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Abstract— Exploration of drug–target interactions (DTIs) requirement a financial, human and 
materialistic resources in conducting biomedical experimentations. In order to reduce the cost 
and time to meet the present needs Artificial Intelligence (AI) is introduced that helps in 
predicting the DTIs. With available target and drug data in conventional databases enables the 
machine or deep learning model a mainstream technology for DTIs. In this paper, we develop 
anImproved Frequent Subsequence Mining(IFSM) based transformer binding phase (TBP) for 
the pre-processing and extraction of features for drug-target interaction. At the initial phase, 
we use IFSM to extract the meaningful frequent subsequence from the input datasets that forms 
an intuitive pattern expression. The study aims at extraction of the instances by initially 
transforming the datasets to thesub-structures using Improved Frequent Subsequence Mining 
(IFSM).The TBP enables the extraction of semantic relations between the sub-structures 
extracted from previous IFSM phase, where it is of an unlabelled biomedical data. The 
simulation is conducted to test the efficacy of the model is tested on state-of-art DTI feature 
extraction models to test the efficacy of accurate contextual structural binding generation. The 
efficacy of the model is tested in terms of accuracy, precision, recall and f-measure.   
Keywords: Drug–Target Interactions, Improved Frequent Subsequence Mining, Transformer 
Binding Phase 

INTRODUCTION  
A change in the behaviour or function of an organ is caused when medicine attaches to a 
specific place on that body part, known as a binding site. An FDA-approved drug or medicine 
is defined as any chemical molecule that changes the physiological state of the body when 
consumed, administered, or absorbed by the body [1]. ]. A biological target is a term that refers 
to any component of a living creature to which a medication adheres in order to cause a 
physiological change. Proteins and nucleic acids, for example, are examples of potential 
targets. Genetically engineered nuclear receptors, G-protein receptors, potassium channels, and 
enzymes are among the most commonly studied biological targets in scientific study. An 
important step in the process of identifying novel medications for biological targets is the used 
for predicting the DTIs [2].  



FEATURE EXTRACTION OF DRUG–TARGET INTERACTIONS USING MODIFIED TRANSFORMER 
BINDING PHASE 

Journal of Data Acquisition and Processing Vol. 37 (5) 2022       2104 
 
 

During the drug chemical reaction, the drug chemical component creates temporary bonds with 
the target molecule. Following that, the connected drug interacts with the target, resulting in 
either a negative or positive modifications [3]. It is the goal of illness treatment to prevent the 
target from performing its intended function, which is accomplished through the use of drugs. 
Inhibiting the activity of these enzymes, which are known as substrates, is one method of 
lowering their activity. The interaction between a medicine and its target might take place in 
two ways [4].  
The term competitive inhibitor refers to medications that attach itself with an active target site 
that prevents the reaction from occurring. The target recognition as a substrate is prevented by 
modifying the target form and structure [5]. As a result, there are no adverse reactions. The 
target reactions blocking helps in correcting the correct metabolic imbalances as well as to kill 
infections in order to treat illness. 
Various approaches in traditional and reverse pharmacology, as well as wet lab investigations, 
can be utilised to infer the interactions between a drug and its intended target. Laboratory tests, 
on the other hand, are both expensive and time-consuming to conduct in order to predict the 
interactions between drugs. [6]. As a result, in-silico prediction of drug-target protein 
interactions is quite desirable. By effectively forecasting likely interactions with surprising 
precision, computer algorithms can reduce the amount of search space that needs to be 
investigated in laboratory tests [7]. 
Because of a variety of factors, it has become increasingly important to predict drug target 
interactions in the present environment. In recent time, numerous compounds are discovered 
and synthesised. The pharmaceutical effects and target profiles are still a mystery to 
researchers. The remedy for many diseases, such as Parkinson disease, lichen planus, and 
others, is still elusive, and new diseases are being discovered on a yearly basis [9]. 
Consequently, scientists have accumulated a massive quantity of data on a diverse variety of 
substances, including their qualities, features, and responses, as well as the proteins that they 
target. As a result, researchers must devise efficient models of manipulating and evaluating the 
intricate and high-dimensional datasets in order to succeed. This necessitates the development 
of more precise and sophisticated computational techniques for the prediction of DTIs [10]. 
Prediction of DTIs has a wide variety of applications. This strategy has been demonstrated to 
be effective in drug discovery, repositioning, and the prediction of side-effects [11] - [15]. Drug 
discovery is considered as the process of finding novel drugs with a potential to interact with a 
specific target. It is possible to predict in silico drug target interactions, which can aid in the 
discovery of drugs that tends to bind with the target. A novel medicine discovery is a time-
consuming and expensive procedure that takes years to complete.  
Following all of this, medications are subjected to a series of clinical trials before being 
approved for sale on the open market. The new molecular entity (NME) identification cost is 
found to be around $1.8 billion for each NME discovered. It also takes roughly a decade for 
newly developed pharmaceutical compounds to reach the market and be available for human 
use. As a result, the process of drug-discovery is time-consuming and difficult. As a result, 
many chemical compounds that are known in prior is not used as pharmaceuticals at this time 
because the interactions of these chemicals with proteins are not totally understood. Despite 
the fact that the PubChem database contains numerous compounds, where the majority of 
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interaction profiles are unknown. It is possible that new medications will be identified by in-
silico analysis of these interaction profiles, which will aid in the narrowing of the search space 
for new drugs as well as the development of new drugs. 
When it comes to interaction prediction, the in-silico strategy to adopt is dependent on a number 
of distinct aspects. The stage of drug development is the most important factor to consider [16]. 
For example, during the initial stages of research, the primary focus would be on the disease 
under investigation. Genes associated with disease could be discovered, or genes associated 
with infection and health could be distinguished. After that comes the selection of a lead 
chemical compound that assist in disease therapy optimisation, among other ways. Research 
into quantitative structure-activity relationships (QSARs) is then used to determine the 
pharmacological features of the lead chemical [17]. Similarly, the type of data that is available 
has an impact on the method that is employed. Access to medication and information about 
target properties are crucial considerations when deciding on a strategy. 
Other medication-related concerns have also been identified that have a negative impact on the 
identification and prediction of drug interactions. The effects of a single medication might be 
extremely variable. There are numerous consequences, both positive and negative, that are 
difficult to trace down and quantify. It is possible that a drug will have different effects on 
different people, even if their genes are essentially the same. Making matters worse, the 
pathways in the body are extremely complicated and difficult to comprehend. That is why 
identifying statistically meaningful relationships among them is so difficult [18]. 
In this paper, we develop an Improved Frequent Subsequence Mining(IFSM) based 
transformer binding phase (TBP) for the pre-processing and extraction of features for DTI. At 
the initial phase, we use IFSM to extract the meaningful frequent subsequence from the input 
datasets that forms an intuitive pattern expression. The study aims at extraction of the instances 
by initially transforming the datasets to the sub-structures using Improved Frequent 
Subsequence Mining (IFSM). The TBP enables the extraction of semantic relations between 
the sub-structures extracted from previous IFSM phase, where it is of an unlabelled biomedical 
data.  

