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ABSTRACT: The negative effect of geometric distortion can be largely eliminated with the 
correct geometric transformation, so that we can focus on the image content itself in the next 
study and recognition. For this reason, geometric transformations are often used as a 
preprocessing step in other image processing applications. In this paper, quantum algorithms 
are developed using the geometric transformation of the quantum image representation 
QIRHSI (HSI Color Space Based Quantum Image Representation), including two-point 
exchange, circular translation, flip transform, and orthogonal rotation. HSI (Hue-Saturation-
Intensity) color space. The above geometric transformation is performed by a quantum circuit 
with simple quantum gates. Analyzing the complexity of the fundamental quantum gate 
required for the above geometric transformations, it can be seen that the general 
transformations (circle translation, inverse transformation, and right-angle rotation) are lower 
than local transformations (two-point shifts). The geometric transformation concept is used to 
facilitate the low complexity and high performance of quantum images. 
Keywords: Quantum computation, quantum image sensor data, quantum geometric 
transformation, quantum circuit, quantum discrete transform, object identification. 
 
I. INTRODUCTION 
The combination of quantum mechanics and computer science gave birth to the new discipline 
of quantum computing [1]. According to the new calculation it is possible to solve the failure 
of Moore's Law [1]. Quantum computing is very useful [2], it mainly occurs in quantum 
coherence, entanglement and overlapping of quantum states, which makes quantum computing 
more efficient than computation compared to data storage and computation. Thus, quantum 
computing can solve the inefficiencies of traditional solutions. Shor's polynomial-time 
algorithm [3] for solving differential equations and Grover's quadratic accelerated database 
search algorithm [4] in 1994 are the most famous examples. 
These examples provide strong evidence for the superiority of quantum computers over 
classical computers. The fundamental problem of quantum imaging research is quantum 
imaging representation [5], [6], [7], [8], [9], [10], [11], [12], [13], [14 , [ 15], [16], [17], [18], 
[19], [20], [21], [22], [23]. Includes standard quantum image representation (see Table 1), 
Qubit Lattice [5], Real Ket [6], Mixed Image [7], Representation of Simple Quantum Images 
(FRQI) [8], Multi-Channel Representation for Quantum Image (MCRQI) ) [9], New Enhanced 
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Quantum Representation (NEQR)[10], Normal Arbitrary Quantum Superposition State 
(NAQSS)[11], Color Quantum Display 
  

TABLE 1. The different quantum image representation models. 
 

 
Phase shift (CQIPT) [12], modified color quantum representation (FQRCI) [13], simple 
quantum representation (SQR) [14], generalized quantum representation (GQIR) [15], new 
quantum representation Quantum representation of color digital images (NCQI) ) [16], bit-
plane representation of quantum images (BRQI) [17], sequentially encoded quantum image 
model (OQIM) [18], quantum representation model of color digital images (QRCI) [19], 
Fourier transform qubit representation (FTQR) [20], quantum hue, saturation and lightness 
(QHSL) [21], HSI color space based quantum image representation (QIRHSI) [22 ], etc. [15] 
tells us that there are currently two main research methods in quantum image processing: one 
is making representations of quantum images as shown in the previous paragraph, and the other 
is making algorithms based on quantum images. and list eight image processing algorithms: 
Simple Geometric Transformation [24], [25], [26], [27], image translation [28], [29], image 
scaling [15], [30], [31], [32], [33], color transformation [9], [10], [12], [16], [34], image 
scrambling [35], [36], [37], [38], image segmentation [7], [39], [40], [41], feature extraction 
[42], [43], quantum image watermarking [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], 
image encryption [54], [55] , [56], [57] and quantum image encryption [58], [59], 
[60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70]. 
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Coordinate transformations and geometric image modifications such as local translation, 
inversion, reflection, stretching and rotation require highly spatially varying systems [71]. 
Polynomial interpolator formulas can be used for efficient geometric transformation of 2D and 
3D images in conventional computer systems [72]. Many applications such as medical analysis, 
biomedical systems and image guidance require the use of geometric image transformation 
techniques [73]. 
Geometric transformation [24], [25], [26], [27], [28], [29] is an important part of image 
processing and image analysis, but is still in its infancy for quantum images. Lee et al. 
Fast geometric transformations based on FRQI notations [24] have been proposed, for example, 
two-point variation, rotation, joint exchange, orthogonal rotation, and their quantum variants 
using quantum gates, NOT, CNOT, and Toffoli Gate. The following year, Le et al. Three ideas 
have been proposed, including transforming subblocks in quantum images, extending the 
separation of classical operations to quantum transformations, and focusing on the smoothness 
of transformations that may not exist [25]. 
  
