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Abstract: 

The Internet of Things has allowed for the development of numerous consumer-facing apps 
and services that enhance our knowledge of and ability to shape our built environments and the 
quality of our individual lives. These services couldn't exist without the persistent gathering 
and analysing of private and personal information about users. When it comes to protecting 
users from identification, profiling, localization and tracking, and information linking, smart 
heath care is one of the many IoT applications that requires privacy preservation strategies. 
Finding the right balance between privacy protection, data utility, and acceptable system 
performance in terms of accuracy, runtime, and resource consumption requires carefully 
selecting privacy preservation techniques (and solutions) based on the nature of data, system 
performance requirements, and resource constraints. 

In this study, we evaluate the effects of introducing our preferred privacy preservation 
techniques on the functionality of various nodes in the IoT ecosystem, both in terms of data 
utility and overall system performance. Using both real-world and synthetic privacy-preserving 
smart health care datasets, we build, illustrate, and assess the results of our proposed 
methodologies. We begin with a comprehensive taxonomy and analysis of privacy preservation 
strategies and solutions that can be used as a starting point for making informed decisions about 
which methods to employ given the specifics of a given data set and the constraints of a given 
system. Furthermore, we discuss and implement a strategy for constructing realistic synthetic 
and privacy-preserving smart health care datasets utilising Generative Adversarial Networks 
and Differential Privacy to promote privacy-preserving data exchange. We utilise healthcare 
data as an example later on to describe and design a solution for private data analytics: the 
differential privacy library PyDPLib. 

We present and implement a novel approach to reconfigurable data privacy in machine learning 
on resource-limited computing devices, complete with corresponding algorithms and an end-
to-end system pipeline. This allows us to find appropriate trade-offs between providing the 
necessary privacy preservation, device resource consumption, and application accuracy. 
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Introduction: 

IoT Ecosystem : Kevin Ashton [1] is credited with creating the term "Internet of Things" in 
1999. It refers to the system of networked sensors and devices that serve as the backbone of 
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the data collection used by today's apps and services. Smart sensors can be defined as any type 
of sensor that can simultaneously gather data, process that data with on-board circuitry, and 
then transmit that processed data. The Internet of Things consists of all the devices that can 
gather data and send it to a central location via a network. The term "Internet of Things 
ecosystem" refers to the interconnected network of devices and the corresponding software and 
technology that enable the delivery of services based on large quantities of data. The software 
and hardware platforms, as well as the standards typically utilised for enabling such 
interconnection, may become a core of an IoT ecosystem, as pointed out by Mazhelis et al. [2]. 
In this thesis, we analyse the data, resource-limited edge devices, ML applications, and data 
analytics and visualisation that make up the Internet of Things ecosystem.. 

Privacy Preservation.: There is a great deal of flexibility in the methods that can be used to 
protect individual privacy. Information flow control [3], data or model obfuscation via noise 
addition [4], cryptography [5, 6], anonymization via generalisation and suppression of 
attributes [7-9], and the usage of private compute units [10] are all examples of procedures 
used by privacy preservation strategies. It is noted in [11] that all of these methods have some 
sort of performance overhead, be it in the form of greater resource use, decreased model 
accuracy, or longer processing times. So that the IoT ecosystem can meet the needs of volume, 
velocity, and variety, privacy preservation solutions that are lightweight, scalable, and efficient 
need to be applied to its many components. By doing so, we may determine the optimal 
compromises between the various goals of privacy protection, data utility retention, application 
performance, model accuracy, and device resource utilisation overhead. 

Smart Health Care:  

The field of Internet of Things (IoT) known as "smart health care" is expanding rapidly and 
has implications for both people and society as a whole. While the individual goal is to improve 
the quality of medical treatment while lower standards of living costs and providing better and 
personalised health care [12], the societal goal is to increase the ability to track physical 
activities and diet patterns via wearable trackers and diet logging applications. 