RELATED WORKS 
However, while there have been numerous evaluations of DTI prediction, none of this research 
has focused specifically on machine learning techniques. The model in [18] gives an overview 
of the techniques based on similarity approach for the prediction of DTI in general and in 
particular, the prediction of DTI is conducted using proper feature extraction procedure. 
Specifically, the review in [19] focuses on approaches for predicting DTIs that take into 
account both the structure of the drug and the sequence of the target protein. 
Mousavian et al. [20] investigated it from the perspectives of supervised/semi-supervised 
learning. On other hand, Chen et al. [21] studied several databases, computational models and 
web servers have been investigated. This study covers the computational approaches of 
machine learning and network-based computation. 
Ezzat et al. [22] investigated prediction of chemogenomic DTI using databases and methods, 
and they provided an empirical review of their findings. In their research, they employ five 
forms of chemogenomic methodology: matrix factorization, neighbourhood, network 
diffusion, bipartite local, and feature extraction models, among others. 
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Chen et al. [23] investigated the application of chemogenomic approaches to DTI prediction as 
part of their evaluation of machine learning algorithms and datasets. As a result, 
chemogenomics techniques is split into two groups based on how negative samples are 
handled: supervised learning approaches based on similarity and features, as well as semi-
supervised learning approaches and unsupervised learning approaches.  
Sachdev et al. [24] investigated the efficacy of feature-based chemogenomic strategies for DTI 
prediction (excluding similarity-based approaches). There are three types of strategies included 
in this survey: (1) SVM methods, (2) ensemble-based methods (such as decision trees or 
random forests), and (3) alternative techniques. Sercinoglu et al. [25] conducted a thorough 
investigation into drug repurposing databases. 
Once the feature space has been generated, a variety of algorithms that are utilised to carry out 
the DTI prediction task once the feature space has been constructed. Because membrane 
proteins do not have three-dimensional (3D) structures, it is hard to extract the critical features 
that would ordinarily result in higher prediction performances. 

PROPOSED METHODOLOGY 
Almost all DTI feature extraction is given in Figure 1.  
  