achieved using any of the earlier mentioned strategies. It is then used to construct new 
geometric transformations on FRQI quantum images form other transformations. In 2015, 
Wang, Jiang and Wang studied quantum image translations for the first time [28]. The entire 
and cyclic translation operations were proposed and quantum circuits for each of the two types 
of translation were given. In 2016, Fan et al. designed a new quantum algorithm to implement 
geometric transformations [26] based on Normal Arbitrary Superposi- tion State (NASS) of n 
qubits, including two-point swapping, symmetric flip, local flip, orthogonal rotations and 
transla- tions. In 2017, Zhou, Tan and Ian designed global translation and local translation 
based on quantum image FRQI [29]. The global translation is implemented using adder modulo 
N , and the local translation is implemented using Gray code, including single column 
translation, multi-column transla- tion and translation of restricted areas. In the same year, Yan 
et al. proposed a new method for quantum image rotation based on the NEQR quantum image 
shear trans- formation [27]. The horizontal and vertical shear mapping required to compute the 
rotation was accomplished by design- ing three basic computational units, namely quantum 
self- adder, quantum control multiplier and quantum interpolation circuit. 
Nowadays, there are two research directions based on geometric transformations of quantum 
image representations. One direction is to study more general geometric transforma- tions 
based on quantum image representations, Zhang et al. proposed the affine transformation and 
the rotation trans- formation of arbitrary angle under the QUAntum Log-Polar Image 
(QUALPI) [74]. Based on the Flexible Log-Polar Image (FLPI) [75], an arbitrary rotational 
transformation was designed by Wang et al. The other direction is to study other operations on 
existing geometric transformations of quantum image representations, such as encryption, 
watermarking, etc. Zhou et al. in 2012 combined a variety of geometric transformations of 
quantum images to achieve encryption of quantum images, and also proposed two basic 
important contents: quantum grayscale image representation and quan- tum grayscale 
geometric transformation [76]. In 2014, Song et al. proposed a quantum image encryption 
scheme based on constrained geometric and color transformations [77]. In addition to this, 
Iliyasu et al. proposed a quantum computer image security based on restricted geometric 
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transform with no key, blind watermarking and authentication strategy [45]. The above results 
show that there is a great need to explore the research in this direction. 
Inspired by the quantum geometric transformation algo- rithms based on quantum image 
representations FRQI and NASS, we designed the geometric transformation algo- rithm for 
quantum image representation QIRHSI. Firstly, the quantum geometric transformation 
algorithm of FRQI is for grayscale images, the geometric transformation algo- rithm of NASS 
is for multi-dimensional images, and our designed quantum geometric transformation 
algorithm based on QIRHSI is constructed for color images. Sec- ondly, it can better blend the 
quantum image representa- tion QIRHSI-based geometric transformation algorithm into other 
quantum image algorithms, such as image encryp- tion and image watermarking. Finally, the 
HSI model divides the image into color and grayscale information, making it more suitable for 
many grayscale processing techniques. 
We use identify gates, NOT gates and multi-controlled not- gates as basic tools and aim to 
extend the use of quantum image representation models for different quantum image 
processing operations. The primary contribution of this paper is to give quantum geometric 
transformations based on the quantum image representation QIRHSI. In this paper, we ana- 
lyze the complexity of quantum circuits using NOT gates and CNOT gates as the basic units. 
(1) Based on the QIRHSI model, definition of the two- point swapping, circular translation, 
flipping transformation and right-angle rotation of the unitary operator are given, and the 
corresponding quantum circuits are given to analyze the complexity of different quantum 
geometric transformation operations in the form of theorems. 
(2) The complexity of the quantum gates needed for differ- ent quantum geometry 
algorithms based on QIRHSI, FRQI and NAQSS models are compared, which corroborates 
from the side that the complexity of quantum geometry algorithms are closely related to the 
image size, but independent of the image color information. 
The remainder of this paper is organized as follows. Section II introduces prior knowledge, 
with the basic quan- tum gates, the quantum color image representation QIRHSI, the plain 
adder and adder modulo N . Section III discusses in detail the geometric transformations based 
on QIRHSI images, including two-point swapping, circular translation, flipping 
transformations and right-angle rotation. The com- plexity comparison of the geometric 
transformations under different quantum image representation models are presented in Section 
IV. Experimental examples of the QIRHSI geo- metric transformation are given in Section V. 
The limi- tations of the geometric transformation algorithm are dis- cussed in Section VI. 
Conclusions and future outlook are in Section VII. 
 
II. PRIOR KNOWLEDGE 
A. BASIC QUANTUM GATES 
First, we give some basic quantum gates to describe the geometric transformation of the 
quantum image, as depicted in Figure 1. These circuits are executed from left to right, and each 
line in the circuit represents a wire. A quantum circuit is equivalent to the operation of a unitary 
matrix. 
 