In order to take use of machine learning-based services, the smart health care business is 
dependent on the availability of large-scale health information. Nonetheless, privacy rules like 
the EU's General Data Protection Regulation (GDPR) [13] to be followed in the collection and 
processing of this health data. Thus, there are unique difficulties in assuring patient 
confidentiality in the field of smart healthcare: There are a number of challenges when working 
with health care data: (1) there is a lack of open data to experiment with because the data is of 
a highly sensitive and private nature; (2) there are limitations on sharing data with confidential 
medical information because of the risk of misuse or re-identification; (3) smart health care 
data has highly diverse data types and formats, and bounded ranges; (4) health care data 
requires high utility and offers low tolerance towards data perturbance; and (5) there is low 
tolerance towards data quality variation. These factors combine to make privacy protection in 
the IoT sector of smart health care a formidable obstacle. 

II. Literature Survey 
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During the past decade, the proliferation of the Internet of Things has led to the development 
of an incredible variety of smart devices (IoT). Cisco's Visual Networking Index (VNI) 2021 
forecast [46] estimates that by the end of 2021, there will be 3.5 networked devices for every 
person on Earth. Any sensor with the ability to collect data, process it using integrated circuitry, 
and transmit it is considered a smart gadget. To better serve their users, these gadgets often 
upload collected data to the cloud for further analysis and storage. The term "edge computing" 
describes a more advanced variant of this method in which extra processing and analytical 
skills are offloaded to the devices. 

Smith et al. [1]  Privacy concerns are defined by as worries regarding the collection of personal 
information, worries regarding unauthorised secondary use (both internally and externally in 
organisations), worries regarding erroneous access to personal data, and worries regarding 
errors in collected personal information. 

Before we can classify solutions for protecting users' privacy, we must first define the privacy 
problems that exist inside the IoT ecosystem and the architecture layers that are related to it. 
Following that, we will provide a broad overview of attacks on privacy as well as the risks that 
are associated with them. 

Ziegeldorf et al. [2]. After that, we will give a quick explanation of the risks, and then we will 
discuss the many IoT architectural levels that are to blame for those risks. Take note that the 
threats commonly coexist in IoT systems, but this is mostly dependent on the sort of service 
that is being given. 

Papernot et al. [3] conduct a research of the most advanced machine learning algorithms that 
safeguard users' personal information. In addition, differential privacy is often used in machine 
learning models as a defense mechanism against assaults that attempt to flip the model. is a 
fascinating illustration of a machine learning-as-a-service that protects users' privacy and was 
developed especially for cloud settings. Cloud environments are an essential part of the 
ecosystem for the Internet of Things (IoT). It does this by utilizing private computing units, 
which strengthens the promises of privacy (with SGX). In addition, there are implementations 
of k-anonymity mixed with ML algorithms and cryptographic approaches that use ML that are 
based on published works of the academic community. Federated learning is a method of data 
mining that is utilized by a few different implementations of recommender systems. 

The technique of collaborative filtering is utilized rather frequently in recommender systems, 
which is an example of an implementation that protects privacy, combines k-anonymity with 
collaborative filtering. [5], which utilises misdirection; and [120], which helps make use of 
homomorphic encryption and discrepancy privacy to ensure that recommendations are kept 
private. [119]; [5]; and [120] are all examples of implementations that protect privacy. In 
addition, [89] suggests using a federated machine learning variation of collaborative filtering 
to provide more personalized suggestions. 
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III. Data Processing 

In this part, we will detail the approach that we use to collect, impute, and alter data. In addition, 
we offer our methods for training models in a way that does not compromise users' privacy, 
which is then followed by the process for data inversion. 

 

                                Figure: 3.1 Data Preprocessing Process  

3.1 The collection of information and imputing of values 

For the purpose of this investigation, we merged the automatic data collection capabilities of 
the Fitbit Charge 2 HR wearables with the manually logged meal capabilities of the Fitbit app. 
Throughout the course of this inquiry, a total of 25 people from Belgium and Sweden were 
under observation at various points. Data were acquired with the use of 12 different devices 
from two continuing participants (a man and a woman) as well as ten active users. The users 
were given the instruction to record their observations for a period of at least one month. In 
order to provide an accurate picture of the eating patterns and overall health of the local 
populations, we included people from six different widely categorized ethnic groups in our 
participant pool. 