            
                             Figure 1: Proposed Method  
 
In this model, all drug-target pairings will be represented by feature vectors of a specific length 
that are of binary labels and it splits the vector pairs into two different groups based on whether 
or not they interact positively or negatively. This is the most frequently encountered 
representation. Assuming the target and drug feature vectors are defined as  
 
F={f:=d⊕t∣∣d=[d1,d2,⋯,dn] &t=[t1,t2,⋯,tm]}, 
where  
 
d – target feature vector with a length and  
 
t - drug feature vectors with a length m, respectively. 
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B. Improved Frequent Sub-sequence Mining (IFSM) 
The main aim of IFSM is to find the subsequence, which often occur typically in multiple 
sequences of input. This is considered to be a challenging problem that enables finding the total 
distance sub-sequences of a single sequence of input T and this is considered exponential with 
length for the input T. However, it poses problems like expensive frequent mining of sub-
sequences and these sub-sequences may find limited applicability on various applications. To 
reduce such constraints, in this paper, we use IFSM model that focus specifically on constraints 
associated with the sub-sequences of DTIs. This controls the sub-sequences for mining and 
hence it develops IFSM to attain improved efficacy.  
The constraints associated with subsequence derives the subsequences from input sequence 
and this is considered for IFSM. The main aim of the study is to provide an option to express 
the subsequence constraints. Consider a subsequence predicateP where the SupP(S, D) is the P-
support for a sequence S∈ Σ in database D is considered as the multiset over entire sequence 
of D. The frequency P for the sequence S in the database D is expressed as below:  
 
fP(S, D) = |SupP(S, D)|. 
 

Where the entire sequencesT in the database D for ST and P (S,T) holds.  

C. Transformer Binding Phase 
 As with proteins, the TBP begins by searching for sequence-specific motifs, separating 
the results into grids. Creating a compound token is accomplished by sending the fingerprints 
of the compounds through a series of layers that are interconnected to form a network. Once 
this compound token has been associated with the corresponding protein grid encoding, the 
process continues. A feature that are concatenated represents sequence and chemical with the 
size of  
H×(1+⌈lp/Sg⌉), 
where  
 
Sg – Gridsize  
lp– Proteinlength 
H - Hidden dimensionsize.  
 
Positional encoding are added with the grid feature in order to help the transformers to interpret 
the positioning information. The compound-grid attributes that are inputs into the transformer 
blocks. During the continuous transformer blocks, the information is sent through to describe 
the whole interaction between the compound token and the target protein, as well as the 
interactions and selectivity to ligands, and this information is passed through to describe the 
total interaction. 
(cg,wg,pg)=σ(fBR(TBBR(hg))), 
where  
 
hg –grids of protein in compoundgrids feature,  
fBR(⋅)- Dense Layers for the extraction of BR features, and  
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cg – centerfor each protein grid,  
σ(⋅) - Sigmoid Function 
wg –widthfor each protein grid,  
pg –confidence scorefor each protein grid. 
 
DTIs extraction of features hence can be expressed as:  
 
PDTI=σ(fDTI(TBDTI(TBBR(hc)))), 
 
hc- compound token in compound–grids feature, and  
fDTI(⋅) - dense layers for DTI prediction.  

 

C. Finding Binding Region.  
In order to locate the binding sites, it is necessary to first identify the assays in themolecular 
parts list. Findings of assays (protein or cell-based) is a technique is useful in identifying and 
classifying the assays in the molecular part list.The setof assays are divided into grids based on 
its bioactivity values that consists of a confidence score predicted over each assay grid. These 
confidence score involves the target type and the confidence rate that tells that the mapped 
target is accurate.  
The prediction model helps in detection of assays by employing a similar design to that of the 
original model. The prediction model helps in predicting the confidence ratings for each 
individual. Another feature of the programme is a prediction score that ranges from 0 to 9 as 
in Table 1.  
 

Table 1: Confidence score and comment 
Score Comment 
0 Default Value – Unknown Target 
1 Target assigned is non-molecular 
2 Target assigned is subcellular fraction 
3 Target assigned is non-protein molecular 

target 
4 Target assigned is multiple homologous 

protein target  
5 Target assigned is multiple direct protein 

target   
6 Target assigned is homologous protein 

subunits complex  
7 Target assigned is direct protein complex 

subunits  
8 Target assigned is homologous single 

protein target 
9 Target assigned is direct single protein  
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These are then reconstructed to their original values and saved back into the database for future 
use. 
Cg=sg+Sg⋅cg, 
where  
 
cg - BR locationprediction, and  
sg - gridstarting index.  
Cg –Feature Extracted BR location. 
 
The widths of BRs (Wig) is hence represented as: 
 
Wig=riewg, 
where  
 
wg - BR widthprediction, and  
ri - predefined BR width, 
e - Euler number.  
Wig - predicted BRwidth. 
 
