

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2269

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.776490

ASSESSMENT OF JAVA PROGRAM USING METRICS FOR OBJECT ORIENTED
DESIGN (MOOD)

Dr K D Gupta1 Sangeeta Gupta2

1Head & Guide, Department of Computer Science, Apex University, Jaipur
2PhD Scholar, Department of Computer Science, Apex University, Jaipur

Guptasangi9@gmail.com, Kdevgupta@gmail.com

Abstract
Years of software testing research have provided us with new methods to reason about and test
the behavior of large software systems with hundreds of thousands of lines of code. Many of
these methods, including genetic algorithms, swarm intelligence, and ant colony optimization,
were inspired by nature. They do, however, employ a one-way comparison, implying that they
are taking from nature without giving back. In this work, MOOD metrics are extensively used
in the Object-Oriented world to measure various characteristics of a programme. A Java
programme assessment and grading system based on the MOOD was developed in this study.
The MOOD metrics for Java programmes have been adjusted as a result of experimentation so
that they may be examined. A weight factor has also been included to illustrate the significance
of each characteristic's value. The system has been tested with a variety of applications, each
with its own degree of intricacy and usefulness. Furthermore, the University of Jordan has put
the metrics to the test in terms of evaluating and grading student programmes. The system
routinely produces favourable results.
Introduction
Software metrics are measures used for software engineering items to be assessed &
characterized. To improve software quality, software metrics are one of the essential techniques
used for software engineering. Program metric is a basic measure of quantity derived from any
feature in the life cycle of the software. Software metrics have the work to identify substantial
software product evaluations and lead us to fascinating management and technical decisions.
In every phase of the life cycle of development (Bieman & Kang, 1995), software metrics have
developed into an essential component of software development. The software metric is
associated with different measures & the development of computer software. In software
metrics, research tends to focus mostly on static metrics that may be acquired through static
analysis of a programming artifact. In addition to processing variables, the resulting software
quality should also be affected by product aspects. The design (Chidamber & Kemerer, 1991)
is one of them. The architecture transition analysis is an activity in which a skeleton is
developed for computable employment that assists the stated needs of the system. This shift
gives a lot of liberty degrees. Decisions on the greatest options are generally fuzzy & depend
mostly on expert opinions. Cumulative information, in other terms, plays a crucial role in The
design stage. This open issue is supposed to be alleviated by extensive use of trends, structures,
and other reusable components. However, the current approach is still not widely adopted. A

ASSESSMENT OF JAVA PROGRAM USING METRICS FOR OBJECT ORIENTED DESIGN (MOOD)

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2270

series of measures(Harrison et al., 1998) dubbed MOOD has been used to assess OO design
features. The reasons for a definition of a MOOD were:
1. covering essential structural principles like encapsulation, inheritance, polymorphism &

transmittal of messages of an object-oriented paradigm;
2. formal description to prevent measurement subjectivity & hence enable replicability,
3. size independence to enable inter-projected comparison, thus promoting cumulative

information & language independence by enabling comparison of heterogeneous systems
implementation to extend the apps of this set of criteria.

Each of these metrics corresponds to an essential structural mechanism of an OO paradigm like
encapsulation (MHF & AHF) (MIF & AIF), polymorphism (POF) & message passing (COF).
The descriptions of MOOD metrics do not refer to specific linguistic structures. However,
because each language has its structure, which makes it possible to create more or less detailed
OO-mechanisms, an abstract binding is supplied for 2 OO languages (C++ (Stroustrup &
Stroustrup, 1995) & Eiffel(Meyer, 1994), is included ahead.
Related Work:
MOOD metrics have been used by many software developers to assess object-oriented
programmes. Abreu et al. [3] pioneered the quantitative evaluation of object-oriented software
system design attributes. An experiment for collecting and analysing MOOD measurements
was defined, and several design hypotheses were examined. As a data source, a significant
number of C++ class taxonomies were utilised. It was built and used to collect these metrics.
The collected data was statistically analysed.
Abreu and Melo [4] conducted experiments on the impact of object-oriented design on software
quality characteristics. MOOD measurements are used to assess OO design methods. The
identical set of standards was used to construct all eight small-scale information management
systems. OO design characteristics like as inheritance and polymorphism have been found to
influence quality factors such as reliability and maintainability. Abreu et al. presented Moody
to Eiffel. Code samples were supplied for illustration and understanding. As previously
indicated, these metrics were taken from a sample of Eiffel libraries. Following statistical
analysis of the sample, certain hypotheses were developed and addressed. Following that is an
initial set of prescriptive principles for the design process. Harrison et al. [6] performed a study
on MOOD measurements. They published their results. From the standpoint of measurement
theory, the MOOD metrics were examined in terms of encapsulation, inheritance coupling, and
polymorphism: the object-oriented traits intended to be quantified. MOOD measures were used
to actual data acquired from three diverse application fields to support this theoretical
assumption. The findings indicate that through the use of metrics, an overall assessment of a
software system may be valuable in controlling software development activities.

