

Journal of Data Acquisition and Processing Vol. 37 (5) November 2022 2787

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.776609

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE

SYNERGY OF MACHINE LEARNING AND BINARY PARTICLE SWARM

OPTIMIZATION

1R. M. Sharma ,2Chaitanya P Agrawal

1Department of Computer Science and Applications, Makhanlal Chaturvedi University,
Bhopal, MP 462001 India

2Department of Computer Science and Applications, Makhanlal Chaturvedi University,
Bhopal, MP 462001 India

Abstract

Smartphone applications (APPs) play essential roles in daily activities like online shopping,
mobile banking, online transactions, etc. The exponential growth of online transactions has
attracted the attention of hackers. Hackers are increasing their efforts to deploy malicious
applications to users to steal sensitive information such as ATM PINs and bank account detail.
The Traditional malware detection systems (MDS) require significant computational overload
and time to analyze malware behavior patterns and find invasive tendencies. This research aims
to expose the dangerous behavior of android malware to detect them quickly. We offer a
negotiation by examining several types of static behavior patterns using BPSO (Binary Particle
Swarm Optimization) to reduce computational complexity and pick the most optimal subset.
The BPSO is hybridized with six machine learning techniques to get the complete solution for
feature optimization and malware detection. The Binary Particle Swarm Optimization (BPSO)
technique chooses an optimal subset from behavioral feature sets and provides the best fitness
values. The Six machine learning techniques are utilized with BPSO to generate MDS models.
The anticipated system has been empirically tested with three benchmark android datasets:
DREBIN, MALGENOME, and the MENDELEY dataset. The proposed method achieved an
accuracy of 96% with a 94% recall rate and 96 % f1 score. The high values of true positive
(TP) and true negative (TN), indicate the model's effectiveness in both primary and secondary
classes. The suggested technique has a meager computational cost, allowing for real-time
application analysis.

Keywords: Machine Learning, Android Feature Selection, Malware Detection, security,
Binary Particle Swarm Optimization

1. Introduction
Smartphones are now extremely important for e-shopping, internet payments, web surfing,
social media, and other internet activities. Statista reports 3.8 billion smartphone users
worldwide. It may reach several hundred million in the coming years [1]. In comparison to
other platforms, the Android OS currently holds the most significant portion of the market
share. In June 2021, Android smartphones continued to hold a market share of 73.3 percent
across the globe [2]. The Google Play store is currently the biggest app store in the world, and

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2788

by the beginning of the first quarter of 2022, it is expected to have 3.6 million apps easily
accessible [3]. Malware is part of a program created to harm the system functions or embed
them to infect other applications. The report from the AV-TEST institute states that in 2021,
there will be more than 450,000 new pieces of malicious software (also known as malware)
and potentially unwanted applications (PUAs)[4]. According to Statista, the cumulative
amount of malicious samples for Android devices that are newly revealed each month equates
to 482,579[5].

Android Smartphone have become the preferred medium of infiltration for cybercriminals.
Along with the growth of benign ware (gentle apps), malware has also grown at an
uncontrollable pace. Similarly, the number of cybercrimes through Smartphone is also
increasing continuously. Some mobile apps can be infected with malicious code, and such apps
are capable of obtaining sensitive information and breaching privacy. The malicious apps have
the ability to steal private information, including financial data such as passwords, credit card
and debit card details, and other similar information. Traditionally, malware recognition
methods are based on signatures generated from the malware's source code. Therefore, the
signature-based method requires a massive database of known malware. Nevertheless, it is
impossible to maintain signature records due to the rapid and large-scale growth of malware
and its variants. Signature-based approaches offer the advantages of being simple and efficient
and having high accuracy. However, they cannot new malware [6], [7].