More than 17 million measurements were taken of various aspects of the users' meal records, 
calorie intake, heart rate, number of calories burned, number of steps done, daily activity 
pattern, and sleep. The website not only collects numerical data, but it also collects 
demographic information about users, such as their age, gender, height, and weight, in addition 
to collecting number data. Due to the fact that the users were not provided with intelligent 
scales, the weight measurement is recorded manually. After that, the Fitbit platform was 
utilised to export each and every one of these data and analytics. The data that was collected 
revealed a great number of inconsistencies and user errors, such as the following: 1) users 
forgetting to wear the watch on some days; 2) incorrectly recording very large portion sizes of 
meals; 3) manually recording the meals without a caloric breakdown; and 4) incorrectly 
wearing the watch, which led to inconsistencies between recorded activities; Also, there were 
some people who reported their data in languages other than English, such as French or Italian. 
3.1.1  Meal logs imputation 
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For the purpose of this investigation, we merged the automatic data collection capabilities of 
the Fitbit Charge 2 HR wearables with the manually logged meal capabilities of the Fitbit app. 
Throughout the course of this inquiry, a total of 25 people from Belgium and Sweden were 
under observation at various points. Data were acquired with the use of 12 different devices 
from two continuing participants (a man and a woman) as well as ten active users. The users 
were given the instruction to record their observations for a period of at least one month. In 
order to provide an accurate picture of the eating patterns and overall health of the local 
populations, we included people from six different widely categorised ethnic groups in our 
participant pool. 

More than 17 million measurements were taken of various aspects of the users' meal records, 
calorie intake, heart rate, number of calories burned, number of steps done, daily activity 
pattern, and sleep. The website not only collects numerical data, but it also collects 
demographic information about users, such as their age, gender, height, and weight, in addition 
to collecting number data. Due to the fact that the users were not provided with intelligent 
scales, the weight measurement is recorded manually. After that, the Fitbit platform was 
utilised to export each and every one of these data and analytics. The data that was collected 
revealed a great number of inconsistencies and user errors, such as the following: 1) users 
forgetting to wear the watch on some days; 2) incorrectly recording very large portion sizes of 
meals; 3) manually recording the meals without a caloric breakdown; and 4) incorrectly 
wearing the watch, which led to inconsistencies between recorded activities; Also, there were 
some people who reported their data in languages other than English, such as French or Italian. 

 
3.1.2 Transformation of Data 
In order to get the data ready for training, we start by stripping it of any date and gender 
information that could be in there. After this, the remaining characteristics are normalised, and 
the result is given back into the model so that it may be trained. 
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We are able to send DP-input data to the GAN, and this, in conjunction with the privacy setting 
(noisy input), enables the GAN to produce DP-synthetic samples in accordance with the 
requirements of the post-processing theorem. With that, we include some Laplacian noise 
"because the data comprises categorical or static properties, which call for more stringent 
privacy settings." "= 0:2 to assure high noise addition and, as a result, more restrictive privacy 
settings." 
On the other hand, the probability of re-identification is significantly reduced by using 
behavioural traits. In order to do this, we mix the Laplacian noise with "= 0:5 to guarantee 
enough addition of noise without compromising the usefulness of the data 
IV. Model Training 
In order to generate synthetic data samples, we make use of BGAN. To train the BGAN, we 
chose participants at random, taking into account their gender and geographic area. We trained 
the model in each of these three distinct privacy configurations (non-DP, noisy input, and noisy 
output) 
V. Results: 
our pipeline offers a multitude of sites for the insertion of Laplacian noise to provide 
differential privacy. This makes it possible to build up three separate experiments. The GAN 
network is able to acquire knowledge of the distribution and produce examples that are 
convincing for each scenario. 

 
                             Fig: 5 Line Plots of loss and Accuracy for stable GAN 
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Discussion: 