B. QIRHSI REPRESENTATION 
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We review how QIRHSI [22] represents a color image based on HSI color space. QIRHSI is 
an outstanding representation of quantum color images, which is derived from FRQI [8] 

 
FIGURE 1. Some quantum basic gates, circuit symbols and corresponding unitary matrices. 

 
and NEQR [10] model. According to the QIRHSI model, the quantum color image can be 
described as shown in Eq. (1). 
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i.e. |Ck ⟩ and |yx⟩ encode the color information and location 
information of the quantum color image, respectively. |y⟩ = yn−1 . . . y1y0 signifies the first n-
qubits along the vertical axis and x    xn 1 . . . x1x0 signifies the last n-qubits along the horizontal 
axis. A 4 4 color image and QIRHSI quantum state representation is provided in Figure 2. 
 
C. PLAIN ADDER 
To calculate the sum of the two numbers stored in the two 
  
|Hk ⟩ = cos θhk |0⟩ + sin θhk |1⟩ 
|Sk ⟩ = cos θsk |0⟩ + sin θsk |1⟩ 
|Ik ⟩ = .C C  . . . C C 
  
quantum registers a and b , it is necessary to rely on plain adder [78], [79]. 
Addition can be written in the following form. 
|a, b, 0⟩ → |a, b, a + b⟩ 

 
FIGURE 2. A 4 × 4 color image and QIRHSI quantum state representation. 
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FIGURE 3. Plain adder network. 
 
Rewrites the result of the calculation to one of the input registers, i.e. 
|a, b⟩ → |a, a + b⟩ (2) 
Figure 3 presents the network structure of the plain adder, where the sub-networks for the basic 
carry and sum opera- tions are shown in Figure 4. 

 
 

 
  
 where a, b [0, N). The quantum network structure of the adder modulo N is provided in 
Figure 5. 
 
III. GEOMETRIC TRANSFORMATION OF QIRHSI IMAGE Geometric 
transformations of the quantum grayscale image FRQI (two-point swapping, flipping, 
coordinate swapping and orthogonal rotation) [24] and the quantum color image NASS (two-
point swapping, symmetric flip, local flip, orthogonal rotation and translation) [26] have been 
inves- tigated so far. Based on these results, we have researched the geometric transformations 
of the quantum color image of QIRHSI [22], including two-point swapping, circular transla- 
tion, flip transformation and right-angle rotation. Therefore, the general geometric 
transformation based on the quantum color image QIRHSI is defined as 

 
FIGURE 4. Basic sum and carry operation. 
 
 
D. ADDER MODULO N 
The adder modulo N is a quantum network that is commonly used to calculate the modulo sum 
of two numbers [78], [79]. Its explicit form is illustrated in Eq. (3). 
|a, b⟩ → |a, (a + b)  mod N ⟩ (3) 
  
where I (θ) represents a QIRHSI quantum color image as shown in Eq. (1). The operator GT 
for general geometric transformations can also be written as 
GT = I ⊗2 ⊗ I ⊗q ⊗ G (5) 
The quantum circuits of the general geometric transforma- tion operator GT based on the 
quantum color image QIRHSI are given in Figure 6. 
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FIGURE 7. The quantum circuit of QIRHSI color images implementing the two-point swap 

of pixels i 0 and 
.j = .22n − 1E. 

 
 
  
Because more than one Gray code connecting i and j always exists, there is no unique that 
implements the swap between the two pixels of i and j [1]. For example, for i        0010 and j        
1111, two Gray codes are shown in Eqs. (12) and (13). 