There are also a variety of instruments for reviewing programmes available, such as: Redish
and Smyth [7] developed AutoMARK to evaluate FORTRAN programmes produced by
students in line with their particular style. AUTOMARK++, a technique developed by Al-
Ja'afer and Sabri [8], is used to analyse object-oriented programmes based on style. Berry and
Meekings' [9] approach can be used to evaluate students' C language applications. It was
created by Jackson and Usher [10] to assess programmes based on their correctness, efficiency,

ASSESSMENT OF JAVA PROGRAM USING METRICS FOR OBJECT ORIENTED DESIGN (MOOD)

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2271

complexity, and style using the ASSYST software tool. Jumaa [11] has developed a tool for
assessing structural languages like as Pascal, FORTRAN, C, and Basic based on Halstead,
McCabe, AUTOMARK, and Lipow and Thayler models.
MOOD Matrics
The MOOD set (Metrics for OO Design) contains the following metrics:

 Attribute Hiding Factor (AHF)

 Method Hiding Factor (MHF)

 Attribute Inheritance Factor (AIF)

 Coupling Factor (COF)

 Polymorphism Factor (POF)

 Method Inheritance Factor (MIF)
The complexity of software indicates the complications of software understanding,
maintenance, modification, and reuse. According to IEEE definitions, the complexity of the
system or component is the extent to which it is difficult to comprise and verify the design or
implementation. The objective-oriented (OO) method is played a critical part in Software
Developers for 25 years but research is currently on to modify and improve these techniques.
Due to different software-design measurements, the popularity of OO programming is. These
design measurements are used to detect the maintenance and reliability of the object-oriented
design. The object-oriented paradigm's reusability characteristic is used to maximize the
capability of the software, although its usage is complicated.
Therefore, a complete measure of complexity is needed, incorporating other software factors,
to address this problem. A new technique is needed in the software business to quantify
software complexity more precisely. Measuring the cognitive component of OO software helps
to better understand complexities since it makes an understanding of the inner structure and
input-output of the program difficult for designers and consumers. So the work needed to
design, test, and maintain the software may be easily predicted. A new measure is proposed in
this paper, which goes above AWCC limits. It helps to better understand the complexity of the
class. For the development of object software, we offer a new metric termed Cognitive
Weighted Inheritance Class Complexity (CWICC) (Maheswaran & Aloysius, 2018).
In the previous two decades, object-oriented (OO) technology-dominated software
engineering. The maintenance of OO software is one of the reasons behind this predicament.
The quality of its design must also be assessed using appropriate quantitative methods to assess
the maintainability of OO software. Since it is difficult and costly to modify after the design
has been implemented. This means that the design should be good from the start and software
metrics are the tools to assess the design quality.
The OO software is popular because of its powerful features such as encapsulation, the
composition of objects, heritage, interaction, polymorphism, dynamic binding, and reusability.
In addition, the OO approach is characterized by its classes and objects, defined according to
characteristics (data) and operations (methods). In class declarations, these components are
defined. This includes the technique that works on data in response to a message. The method
is an important one While method complexities directly impact software's comprehensibility,
method-based complexity measures have not yet been thoroughly investigated. Very few
metrics are available in the literature to evaluate the complexity of the process. The underlying