Our proposed technique generates private and artificially intelligent smart health care data 
through the utilisation of BGAN and DP. The GAN network has the potential to provide 
outcomes that are consistent and credible. The stability of the proposed GAN can be seen in 
the top subplot which presents line graphs for the discriminator loss for genuine data (blue), 
the discriminator loss for manufactured fake samples (orange), and the generator loss for 
generated fake samples (green). As can be seen, the three losses first exhibit a significant 
amount of instability until reaching a point of stability between epochs 420 and 600. Beyond 
that point, losses continue to be constant, which demonstrates the GAN's reliable behaviour. 
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despite the fact that the variety grows. The discriminator experiences a loss of around 0:5 
regardless of whether it is presented with genuine samples or false samples, but the loss 
experienced by the generator is substantially greater between the ratios of 0:5 and 1:0. It is 
anticipated that the model will provide data that is plausible between epochs 420 and 600. In 
the bottom subplot, you can observe a line plot depicting the discriminator accuracy during 
training on genuine (blue) and false (orange) samples. A behaviour that is analogous to this can 
be seen in the subplot of loss, which shows that the accuracy initially varies considerably 
between the two sample types, stabilises between epochs 420 and 600 at a value that is roughly 
60–70%, and then continues to stabilise after that, albeit with a greater degree of variation. 

Table 5.1 displays an example row from the primary dataset, whereas the synthetic rows are 
the result of trained GANs being applied to the dataset. In this context, Original and GAN both 
stand for samples taken from datasets before the introduction of noise (non-DP). The produced 
data samples that have DP-noise added to them are displayed in the GAN along with the DP 
output (noisy output). In a manner analogous to that of Original DP, GAN with DP input 
represents, respectively, the synthetic samples that were constructed and the original DP-input 
(noisy input). As can be seen, the generated instances all give the impression of being realistic 
given the privacy settings that were selected. 

Results for Fitbit Dataset 

To begin, we begin by calculating the cost measures for the non-private version of the Fitbit 
dataset on the edge device. These cost measures include memory usage, bandwidth needs, and 
the processor instructions. The amount of RAM that was taken up by the non-private data in 
its entirety was 247 KB. Because of the relatively modest size of the dataset, the needed 
bandwidth for this dataset over a 4G network with 100 Mbps was just 0.0198 Mbps. Due to the 
fact that this dataset is not private, there were no additional processor instructions that were 
necessary for it to be processed. 

Following that, we used the privacy encoder injective functions that were built for each feature 
to turn every feature in this dataset into a private feature. Using the use of the appropriate 
injective privacy functions, we determined the amount of memory that would be needed to 
process each feature. The total amount of RAM that was utilised throughout this procedure for 
the protection of personal information was 533.378 KB. After the transformation of the features 
into privacy encoded features, the total memory of the private dataframe was calculated to be 
1,750.369 KB. If we were to make all of the characteristics of the Fitbit dataset private, the 
total amount of additional RAM that would be required would thus be 2283 747 KB. It would 
take 0.1827 Mbps of bandwidth to send this data over a local area network that has a speed of 
100 Mbps. The Raspberry pi RPi 1 Model A required a total of 252 processor instructions in 
order to turn the non-private features into the private features. 

There are four aspects that, due to the sensitive nature of our data, we have decided to make 
private in order to safeguard our users. These features are represented by the letter EF. These 
essential factors are one's age, gender, height, and weight, all of which must be kept 
confidential regardless of the availability of resources. After then, we determined the amount 
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of resources used by the dataset that included these four EF in the private category. In this 
particular instance, we only transformed these four Elements by utilising the injective privacy 
encoder methods that were built into them; the values for all of the other features were left 
unchanged. 

 

 

Figure 5.1: Additional resource consumption for increasingly private versions of Fitbit 
dataset. 

Conclusion: 

We designed, implemented, and evaluated a solution for generating realistic synthetic private 
smart health care datasets from sensitive non-private datasets in order to enable privacy-
preserving data sharing. This was done in order to generate realistic synthetic private smart 
health care datasets. For the purpose of producing realistic and confidential smart health care 
datasets, we suggested using a generative adversarial network model in conjunction with 
differential privacy safeguards. Our solution was tailored to meet the particular problems posed 
by smart health care data, which included volume, velocity, and diversity in the form of a wide 
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range of data kinds and distributions. In addition to enriching and augmenting the input data 
samples, our proposed solution was also able to generate realistic synthetic data samples and 
differentially private data samples under a variety of conditions, including learning from a 
noisy distribution and then noisifying the distribution that was learned. We put our suggested 
method through its paces by testing and evaluating it using data taken from an actual Fitbit 
device. According to the findings of our research, our method is able to produce synthetic 
differentially private datasets of a high quality that are able to maintain the statistical features 
of the dataset that was originally collected. 
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