The use of behavior-based detection has become more commonplace as a direct response to
the constraints that exist in the world today regarding signature-based detection. This method
looks at how malware that has already been found behaves in patterns [8]. Many statistical
attributes are extracted from the APK files of the apps to detect malware through behavioral
analysis, and datasets are created from these attributes. Hence, malware detection requires the
analysis of large datasets that require large amounts of memory and high computational power.
Therefore, the selection of optimal features has more impact on classification accuracy. In this
process, the optimization criteria are set so that the optimal subset N is obtained from the entire
set M where N < M. In recent decades, many diverse methods for selecting features have been
developed. These methods make use of a variety of search and evaluation strategies. The
procedures utilized for feature selection can be classified into one of three primary groups:
filter, wrapper, or embedded methods. Ranking scores are implemented in filtering methods.
Analysis of variance, Pearson's correlation, chi-square, mutual information, information gain,
and a host of other examples are some of the statistical methods used. The wrapper methods
use ML accuracy to select the features with the best overall performance. The properties of the
wrapper methods and the filter methods are combined into the embedded methods. The
embedded methods use various techniques, such as ridges, lassos, and elastic nets, to prevent
the model from over fitting. These methods require more time to compute, and most are
inefficient because they only consider local optimal solutions. This has resulted in the
development of many meta-heuristic techniques. In recent decades, various meta-heuristics
algorithms (GA, ACO, BCO, PSO, etc.) have proven their usefulness in optimization in many
domains. The authors present a hybrid method for detecting behavioral malware that combines

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2789

machine learning and a lightweight meta-heuristic algorithm (BPSO). The primary
contributions that the proposed work will make are outlined below.

 In this paper, we demonstrate how BPSO and machine-learning techniques can be used
for the detection of behavior-based malware.

 This article presents six different iterations of BPSO, each of which uses a unique
machine-learning classification.

 We targeted three publicly available android benchmark datasets that researchers
extensively use (i) MALGEMONE, (ii) DREBIN, (iii), and MENDELEY to
authenticate the proposed approach.

 In addition to this, we contrast our findings with the various methods currently in use.

The remaining portions of the paper are structured as follows: The second section is dedicated
to previous research that has been conducted in this field; the third section presents the BPSO
algorithm that has been proposed. The procedure for choosing BPSO features is broken down
and explained in the fourth section. In Section 5, we talk about the datasets, the pre-processing
steps, and the experimental environment. In Section 6, we talk about the various performance
evaluation metrics used in these experiments. In Section 7, the outcomes of the work that was
proposed are broken down in great detail, and the section then draws to a close by discussing
potential steps that could be taken next.

2. Related Work
The previous research on feature optimization and selection, machine learning-based Android
malware detection, and other domains are covered in the following section. In the article [9],
Taheri et al. proposed the hamming distance-based similarity approach, eliminating most
similar malware and benign ware features from the dataset. In the article [10], Wu et al.
presented an 'MVIIDroid' mechanism for malware detection. They used the Multiple Kernel
Learning (MKL) models for classification. They compared the results with other methods, such
as RF, JS, and SVM. The paper by Santosh Jhansi et al. [11] illustrated the gain ratio-based
ranking method to choose pertinent attributes from the dataset and used the J48, RC, MLP,
SMO, and randomizable filtered methods for malware classification.

The "DroidTrace" method was developed by Zheng et al. [12] and is based on Ptrace-based
dynamic analysis. It helps monitor specific system calls for the target process executing the
dynamic payloads. A hybrid malware detection method called "StaDART" was developed by
Ahmed et al. [13] to work with dynamic code update features. In another study, Min Yang et
al. [14] present a DT+SVM-based malware recognition technique using the DREBIN dataset.
In a different research, L. Sun et al. [15] proposed SIGPID, which stands for Significant
Permission Identification for ML-based AMD. SVM was used to classify the data.. In another
paper, S. Wang et al. [16] offered a multi-view neural network method for malware detection.
This method recognized the malicious apps based on URLs visited by the apps. In their paper,
X. Jiang et al. [17] offered malware detection and classification utilizing SVM, J48, KNN, and
NB based on fine-grained dangerous permission (FDP), based on fine-grained dangerous
permission (FDP). Singh et al. [18] proposed a hybrid model for feature selection, using a

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2790

firefly bio-inspired algorithm and random forest ensemble classifier (HBRF) for credit card
fraud detection. The suggested HBRF model has 96.23% accuracy and 3.7% inaccuracy.