 0 0 1 0 
0 0 1 1 
0 1 1 1 
1 1 1 1 

and     

 0 0 1 0 
 1 0 1 0 
 1 1 1 0 
 1 1 1 1 

Theorem 1: The complexity of the quantum gate required to implement the two-point swap 
operator GP on the quantum image QIRHSI using Gray codes is O n2 . 
Proof of Theorem 1: Let the pixel positions to be swapped in the quantum image QIRHSI by 
the two-point swapping operator GP are i and j , and the elements of a set of Gray codes 
connecting 2n bits of binary numbers i and j to g1,  g2,  . . . ,  gm  1,  gm, where g1    0, gm     
22n     1. The state transformations are implemented step by step using simply a series of 
quantum gates 
|g1⟩ → |g2⟩ → . . . → |gm−1⟩ 
then multi-controlled NOT gate operations are conducted, followed by transformations 
|g1⟩ → |g2⟩ → . . . → |gm−1⟩ 
the final result is the two-point swap operator GP imple- mented in quantum circuits, with the 
required quantum gate complexity of O n2 [1], [80]. In the following we will start 
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The first step is to swap the states of g1 and g2 . Let g1   and   g2   have different values for the 
lth bit, then we can complete the swap by flipping one of the controlled bits of the lth qubit, 
the condition to be satisfied is that the both 
|g1⟩ and |g2⟩ have the same qubit for the rest of the bits. Next, use a controlled operation to 
swap |g2⟩ and |g3⟩, and so on, until |gm−2⟩ and |gm−1⟩ have been swapped. The above m − 2 
operations complete the operations in Eq. (14) 
|g1⟩ → |gm−1⟩ 
|g2⟩ → |g1⟩ 
|g3⟩ → |g2⟩ 
. . . 
|gm−1⟩ → |gm−2⟩ (14) 
It should be noted that all other states of the computational basis remain unchanged during the 
sequence of operations. In the second step, let the w th bits of gm 1 and   gm are different, and 
under the condition that the other bits of gm 1 and gm are the same, conduct a multi-control 
NOT gate operation targeting the wth qubit. Finally, the reductive swap operation is used to 
complete the multi-control NOT gate operation: gm−1 and gm−2 are swapped, followed by gm 
2 and gm 3 , and so on, until g2 and g1 are swapped. 
Since i and j differ in at most 2n positions, it can always find a Gray code that satisfies m 2n
 1 [1]. To imple- ment the two-stage unitary operation up to 2 (2n 1) con- trolled not-
gate operations are required to swap g1 to gm 1 and back again. And each such controlled 
operation can be implemented using O (n) NOT gates and multi control oper- ation NOT gates. 
The achievement of a multi-control NOT gate operation with the wth qubit as the target also 
requires O (n) elementary quantum gates. Thus, the implementation of |g1 ⟩ to |gm−1⟩ requires 
the quantum elementary gate of gate required for the quantum circuit implementation of the 
two-point swap operator GP on QIRHSI is O n2 . 
 
A. CIRCULAR TRANSLATIONS 
The circular translation of the QIRHSI image along the coordinate axis is described in 
Definition 2. Figure 8 gives an example of a circular translation of the image along the 
coordinate axis. 

 
FIGURE 8. The image Tree was cyclically translated along the coordinate axis. 
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Definition 2: The operators Ty l and Tx l based on QIRHSI color image translated by l pixels 
along the y and x axis respectively are defined as 
Ty+l (|I (θ)⟩) 
2n−1 2n−1 
  

 
FIGURE 9. Quantum circuit of the QIRHSI image translated by l pixels along the y axis. 

 
 =  1  X X .Hyx .Syx .Iyx ⊗ .(y + l) mod 2n, x   (15) 
  
Tx+l (|I (θ)⟩) 
1 2n−1 2n−1 
= .Hyx .Syx .Iyx ⊗ .y, (x + l) mod 2 (16) 

 
FIGURE 10. Quantum circuit of the QIRHSI image translated by l pixels along the x axis. 

 
Theorem 2: The complexity of the quantum gates needed for the circular translation operators 
T and T on the 
    
whereby |I (θ)⟩ represents a QIRHSI color image, see Eq.   (1).   l = ln−1 . . . l1l0   and   
l ∈ (0, 2n − 1], 
so li (i = 0, 1, . . . , n − 1) is not all zero. The translation oper- 
  
Proof of Theorem 2: In ordered to calculate the number 
of quantum gates required for the circular translation opera- tors Ty+l and Tx+l, it is only 
needed to calculate the number of 
  
ators Ty+l and Tx+l can be expressed respectively as 
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2n−1 
Ty+l = I ⊗2 ⊗ I ⊗q ⊗ (j + l) mod 2n ⟨j| ⊗ I ⊗n 
j=0 
= I ⊗2 ⊗ I ⊗q 
  
quantum elementary gates required for the module 2n adder. As one Toffoli gate is equivalent 
to six CNOT gates [78]. In the basic carry and sum operation (see Figure 4), the number of 
CNOT gates taken is 13 and 2 respectively. And the plain adder (see Figure 3) contains 2n
 1 carries, n sums and 1 CNOT gate, so the number of CNOT gates required for 
  
0 l mod 2n 0 
⊗ + |(2n − 1 + l) mod 2n⟩ ⟨2n − 1| 
2n−1 
  
⊗ I ⊗n 
(17) 
  
the plain adder is 28n 12. The linear relationship with the input n of the quantum circuit. 
The module 2n adder (see Figure 5) contains 5 plain adders, 2 NOT gates and up to 2n + 4 
CNOT gates. Thus, the module 2n adder needs 2 NOT gates and up to 142n − 56 CNOT 
  
Tx+l = I ⊗2 ⊗ I ⊗q ⊗ I ⊗n ⊗ (j + l) mod 2n ⟨j| 
j=0 
= I ⊗2 ⊗ I ⊗q ⊗ I ⊗n 
  
gates, i.e. the complexity of the quantum gates required for the module 2n adder is O (n). That 
is, the complexity of the quantum gates required for the circular translation operators 
  
|(0 + l) mod 2n⟩ ⟨0| + . . . 
+ |(2n − 1 + l) mod 2n⟩ ⟨2n − 1| 
  
  (18) 
  
Ty+l and Tx+l is O (n). 
 