ASSESSMENT OF JAVA PROGRAM USING METRICS FOR OBJECT ORIENTED DESIGN (MOOD)

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2272

architecture and special features of OO design are not taken into account in the majority of
these measures(Misra et al., 2011).
Statement of Research Problem
The system has assessed the quality of a wide range of programmes, each with a unique level
of complexity and design. In each case, the algorithm properly identified the program's faults.
Appendix A has three different programme designs, each with a unique set of evaluation
results.
Both applications provide for easy access to and storage of information about a company's
personnel. The employee's initial and last name, as well as the employee ID number, are
included in each programme. Temporary and long-term hourly employees are both included in
this breakdown of earnings. All long-term employees are subject to deductions for benefits.
Permanent piece-worked workers are well-versed in product quality and cost per unit. Also
included among fixed-wage workers are commission-earning employees.
Methodology
The following problems in design result in a poor score for Design 1:

 When compared to the total number of methods in use, the number of inherited methods
is quite low. Inheritance reduces the amount of errors in a software. Thus, the
application is given a low rating since it is expected that the quality of its content would
decline as more inherited methods are used.

 However, it is estimated that between 12.7 and 21.8 percent of the program's strategies
are yet to be discovered. Gradually adding additional information to classes is the best
way to go about the implementation process. The above-mentioned data was gathered
by the use of obscure methodologies, hence supporting an increase in MHF. Since a
low MHF indicates a lack of abstraction, this element gets a failing score.

 Polymorithism's complexity reduction is too low, resulting in a reduction in complexity.

For a better grade, use inheritance to raise the standard of the code, and simplify the class as
much as possible. A considerable change in grade between designs 1 and 2 was made possible
via inheritance, which allowed the classes to be more easily reused. However, there are still a
few drawbacks, such as: despite the great rating Since polymorithism makes testing and
maintaining the programme more complicated and harder to utilise inherited techniques as a
result, it should be minimised or eliminated altogether. Though the ability to pass on genes is
one of the benefits of doing so,

 It is imperative that the programme be redesigned in order to further enhance its quality.

 According to this design's highest score, only MHF deviates from the expected range.
This isn't a big problem because the programme only has two capabilities (read and
write). There's no need for any secret methods.

 Depending on the weight of a particular item, grades are altered accordingly.
Overriding all other factors, COF is more important. It also overrides other factors like
MIF, MHF, POF, and even other factors such as MHF or AIF.

The grade given to the evaluated program depends on Table 1. This table is produced from
reported study [2,3,4,5,6] and the results of experiments.

ASSESSMENT OF JAVA PROGRAM USING METRICS FOR OBJECT ORIENTED DESIGN (MOOD)

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2273

Table 1: The range of MOOD factors

Factor Minimum Maximum
Minimum
Tolerance

Maximum
Tolerance

MHF 12.70% 21.80% 9.50% 36.90%
AHF 75.20% 100% 67.70% 100%
MIF 66.40% 78.50% 60.90% 84.40%
AIF 52.70% 66.30% 37.40% 75.70%
COF 0% 11.20% 0% 24.30%
POF 2.70% 9.60% 1.70% 15.10%

It should be noted that the minimum value of COF reported in the literature is 4.0%. This is
due to the fact that coupling is required in every program to deliver some functionality.

The final grade is computed as follow:
Input: Indicator
Output: Grade
If indicator value in range
Than Grade=100
Elseif in tolerance range
Then 60 ≤Grade<100
Else Grade < 60
Total Grade= ∑ 𝑔𝑟𝑎𝑑𝑒[𝑖] ∗ 𝑤[𝑖]
Final Garade= Total Grade/2

Table 2: evaluation Result

Factor
Model Program

Evaluated
Program Factor

Weight Lower
Bound

Upper
Bound

Score
Grade
(%)

Method Hiding Factor
(MIF)

12.7 21.8 0 0 1

Attribute Hiding Factor
(AHF)

76 100 100 100 2

Method Inheritance
Factor (MIF)