In another study, M. A. Jerlin et al. [19] anticipated a Multi-Dimensional Naive Bayes (MDNB
rete) ML technique for malware detection using API call sequence as a characteristic. In
another paper, F. Idrees et al. [7] offered the intent and permission-based approach (PINdroid)
where SMO, RF, NB, ML, and DT-based ensemble classifiers are used for classification. The
rule-based attribute selection technique was proposed by A. Mehtab et al. [20] based on
Contagio Dump and using the VirusShare dataset. In another study, M. Alzaylaee et al. [21]
illustrated DL-Droid, a deep-learning model for malware discovery through dynamic analysis
using stateful input generation. Arvind Mahindru et al. [22] presented the rough set feature
selection method with four different machine learning classifiers for subset evaluation. These
classifiers include deep learning, farthest first clustering, Y-MLP, and the nonlinear ensemble
decision tree forest.

Jiayin Feng et al. [23] developed a new approach that cascades CNN and AutoEncoder known
as CACNN, which is used to detect malware through the network traffic characteristics of
APPs. Selvakumar B and Muneeswaran K [24] offered a firefly algorithm for feature selection
from the KDD CUP 99 network dataset and C4.5, Bayesian Networks (BN), used for subset
evaluation. In another work, S. Alam et al.[25] proposed a dominance tree of API calls (a
DroidDomTree method) to find analogous patterns in Android apps for malware detection.
Some more related work based on meta-heuristic methods is presented in Table 1.

Table 1. Some of the previous work is related to meta-heuristic methods

S. No. Authors and
Reference

Domain Classification
Approach

Dataset Feature
Selection Meta-

1. [26] Android AdaBoost Drebin PSO
2. [27] Intrusion

Detection
RF, C4.5,

Forest PA

NSL-KDD,

AWID,

CFS-BA

3 [28] Intrusion
Detection

KNN Hacker-Earth
Network attack

Whale Pearson

4. [29] Different

domain

KNN UCI

IHHO

5. [30] Different
Domain

NB UCI SOMI-
GANB(GA)

6. [31] Different
Domain

KNN UCI WOA

 7. [32] Different
Domain

SVM UCI PSO+SVM

8. [33] Android NB, FT,
MLP,

Self-Dataset GS

9. [34] Medical J48 UCI ACO+BCO

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2791

In the related works cited above, it was observed that meta-heuristic approaches are more
suitable for feature selection than traditional methods, and their hybridization with machine
learning methods makes them more efficient. Therefore, a hybrid system has been proposed
in the present work.

3. Proposed BPSODroid

The related works cited above showed that meta-heuristic approaches are more suitable for
feature selection than traditional methods, and their hybridization with machine learning
methods makes them more efficient. Therefore, a hybrid system has been proposed in the
present work. This section initially describes the standard PSO algorithm, followed by binary
particle swarm optimization. The last section describes the preparation of hybrid variants.

Particle swarm optimization (PSO) is a meta-heuristic intelligent population-based
optimization algorithm. It is based on the prototype of swarm intelligence. The collective
behavior of animals such as birds, fish, and ants inspires it. The PSO has been successfully
used in various science and engineering optimization problems such as image processing, data
mining, machine learning, etc. The PSO was initially introduced in 1995 by James Kennedy
and Russel C. Eberhart. However, they were working to develop a model to define the social
behavior of animals, such as herds of birds and schools of fish. However, they felt that the
proposed model was proficient at optimization. Hence, they proposed a new model based on
their experiment called Particle Swarm Optimization. The PSO algorithm simulates an animal's
intelligent behavior, such as an ant, a bird, or a fish, as an intelligent agent (particle).

The particle represents an individual animal, while the swarm represents a group of animals.
Swarm refers to the population of potential alternate solutions that are contained within the
PSO. Every individual particle represents a potential answer to the optimization problem.
Every particle occupies a particular location in the search space, which can be thought of as a
collection of the various possible solutions to the optimization problem. The concept of the
whole process of basic PSO is presented in Fig. 2. If X denotes the search space, then the
location of particle i in the search space is represented by xi. The xi is a vector member of the
search space. This position vector gets an additional component called the time index to
distinguish between different time intervals, denoted by (t). The (t) is the discrete-time interval,
indicating the iteration number of the algorithm. The xi (t) represents the position of a particle
i in the time step (t) in the search space X.