B. FLIP TRANSFORMATIONS 
The quantum circuits of the circular translation operators 
Ty+l and Tx+l are given in Figures 9 and 10. 
  
The flip transformation of the QIRHSI image along the coordinate axis is shown in Definition 
3. Figure 11 gives 
  
an example of the image flipping transformation along the coordinate axis. 
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FIGURE 11. The image Tree was flipped along the coordinate axis. 

 
Definition 3: The QIRHSI color image based flip transfor- mation operators Fy and Fx along 
the y and x axis respec- tively are defined as 
Fy (|I (θ)⟩) 
2n−1 2n−1 

 
FIGURE 12. QIRHSI color image of the quantum circuit flipped along the 

y -axis. 
  1 
= 2n 
  
X  X .Hyx  .Syx  .Iyx  ⊗ |yx¯⟩ 
  
y=0 x=0 
  
 1 
= 2n 
  
2n−1 2n−1 
.Hyx 
  
  .Syx 
  
  .Iyx 
  
  ⊗ .y, 2n − 1 − x (19) 
  



OBJECT IDENTIFICATION IN SENSOR DATA USING QUANTUM TECHNIQUES 

Journal of Data Acquisition and Processing Vol. 37 (5) 2022       2731 

 
FIGURE 13. QIRHSI color image of the quantum circuit flipped along the 

x -axis. 
  
y=0 
Fx (|I (θ)⟩) 
  
x=0 
 
the quantum gates required to implement the flip operators Fy 
  
1 2n−1 2n−1 
= .Hyx  .Syx  .Iyx  ⊗ |y¯x⟩ 
  
and Fx on the QIRHSI image is O (n). 
  
n n 
=  1  X X .Hyx .Syx .Iyx ⊗ .2n − 1 − y, x (20) 
  
y = −x axis as shown in Definition 4. Figure 14 shown an 
example of the image flipping transformation along the y = x 
  
where I (θ) represents a QIRHSI color image, see Eq. (1). And 
  
|y⟩ = |yn−1 . . . y1y0⟩ 
|x⟩ = |xn−1 . . . x1x0⟩ 
y yn  1 . . . y1y0 2 1 y 
|x¯⟩  =  |x¯n−1 . . . x¯1x¯0⟩ =   2n − 1 − x  y¯i  =  1 − yi,  x¯i = 1 − xi 
i = 0, 1, . . . , n − 1 
The flip transformation operators Fy and Fx are denoted as 
Fy = I ⊗2 ⊗ I ⊗q ⊗ I ⊗n ⊗ X ⊗n (21) 
Fx = I ⊗2 ⊗ I ⊗q ⊗ X ⊗n ⊗ I ⊗n (22) 
The quantum circuits of the flipping transform operators 
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FIGURE 14. The image Tree is transformed by flipping along the y = x 

and y = −x axis. 
 
Definition 4: The QIRHSI color image based flipping operators Fy x and Fy    x along the y       
x and y         x axis respectively are defined as 
Fy=x (|I (θ)⟩) 
  
Fy and Fx are shown in Figures 12 and 13. 
  
1 2n−1 2n−1 
= .Hyx .Syx .Iyx ⊗ V (|yx⟩) 
 
tum image QIRHSI is O (n). 
Proof of Theorem 3: The flip operators Fy and Fx are 
  
 1 
= 2n 
  
2n−1 2n−1 
.Hyx .Syx .Iyx ⊗ |xy⟩ (23) 
  
shown in Eqs. (21) and (22), and it can be seen that both 
operators Fy and Fx use n NOT gates, so the complexity of 
  
y=0  x=0 
Fy=−x (|I (θ)⟩) 
  
 
  
1 2n−1 2n−1 
= .Hyx  .Syx  .Iyx  ⊗ |x¯y¯⟩ 
  
Theorem 4: The complexity of the quantum gates needed 
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n n 
=  1  X X .Hyx .Syx .Iyx ⊗ .2n − 1 − x, 2n − 1 − y  
  
Proof of Theorem 4: The flipping operators Fy x and 
F 
 
2n 
y=0 
  
x=0 
  
(24) 
  
y=−x are shown in Eqs. (25) and (26), which show that the 
operator Fy x uses n swap gates, and the operator Fy x uses 
2n NOT gates and n swap gates. Because one swap gate is 
equivalent to three CNOT gates [1], the complexity of the 
  
whereby I (θ) represents a QIRHSI color image, see Eq. (1). 
The flip transformation operators Fy x and Fy x can be 
expressed respectively as 
Fy=x = I ⊗2 ⊗ I ⊗q ⊗ V (25) 
Fy=−x  = Fy=x FyFx (26) 
The quantum circuits of the flip transformation operators Fy x and Fy x are shown in Figures 
15 and 16, and the quantum circuit of the operator V is given in Figure 17. 
 