66.4 78.5 0 0 2

Attribute Inheritance
Factor (AIF)

52.7 66.3 0 0 1

Coupling Factor (COF) 0 11.2 0 100 3
Polymorithism Factor
(POF)

2.7 9.6 0 0 2

Final Grade is 45 %

ASSESSMENT OF JAVA PROGRAM USING METRICS FOR OBJECT ORIENTED DESIGN (MOOD)

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2274

When it comes to predicting system quality, software metrics are one of the most effective
tools available, highlighting areas of concern that may be fixed before the system is released
to the public. In addition to this, some of the advantages of software measurement are as
follows:

 Measurements provide unbiased data on the present state of development of a software
product, technique, or resource, and they are used to make decisions regarding future
development.

 Software measurement supports management strategy to make better and timely decisions.

 Metrics aid software developers in finding and addressing design flaws early in the SDC,
hence reducing the likelihood of spectacular failures later.

 It helps to assess the quality of design and identify complex modules for further division
of such modules to achieve improved and simplified design.

 Measurement provides a way to discover and correct the management issues early that can
be more difficult or costly to resolve later.

 It directly addresses and aids the assessment of impact due to the changes in the process.

 This indicates that the functions of a module must be goal specified and therefore should
concentrate on a single well-defined purpose. Cohesion is a term used in OOP to refer to
the degree of intra-relatedness of functions inside a component.

 A module is considered to be fair if all of its properties are shared by all of its functions.
Software cohesive is a metric that assesses the complexity of a program module in such a
manner that high cohesion indicates low difficulty, as well as low cohesion, which
indicates computational dimensionality in the program module.

 In OOP, cognitive metrics provide numerical weights to OO features to emphasize their
underlying definition or qualities, as opposed to traditional metrics.

Conclusion
The MOOD metrics are the most appropriate metrics for evaluating object-oriented
programmes, and they have been successfully applied to Java projects. The System is useful
not only for assessing programmes, but also for finding where problems exist within each
programme under examination. Weights are quite useful in adapting the marking system of the
tested programmes to the suitable level. The system is easy to use and may be used to assess
applications at the process level. A disadvantage of the technique is that it can only be used to
analyse large Java programmes.
References:

[1] R. Pressman, Software Engineering: a Practitioner's Approach: European Adaptation,
5th edition, McGraw-Hill, UK, 2000.

[2] F. Abreu and R. Carapuça, Object-Oriented Software Engineering: Measuring and
Controlling the Development Process, Proceedings of the 4th International Conference
on Software Quality, McLean, VA, USA, 1994.

[3] F. Abreu, M. Goulão and R. Esteves, Toward the Design Quality Evaluation of Object-
Oriented Software Systems, Proceedings of the 5th International Conference on
Software Quality, Austin, Texas, USA, 1995.

ASSESSMENT OF JAVA PROGRAM USING METRICS FOR OBJECT ORIENTED DESIGN (MOOD)

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2275

[4] F. Abreu and W. Melo, Evaluating the Impact of Object-Oriented Design on Software
Quality, Proceeding of the 3rd International Software Metrics Symposium
(METRICS’96), IEEE, Berlin, Germany, pp. 90-99, 1996.

[5] F. Abreu, S. Esteves and M. Goulao, The Design of Eiffel Programs: Quantitative
Evaluation Using the MOOD Metrics, Proceedings of TOOLS'96, Santa Barbara, CA,
USA, 1996.

[6] R. Harrison, S. Counsell and R. Nithi, An evaluation of the MOOD set of object-
oriented software metrics, IEEE Transaction on Software Engineering, 24(6), 1998, pp.
491-496.

[7] K. Redish, and W. Smyth, Program Style Analysis: A Natural By-Product of Program
Compilation, Communications of the ACM, 29(2), 1986, pp. 126-133.

[8] J. Al-Ja'afer, and K. Sabri, AUTOMARK++ an CASE tool to automatically mark
student Java Programs., International Arab Journal of Information Technology, to
appear.

[9] R. Berry, and B. Meekings (1985), A Style Analysis of C Programs, Communications
of the ACM, 28(1), 1985, pp. 80-88.