The focal loss can be used to dynamically modify object classification weights and prevent 
class imbalances by adjusting the weights of individual objects. The following are the weights 
of the focus loss used to address the detection of the BR class imbalance: 

     1 logt t tFL p p p
 

 
 
where, 

 
1

1 0t

p if y
p

p if y


   

 

 
where loss weights are regulated dynamically to reduce the rate of class imbalance. When 
calculating the BR centre and width loss, the mean absolute error is employed. To determine 
the total loss associated with the prediction of BR, the following formula is used: 
L(c,w,p)=λreg(|ct−cp|1+|wt−wp|1)+λcFL(pt), 
where  
 
| |1 - L1 loss,  
λreg -regression loss weights 
λc - focal lossweights 
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EXPERIMENTAL RESULTS 

A. Specification of Dataset 
The information in the ChEMBL database was gathered from published literature and entered 
into the database by the database administrators. The EMBL-European Bioinformatics Institute 
published these records in 2002, and they are available online (EMBL-EBI). Since its inception 
in 1998, this database has contained more than 1.9 million chemical compounds. ChEMBL has 
information on more than 10,000 drugs as well as more than 12,000 targets. 
  
B. Results  
Metrics can be used to compare and contrast different techniques. They assist in the comparison 
of numerous ways in order to determine which is the most appropriate for implementation.  
 
Accuracy: An accuracy is assessed by the percentage of interactions that it correctly predicts, 
and its precision is measured by the percentage of interactions that it correctly predicts. 
Precision is measured by the percentage of interactions that it correctly predicts. Calculate the 
precision using the following formula: 
 
Acc = (TN+TP)/(TN+TP+FN+FP) 
 
Recall: The term recall refers to the process of effectively identifying a successful interaction. 
It can be deduced in the following way: 
 
Recall = (TP)/(TP+FN) 
Precision: Precision is a term that is used to describe an additional usual evaluation metric. 
 
Precision = (TP)/(TP+FP) 
 
Time: When analysing and comparing alternative techniques, the training and prediction times 
for various classifiers can be used as a metric to evaluate and compare them. 
where  
 
TP - True Positive,  
FP - False Positive,  
FN - False Negative, and  
TN -True Negative. 
 
Instead of FP, the non-interactive drug target pair, TP is projected to interact with the 
interacting drug target pair, whereas FP does not interact with the drug target pair (of non-
interacting one) (TP). The non-interactive pairs of drug target that are predicted for not 
interacting and hence it is denoted as the TN and FN, while the interacting pairs of drug target 
and that gets predicted for interaction, where it is denoted by FN and TN. 
 



FEATURE EXTRACTION OF DRUG–TARGET INTERACTIONS USING MODIFIED TRANSFORMER 
BINDING PHASE 

Journal of Data Acquisition and Processing Vol. 37 (5) 2022       2111 
 
 

 
Figure 2 Accuracy 
 

 
     Figure 3 Precision 
 

 
 
     Figure 4Recall 
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Figure 5 F1 Measure 

 
Figure 6 Computational Time 
 
A second test of dependability was performed in this experiment, in which the proposed method 
was applied to the prediction of drug-target interactions on four different datasets using the 
five-fold cross-validation method. By using this strategy, each of the model is trained on a 
different dataset. Finally, the feature vectors from the testing datasets were fed into the trained 
prediction model in order to create a prediction score (Figure 2 – Figure 6) that measures the 
likelihood that a specific drug-target pair will interact with each other. 
Prediction of DTIs can be accomplished through the use of the proposed feature extraction 
method, allowing for further examination of the method prediction outputs. In this experiment, 
a five-fold cross validation procedure was used to compare the accuracy of the prediction with 
existing state-of-the-art methodologies. This is demonstrated by a comparison of the feature 
extraction results obtained from different approaches using the same feature descriptor. The 
prediction performance of the proposed feature extraction method is significantly better than 
that of the existing method. 
Each substructure of a molecule is represented by a single bit in the binary vectors used to 
represent it. Drug molecules that include specific substructures can be identified by employing 
substructure fingerprints, which encode structural information about a given medicinal 
component into a series of binary bits and can be used to identify the presence of a specific 
substructure. 
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CONCLUSION 
 In this study, a TBP based on the IFSM was created for the preprocessing and extraction 
of DTI aspects from clinical data. We use the IFSM to extract the relevant frequent 
subsequences that may be combined to generate a comprehensible pattern expression from the 
input data set. It is necessary to restructure the datasets into sub-structures using the IFSM 
before extracting any instances from them in this investigation. TBP can be used to extract 
semantic associations between sub-structures created from the earlier IFSM phase from 
unlabelled biological data using a variety of techniques. The model is assessed using state-of-
the-art DTI feature extraction algorithms in order to determine its capacity to create contextual 
structural binding with high accuracy and consistency. It is necessary to put the model 
accuracy, precision, recall, and f-measure through their paces. 
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