliability assessment,” Int J Syst Sci, vol. 23, no. 12, pp. 2241–
2252, Dec. 1992, doi: 10.1080/00207729208949452.
[19] Xuemei Zhang, Xiaolin Teng, and Hoang Pham, “Considering fault removal efficiency
in software reliability assessment,” IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, vol. 33, no. 1, pp. 114–120, Jan. 2003, doi:
10.1109/TSMCA.2003.812597.
[20] Hoang Pham, L. Nordmann, and Zuemei Zhang, “A general imperfect- software-
debugging model with S- shaped fault-detection rate,” IEEE Trans Reliab, vol. 48, no. 2, pp.
169–175, Jun. 1999, doi: 10.1109/24.784276.
[21] D. Kumar, Kapur R, V. Sehgal, and P. Jha, “On the development of software reliability
growth models with two types of imperfect debugging,” Commun Dependability Qual Manag
Int J, vol. 10, no. 3, pp. 105–122, 2007.
[22] L. H. Putnam, “A General Empirical Solution to the Macro Software Sizing and
Estimating Problem,” IEEE Transactions on Software Engineering, vol. SE-4, no. 4, pp. 345–
361, Jul. 1978, doi: 10.1109/TSE.1978.231521.
[23] S. YAMADA, J. HISHITANI, and S. OSAKI, “Test-effort dependent software
reliability measurement,” Int J Syst Sci, vol. 22, no. 1, pp. 73–83, Jan. 1991, doi:
10.1080/00207729108910590.
[24] S. Yamada, J. Hishitani, and S. Osaki, “Software-reliability growth with a Weibull test-

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1043

effort: a model and application,” IEEE Trans Reliab, vol. 42, no. 1, pp. 100–106, Mar. 1993,
doi: 10.1109/24.210278.
[25] MU Bokhari and N. Ahmad, “Proceedings of the 17th IASTED international
conference on modeling and simulation (MS’2006), Montreal, Canada,” in ANALYSIS OF A
SOFTWARE RELIABILITY GROWTH MODELS: THE CASE OF LOG-LOGISTIC TEST-
EFFORT FUNCTION, Montreal: Proceedings of the 17th IASTED international conference on
modeling and simulation (MS’2006), Montreal, Canada, 2006, pp. 540–545.
[26] V. B. Singh, P. K. Kapur, and A. Tandon, “Measuring reliability growth of software by
considering fault dependency, debugging time Lag functions and irregular fluctuation,” ACM
SIGSOFT Software Engineering Notes, vol. 35, no. 3, pp. 1–11, May 2010, doi:
10.1145/1764810.1764831.
[27] S. K. Khatri, D. Kumar, A. Dwivedi, and N. Mrinal, “Software Reliability Growth
Model with testing effort using learning function,” in 2012 CSI Sixth International Conference
on Software Engineering (CONSEG), IEEE, Sep. 2012, pp. 1–5. doi:
10.1109/CONSEG.2012.6349470.
[28] A. Tickoo, P. K. Kapur, A. K. Shrivastava, and S. K. Khatri, “Testing effort based
modeling to determine optimal release and patching time of software,” International Journal of
System Assurance Engineering and Management, vol. 7, no. 4, pp. 427– 434, Dec. 2016, doi:
10.1007/s13198-016-0470-y.
[29] KHATRI S K, Jagvinder Singh, Avneesh Kumar, and Adarsh Anand, “A Discrete
Formulation of Successive Software Releases Based on Imperfect Debugging,” MIS Review
:An International Journal, Sep. 2014.
[30] S. K. Khatri, S. A. John, and R. Majumdar, “Quantifying software reliability using
testing effort,” in 2016 International Conference on Information Technology (InCITe) -The
Next Generation IT Summit on the Theme - Internet of Things: Connect your Worlds, 2016, pp.
23–26. doi: 10.1109/INCITE.2016.7857582.
[31] P. K. Kapur, P. S. Grover, and S. Younes, “Modelling an imperfect debugging
phenomenon with testing effort,” in Proceedings of 1994 IEEE International Symposium on
Software Reliability Engineering, IEEE Comput. Soc. Press, pp. 178–183. doi:
10.1109/ISSRE.1994.341371.
[32] R. Peng, Y. Li, W. Zhang, and Q. Hu, “Testing effort dependent software reliability
model for imperfect debugging process considering both detection and correction.,” Reliab Eng
Syst Saf, vol. 126, pp. 37–43, 2014.
[33] V. KUMAR, S. K. KHATRI, H. DUA, M. SHARMA, and P. MATHUR, “AN
ASSESSMENT OF TESTING COST WITH EFFORT-DEPENDENT FDP AND FCP
UNDER LEARNING EFFECT: A GENETIC ALGORITHM APPROACH,” International
Journal of Reliability, Quality and Safety Engineering, vol. 21, no. 06, p. 1450027, Dec. 2014,
doi:10.1142/S0218539314500272.
[34] P. K. Kapur, P. Mishra, A. K. Shrivastava, and S. K. Khatri, “Multi release modeling of
a software with testing effort and fault reduction factor,” in 2016 International Conference on
Innovation and Challenges in Cyber Security (ICICCS-INBUSH), IEEE, Feb. 2016, pp. 54–59.
doi:10.1109/ICICCS.2016.7542352.
[35] Y.-P. Chang, “ESTIMATION OF PARAMETERS FOR NONHOMOGENEOUS
POISSON PROCESS: SOFTWARE RELIABILITY WITH CHANGE-POINT MODEL,”