[10] D. Jackson and M. Usher, Grading Student Programs Using ASSYST. Proceeding 28
the ACM SIGCSE Tech. Symposium on Computer Science Education, San Jose,
California, USA, pp. 335-339, 1997.

[11] D. Jumaa, A Computer Model for Evaluation of Programs, Master Thesis, University
of Engineering and Science, Iraq, 1992.

[12] A. Baroni, Formal Definition of Object-Oriented Design Metrics, Master Thesis,
Universidade Nova de Lisboa, Portugal, 2002.

[13] Alqadi, B. S., & Maletic, J. I. (2020). Slice-Based Cognitive Complexity Metrics for
Defect Prediction. SANER 2020 - Proceedings of the 2020 IEEE 27th International
Conference on Software Analysis, Evolution, and Reengineering.
https://doi.org/10.1109/SANER48275.2020.9054836

[14] Beniwal, R. (2015). Analysis of testing metrics for object oriented applications.
Proceedings - 2015 IEEE International Conference on Computational Intelligence and
Communication Technology, CICT 2015. https://doi.org/10.1109/CICT.2015.34

[15] Campbell, G. A. (2018). Cognitive complexity: An overview and evaluation.
Proceedings - International Conference on Software Engineering.
https://doi.org/10.1145/3194164.3194186

[16] Crasso, M., Mateos, C., Zunino, A., Misra, S., & Polvorín, P. (2016). Assessing
cognitive complexity in Java-based Object-Oriented systems: Metrics and tool support.
Computing and Informatics.

[17] De Silva, D. I., Kodagoda, N., Kodituwakku, S. R., & Pinidiyaarachchi, A. J. (2017).
Analysis and enhancements of a cognitive based complexity measure. IEEE
International Symposium on Information Theory - Proceedings.
https://doi.org/10.1109/ISIT.2017.8006526

[18] De Silva, D. I., Weerawarna, N., Kuruppu, K., Ellepola, N., & Kodagoda, N. (2013).
Applicability of three cognitive complexity metrics. Proceedings of the 8th
International Conference on Computer Science and Education, ICCSE 2013.

ASSESSMENT OF JAVA PROGRAM USING METRICS FOR OBJECT ORIENTED DESIGN (MOOD)

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2276

https://doi.org/10.1109/ICCSE.2013.6553975
[19] Francis Thamburaj, T., & Aloysius, A. (2017). Models for Maintenance Effort

Prediction with Object-Oriented Cognitive Complexity Metrics. Proceedings - 2nd
World Congress on Computing and Communication Technologies, WCCCT 2017.
https://doi.org/10.1109/WCCCT.2016.54

[20] Husein, S., & Oxley, A. (2009). A coupling and cohesion metrics suite for object-
oriented software. ICCTD 2009 - 2009 International Conference on Computer
Technology and Development. https://doi.org/10.1109/ICCTD.2009.209

[21] Ibrahim, S. M., Salem, S. A., Ismail, M. A., & Eladawy, M. (2012). Novel sensitive
object-oriented cohesion metric. 2012 22nd International Conference on Computer
Theory and Applications, ICCTA 2012. https://doi.org/10.1109/ICCTA.2012.6523562

[22] Jakhar, A. K., & Rajnish, K. (2014). A new cognitive approach to measure the
complexity of software’s. International Journal of Software Engineering and Its
Applications. https://doi.org/10.14257/ijseia.2014.8.7,15

[23] Jayalath, T., & Thelijjagoda, S. (2020). A modified cognitive complexity metric to
improve the readability of object-oriented software. Proceedings - International
Research Conference on Smart Computing and Systems Engineering, SCSE 2020.
https://doi.org/10.1109/SCSE49731.2020.9313049

[24] Jha, S., & Ratha, B. K. (2018). OOMT-Object oriented metric technique towards
predictive & qualitative software. 2017 International Conference on Infocom
Technologies and Unmanned Systems: Trends and Future Directions, ICTUS 2017.
https://doi.org/10.1109/ICTUS.2017.8286069