 
FIGURE 15. QIRHSI image of a flipped quantum circuit along the y x 

axis. 
  
quantum gates needed to implement the flipping operators 
Fy=x and Fy=−x on the QIRHSI is O (n). 
C. RIGHT-ANGLE ROTATIONS 
The transformation of the QIRHSI image rotation angle to π/2, π and 3π/2 are shown in 
Definition 5. Figure 18 shows an example of the transformation with image rotation angles π/2, 
π and 3π/2. 
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FIGURE 16. QIRHSI image of a flipped quantum circuit along the y x 

axis. 

 
FIGURE 18. Image Tree and right angle after rotation. 

 
Definition 5: The right angle rotation operators Rπ/2, Rπ and R3π/2 based on QIRHSI color 
image rotation angles of π/2, π and 3π/2 transformations are defined as 
 
Rπ/2 (|I (θ)⟩) 
2n−1 2n−1 
  
 1 
= 2n 
  
X  X .Hyx  .Syx  .Iyx  ⊗ |xy¯⟩ 
  
y=0 x=0 
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 1 
= 2n 
  
n n 
X X .Hyx .Syx .Iyx ⊗ .x, 2n − 1 − y (27) 
  
y=0 
Rπ (|I (θ)⟩) 
  
x=0 
  
1 2n−1 2n−1 
= .Hyx  .Syx  .Iyx  ⊗ |y¯x¯⟩ 
  
 1 
= 2n 
  
n n 
X X .Hyx .Syx .Iyx ⊗ .2n − 1 − y, 2n − 1 − x  
  
y=0 
  
x=0 
  
 
(28) 
  
R3π/2 (|I (θ)⟩) 
2n−1 2n−1 
1 X X       
=  2n .Hyx  .Syx  .Iyx  ⊗ |x¯y⟩ 
y=0 x=0 
  
 1 
= 2n 
  
n n 
X X .Hyx .Syx .Iyx ⊗ .2n − 1 − x, y (29) 
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FIGURE 21. QIRHSI image of the quantum circuit with a rotation angle of 3π/2. 

  
where I (θ) represents a QIRHSI color image, see Eq. (1). The right-angle rotation operators 
Rπ/2, Rπ and R3π/2 can be expressed respectively as 
Rπ/2 = Fy=xFx (30) 
Rπ = FyFx (31) 
R3π/2 = Fy=x Fy (32) 
The quantum circuits of the operators Rπ/2, Rπ and R3π/2 
are shown in Figures 19, 20 and 21. 

 
FIGURE 19. QIRHSI image of the quantum circuit with a rotation angle of π/2. 

 

 
FIGURE 20. QIRHSI image of the quantum circuit with a rotation angle of π . 

 
Theorem 5: The complexity of the quantum gates required for the right-angle rotation operators 
Rπ/2, Rπ and R3π/2 on the quantum image QIRHSI is O (n). 
Proof of Theorem 5: The right-angle rotation operators Rπ/2, Rπ and R3π/2 are shown in Eqs. 
(30), (31) and (32), and it can be known that the operator Rπ/2 uses n NOT gates and n swap 
gates, the operator Rπ uses n NOT gates, and the operator R3π/2 uses n NOT gates and n swap 
gates. Thus, the complexity of the quantum gates needed to implement the right-angle rotation 
operators Rπ/2, Rπ and R3π/2 on the QIRHSI is O (n). 
 
IV. COMPARISON OF THE COMPLEXITY OF QUANTUM GEOMETRIC 
TRANSFORMATIONS 
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The geometric transformation of quantum images has been 
a highly interesting research topic for scholars. As yet, geometric transformations based on the 
two-dimensional quantum gray-scale image FRQI [24] and geometric transfor- mations based 
on the multidimensional quantum color image NASS [26] are the two ways that can be used. 
Table 2 gives the complexity of the quantum gates needed for the geometric transformation 
operations based on the quantum image repre- sentation models FRQI, NASS and QIRHSI. It 
was indicated that this table compares images of size 2n × 2n. 
TABLE 2. The complexity of the quantum gates required for geometric transformations based 
on different quantum image models is compared. 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

As can be seen from Table 2, the quantum gray-scale image FRQI involved no circular 
translation, while the complexity O (n) of quantum gates required for the quantum circular 
translation operation designed in this paper based on the quantum 2D color image QIRHSI is 
much lower than the complexity O 2nn2 of the quantum circular translation oper- ation 
designed based on the quantum multi-dimensional color image NASS. 
In classical computers, the global operators of geomet- ric transformations require 22n matrices 
to be implemented, therefore the complexity of the implemented operations are at least O 22n 
. However, in quantum systems, no matter for quantum image representation FRQI, NASS and 
QIRHSI, quantum global transform operations (circular translation, flipping transform and 
right-angle rotation) require less com- plexity of quantum gates than local transform operations 
are swapped. The corresponding quantum circuits are given in Figure 24. The two-point swap 
operator GP is defined as 
G I ⊗2 I ⊗8 P 
 |1⟩ ⟨11| + |11⟩ ⟨1| +  