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1044

Commun Stat Simul Comput, vol. 30, no. 3, pp. 623–635, Aug. 2001, doi: 10.1081/SAC-
100105083.
[36] S. Inoue and S. Yamada, “Optimal software release policy with change- point,” in 2008
IEEE International Conference on Industrial Engineering and Engineering Management,
IEEE, Dec. 2008, pp. 531–535. doi: 10.1109/IEEM.2008.4737925.
[37] P. K. Kapur, J. Kumar, and R. Kumar, “A Unified Modeling Framework Incorporating
Change-Point for Measuring Reliability Growth daring Software Testing,” OPSEARCH, vol.
45, no. 4, pp. 317–334, Dec. 2008, doi: 10.1007/BF03398823.
[38] H.-J. Shyur, “A stochastic software reliability model with imperfect-debugging and
change-point,” Journal of Systems and Software, vol. 66, no. 2, pp. 135–141, May 2003, doi:
10.1016/S0164-1212(02)00071-7.
[39] C.-Y. Huang, “Performance analysis of software reliability growth models with testing-
effort and change-point,” Journal of Systems and Software, vol. 76, no. 2, pp. 181–194, May
2005, doi: 10.1016/j.jss.2004.04.024.
[40] S. Khurshid, A. K. Shrivastava, and J. Iqbal, “Effort based software reliability model
with fault reduction factor, change point and imperfectdebugging,” International Journal of
Information Technology, vol. 13, no. 1,pp. 331–340, Feb. 2021, doi: 10.1007/s41870-019-
00286-x.
[41] Chin-Yu Huang and Chu-Ti Lin,“Reliability Prediction and Assessment of Fielded
Software Based on Multiple Change-Point Models,” in 11th Pacific Rim International
Symposium on Dependable Computing (PRDC’05), IEEE, pp. 379–386. doi:
10.1109/PRDC.2005.52.
[42] P. K. KAPUR, A. KUMAR, K. YADAV, and S. K. KHATRI, “SOFTWARE
RELIABILITY GROWTH MODELLING FOR ERRORS OF DIFFERENT SEVERITY
USING CHANGE POINT,” International Journal of Reliability, Quality and Safety
Engineering, vol. 14, no. 04, pp. 311–326, Aug. 2007, doi: 10.1142/S0218539307002672.
[43] A. A. Wani, L. Faisal, M. Zahoor, and J. Iqbal, “Design & Development of Novel
Hybrid Set of Rules for Detection and type of Malignant or Non-Malignant Tumor in Human
Brain based on SVM Using Artificial Intelligence Classifier,” Mathematical Statistician and
Engineering Applications, vol. 71, no. 4, pp. 10253–10276, Dec. 2022, Accessed: Apr. 02,
2023. [Online]. Available: https://www.philstat.org/index.php/MSEA/article/view/1853.
[44] R. Mohd, A. M. Azad, A. A. Wani, and I. ahmad Bhat, “A Prognostic Approach For
Precipitation Forecast Using Naive Bayes Algorithm,” Solid State Technology, vol. 63, no. 6,
pp. 7435–7444, Nov. 2020, Accessed: Apr. 02, 2023. [Online]. Available:
http://solidstatetechnology.us/index.php/JSST/article/view/4603.
[45] D. A. A. Wani, D. J. Iqbal, and D. M. Makhdoomi, “Modelling an Intrusion Detection
system using ensemble approach based on voting to improve accuracy of base classifiers,”
JOURNAL OF ALGEBRAIC STATISTICS, vol. 13, no. 2, pp. 1844–1865, Jun. 2022,
Accessed: Apr. 02, 2023. [Online]. Available:
https://publishoa.com/index.php/journal/article/view/360.
[46] A. Wani and S. Dixit, “Enhanced Frame Aggregation Scheduler (EFAS) for data
Transmission over IEEE802.11ac,” https://old.rrjournals.com/, May 25, 2019.
https://old.rrjournals.com/past-issue/enhanced-frame-aggre

RELIABILITY OF SOFTWARE RELIABILITY GROWTH MODELS: A REVIEW

Journal of Data Acquisition and Processing Vol. 37 (4) 2022 1045