10. [35] Android SVM, NN Self-dataset. GA

11. [36] Android DT, NB, Contagio PSORS-FS

 12. [37] Android KNN, L.R.

GNB, RF.

Self and UCI Self-Variant

GA
13. [38] Android KELM Self-dataset SSA-KELM

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2792

Figure 1. The working process of Binary Swarm Optimization

Besides the particle's position, each particle has a velocity in the time step (t), denoted by vi
(t), a vector, and a member of the same search space. The velocity shows the movement and
direction of the particle. Each particle is a member of the swarm. Each particle communicates
with or learns from one another by exchanging information and operating according to a
predetermined set of rules to find the optimal solution to the optimization problem. Each
particle retains a memory of the position or solution that is optimal for it. It is represented by
the individual particle's best experience, denoted by the symbol pi (t). In addition to the best
solution for the individual, there is also the best solution for the entire swarm, denoted by the
g (t). It is important to note that it does not have index I because it is related to the experience
of the swarm as a whole rather than the experience of a particle in particular. g(t) is a global
experience that all members of the swarm share in common. Therefore, there is the best solution
for each particle and the best solution for the entire swarm, which is the best possible
experience for all particles.

As shown in Fig. 1, the equation for the vector of initial position and personal best (xi(t) to
p⃗i(t)) will be (p⃗i(t) - x⃗i(t)). Similarly, the equation for the vector between the current location

and the global best ((t)tox⃗i(t)) will be g(t)-x⃗i(t). If the particle moves from its current location
to a new location, it uses all the previous information. The new spot of the particle is determined
by the position to parallel the last three vectors, which include the former velocity vi(t), vector
(x⃗i(t) to p⃗i(t)), and (g(t)𝑡𝑜�⃗� (t))) vector. The particle's new position and velocity after the time

interval t is denoted by(x⃗i(t+1)), and (v⃗i(t+1)). Hence the new location is created according
to the previous velocity, individual best, and global best. So, this is probably a better position
because it uses the previous experience of the particle, and it uses the prior knowledge of the
whole swarm. All swarm particles obey the above rules to find the best location in the search
space and collaborate to update the information. No swarm particle knows the best global
solution, but collaboration makes it possible. This algorithm works on two principles:
communication and learning. Through communication, particles communicate their
experiences to each other. At the same time, the art of learning allows the particle to learn the

+

 g(t)- x⃗i(t)

 x⃗i(t)

p⃗i(t)

v⃗i(t)

v⃗i(t+1)

g(t)

x⃗i(t+1)

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2793

best location of the other particle. Thus, the principle of learning from the best place of others
and getting the best solution from cooperation constitutes the intelligent behavior of the
particle. Eq. (1) represents the new velocity, and the particle's new location is stated as follows.

v⃗i(t+1)=wincofv⃗i(t)+r1randC1f(p⃗i
(t)-x⃗i(t)) + r2randC2f(g(t)-x⃗i(t))

(1)
x⃗i(t+1)=x⃗i(t)+v⃗i(t+1) (2)

As given in Eq. (1), the new speed (v⃗i(t+1)) of element i at time step (t+1) is prepared up of
three vector mechanisms; the first vector component is parallel to the particle's prior velocity
�⃗� (𝑡), the second vector element, which is parallel to the vector of the particle's individual best
(p⃗i

(t)-x⃗i(t)) and the third element is that parallel to the vector of the global best (gi
(t)-x⃗i(t))

of the swarm. Where w stands for the inertia coefficient, and (r1rand, r2rand) symbolizes the
random numbers distributed evenly across the (0,1). The (C1f,C2f) denotes the acceleration
coefficient. In the velocity update equation, the first phrase (wincofv⃗i(t)) is recognized as inertia.
The second phrase (𝑟 𝐶 (𝑝 (𝑡)-x⃗i(t))) is referred to as a cognitive term, and the last

phrase 𝑟 𝐶 𝑔 (𝑡) − �⃗� (𝑡) is recognized as a social term. The cognitive phrase provides

the particle's personal experience, while the social term provides the combined experience of
the swarm. The best inertia coefficient 𝑤 value is between 0.3 and 0.72984, and the

acceleration coefficient is (𝐶 + 𝐶 ≥ 4), which is more precisely (C1f = C2f = 2.05).