 
(two-point swapping), which are required to be implemented by O (n) quantum gates, and the 
reason for this result is due to the parallelism of quantum computing. Therefore, quan- tum 
geometric transformation techniques based on quantum image representation FRQI, NASS and 
QIRHSI are applied to image encryption [70], [81], watermarking [47] and so on. 
  
= I ⊗2 ⊗ I ⊗8 ⊗ 
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15 
 k=0,k̸=1,11 
  
|k⟩ ⟨k| 
  
(34) 
 
   
V. EXPERIMENTAL EXAMPLE OF THE QIRHSI GEOMETRIC 
TRANSFORMATIONS 
In order to make the geometric transformation based on the 
QIRHSI image more visual, a quantum color image QIRHSI of size 4    4, where n    2 and q     
8, is shown in Figure 22 as an example. A 4 4 color image of QIRHSI is given in Figure 22 and 
is represented in Eq. (33). 
24−1 

  

 
FIGURE 24. The quantum circuit for two-point swapping. 

  
 1 
|I (θ)⟩ = 22 
  
|Hk ⟩ |Sk ⟩ |Ik ⟩ ⊗ |k⟩ 
k=0 
  
Applying Eq. (34) to image |I (θ)⟩ gives 
G (|I (θ)⟩) 
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2 2 P 
= 1 X X .Hyx .Syx .Iyx ⊗ |yx⟩ (33) 1 X 
|H11⟩ |S11⟩ |I11⟩ ⊗ |1⟩ + |H1⟩ |S1⟩ |I1⟩ ⊗ |11⟩  
  
  
=  4  + 
  
k=0X,k≠1,11 
  
|Hk ⟩ |Sk ⟩ |Ik ⟩ ⊗ |k⟩  
  
 
FIGURE 22. A 4 × 4 color image of QIRHSI. 
 
A. TWO-POINT SWAP 
Figure 23 gives an example of a QIRHSI color image where two pixels |i⟩=|1⟩ = |00⟩|01⟩ and 
|j⟩ = |11⟩ = |10⟩|11⟩ 
  
where P (|k⟩)   =  |k⟩,    k   ̸=   1,    11, and P (|1⟩)   =  |11⟩, 
  
Observing Figure 23, it can be seen that we swapped the two pixels labeled with the alphabets 
B and L, corresponding to the pixel positions 1 and 11, respectively. From the quan- tum circuit 
shown in Figure 24, it can be seen that swapping pixel positions 1 and 11 requires six NOT 
gates and three controlled not-gates. Since one three-controlled not-gate is equivalent to four 
Toffoli gates, one Toffoli gate is equiv- alent to six controlled not-gates. Therefore, swapping 
pixel locations 1 and 11 needs six NOT gates and 72 controlled not-gates. 
 
B. CIRCULAR TRANSLATION 
An example of circular translation of a QIRHSI color image along the x-axis is given in Figure 
25, where l 3. The corresponding quantum circuit are given in Figure 26. The circular 
translation operator Tx+3 is defined as 
3 
Tx+3 = I ⊗2 ⊗ I ⊗8 ⊗ I ⊗2 ⊗ |(j + 3) mod 4⟩ ⟨j| 
j=0 
  
FIGURE 23. (a) Original image; (b) After the two-point swap. 
  
= I ⊗2 ⊗ I ⊗8 ⊗ I ⊗2 
⊗ (|3⟩ ⟨0| + |0⟩ ⟨1| + |1⟩ ⟨2| + |2⟩ ⟨3|) 
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Applying the circular translation operator Tx+3 to the image |I (θ)⟩ to obtain 
3 3 
  
T ( I (θ) ) 1 H S I y, (x   3) mod 4 4 y=0 x=0 
Obviously, it is a circular translation of Figure 22 by 3 pixels along the positive direction of 
the x-axis to obtain Figure 25(b). Analysis of the quantum circuit shown in Figure 26 shows 
that the use of a module 4 adder is equiv- alent to the use of 5 plain, 2 NOT gates and no more 
than 8 controlled not-gates (See Theorem 2). In other words, the circular translation of 3 pixels 
along the positive direction of the x-axis uses 5 NOT gates and 228 controlled not-gates. 

 
FIGURE 25. (a) Original image; (b) After circular translation. 
 
 

 
FIGURE 26. Quantum circuits of circular translations. 

 
C. FLIP TRANSFORMATION 
Figure 27 gives an example of a QIRHSI color image flipped along the x axis. The 
corresponding quantum circuits are shown in Figure 28. 
The flip transformation operator Fx is described by the definition of 
Fx = I ⊗2 ⊗ I ⊗8 ⊗ X ⊗2 ⊗ I ⊗2 
Applying the flip transformation operator Fx to the image 
|I (θ)⟩ gives 
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FIGURE 27. (a) Original image; (b) After the flip transformation. 

 

 
FIGURE 28. The quantum circuit of the flip transformation along the x 

axis. 
 

 
Obviously, a flipping transformation of Figure 22 along the x-axis to obtain Figure 27(b) 
requires only 2 NOT gates (see Figure 28). 
 
D. FLIP TRANSFORMATION 
An example of a QIRHSI color image flipped transformation along the y   x axis is given in 
Figure 29. Figure 30 gives the corresponding quantum circuits. 
 

 
FIGURE 29. (a) Original image; (b) After flipping along the y = x axis. 
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The flip transformation operator Fy=x defined as 
Fy=x = I ⊗2 ⊗ I ⊗8 ⊗ V 
where the operator V is shown in Figure 31. 
The flip transformation operator Fy=x is applied to the image |I (θ)⟩ to obtain 
  
3 3 3 3 
Fx (|I (θ)⟩) = 1 X X .Hyx .Syx .Iyx ⊗ |3 − y, x⟩ Fy=x (|I (θ)⟩) = 1 X X .Hyx .Syx .Iyx ⊗ 
|xy⟩ 
  
 
operator Rπ/2 is 
Rπ/2 = Fy=x Fx 
Applying the right-angle rotation operator Rπ/2 to the image |I (θ)⟩ gives 
3 3 
  
R (|I (θ)⟩) = 1 X X .H 
  
 .S 
  
 .I 
  
  ⊗ |x, 3 − y⟩ 

 
FIGURE 30. The quantum circuit flipped along the y = x axis. 

 

 
FIGURE 31. Quantum circuit of the operator V . 

 
The flipping transformation of Figure 22 along the y x axis results in Figure 29(b), which 
requires only two swap gates to complete the operation (see Figure 30). One swap gate is 
equivalent to three controlled not-gates. Therefore, six controlled not-gates are needed for the 
flipping transforma- tion operation along the y = x axis. 
E. RIGHT-ANGLE ROTATION 
An example of a QIRHSI color image rotated an angle of π/2 is given in Figure 32. The 
corresponding quantum circuits are provided in Figure 33. The right-angle rotation 
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FIGURE 33. The quantum circuit of rotated π/2. 

  
Rotating Figure 22 by π/2 to obtain Figure 32(b), only two 
NOT gates and two swap gates are needed (see Figure 33), i.e., only two NOT gates and six 
controlled not-gates are needed to complete this operation. 
 
VI. CONCLUSION AND FUTURE OUTLOOK 
In this paper, quantum geometric transformations based on the quantum color image QIRHSI 
are proposed, covering two-point swapping, circular translation, flipping transforma- tions and 
right-angle rotation. The quantum circuits for the four types of geometric transformation 
operations mentioned above are designed immediately afterwards, and the com- plexity 
analysis of the quantum gates needed for the differ- ent types of geometric transformation 
unitary operators are given. The complexity of the global transformation (circular translation, 
flipping transformation and right-angle rotation) operator of the quantum color image QIRHSI 
is lower than with the local transformation (two-point swapping) operator. Finally, the quantum 
geometric transformation operation of QIRHSI color image is illustrated by a simple 4 4 
example. 
The future research work covers 
1) The circular transformations, flipping transformations and right-angle rotations covered 
in this paper are whole geometric transformations, and it is essential to implement local circular 
translations, local flipping transformations and local right-angle rotations. 
2) Flipping transformations (along the y axis, x axis, y x axis and y         x axis) and right-
angle rotations (π/2, π and 3π/2) are both special quantum geometric trans- formations and how 
to design flipping transformations along the arbitrary axis and rotating transformations at 
arbitrary angles. 
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3) How to design general translation operations in the field of quantum image processing 
after designing cir- cular translation operations with modulo N adder. 
4) How to construct arbitrary geometric transformations using the two-point swapping 
operator, while making the designed quantum circuits for arbitrary geometric transformations 
with lower complexity is still a prob- lem to be further considered. 
5) Additional applications in quantum image process- ing combined with quantum 
geometric transformations are of higher value, for example, in quantum image encryption, 
where pixel position scrambling in quan- tum image encryption can be accomplished by com- 
bining sequences generated by chaotic mapping with quantum circuits. 
6) In practical applications, how to better use quan- tum geometric transformations to 
correction of images taken by artificial satellites and how to use quantum geometric 
transformations to processing satellite cloud images commonly used in weather forecast, etc. 
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