The position update equation, as given in Eq. (2), is made up of two components; the first
component is the particle's previous location (x⃗i(t)), while the second component is the updated
velocity (�⃗� (𝑡 + 1)) obtained from the first Eq. (1). Each element moves from its earlier
location to the new location with the updated velocity. In this way, each particle gets a better
location than before. Every particle in the swarm obeys the rules defined in Eq. (1) and (2) to
get the best solution to the optimization problem. The output of the PSO is a continuous stream
of values. However, continuous values do not provide accurate information for selecting any
attribute. Therefore, the ideal solution can be obtained by making the following changes to the
above algorithm. The updating velocity in Binary Particle Swarm Optimization (PBSO) works
the same way in Basic Particle Swarm Optimization. In addition, the notable change in BPSO
is that the following expression determines the position update.

x⃗i(t+1)=
0 if rand_n (∂) ≥ Sig (v⃗i(t+1))

1 if rand_n (∂) < Sig (v⃗i(t+1))

(3)

Where (rand_n (∂)) is a random number between 0 and 1 and (Sig (x)) is a sigmoid function

defined in the following expression.

Sig(v⃗i(t+1))=
1

1+e-v⃗i(t+1)

 (4)

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2794

These modifications enable the algorithm's output to be in binary format rather than as a
continuous stream of values. The binary output provides accurate information about the
selected features, where 1 represents the selected attribute and 0 means the unselected feature.
After receiving the result in binary format, it is converted into feature numbers by a small
program. A reduced dataset is prepared from the obtained feature numbers. The six different
classification methods in the Python Scikit-learn machine learning library are combined in the
BPSO to make the different types of the BPSO. For this hybridization, K-Nearest Neighbor
(KNN), Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM),
Random Forest (RF), and multi-layer perceptions (MLPs) have been used. In this way, a total
of six (BPSO + kNN), (BPSO + DT), (BPSO + LR), (BPSO + SVM), (BPSO + RF), and (BPSO
+ MLP) variants were prepared.

4. Feature selection process using BPSO

The above-described BPSO algorithm selects the best attributes from the given dataset. The
BPSO acquires the best global solution (gi

(t)), an array of binary numbers 0 and 1, obtained

after N iterations. Output 1 represents the particular attribute that is selected, and 0 denotes the
attribute that is masked. The number of available attributes in the datasets corresponds to the
number of particles in the swarm. The total number of particles was 301 for dataset III, while
datasets I and II each had 215 particles. In equations (1) and (3), the time step t represents one
iteration, and N represents the total number of iterations. The vector (v⃗i) corresponds to the
velocity of an ith particle in the swarm. The velocity (v⃗i(t+1)) is applied to the sigmoid function
(Sig(x)), which translates the output into binary format. Each particle has its own personal best

experience and conveys its personal best experience (p⃗i
(t)) to the other particles to acquire the

best global solution defined in the algorithm. The BPSO algorithm is executed N times, and
the outcome of each iteration is achieved to produce a list of the dataset's features that are
considered the best overall. After eliminating the unneeded components from the dataset, we
are left with the optimal subset of the dataset. Then we apply six classification techniques to
the reduced dataset. 70% of the reduced dataset is used for training the models, and 30% is
used for testing models. Fig. 2 depicts the overall architecture of the proposed BPSODroid.
The algorithm for BPSOdroid is given in Table 2. The various BPSO parameters are given in
Table 3.

Table 2.BPSOdroid Algorithm

S.
No.

BPSODorid Algorithm

 Input: Dataset (DREBIN, MALGENOME, MENDELY)

 Output: Optimal subset

1. Initialize BPSO parameters

2. Generate Artificial particles (Population)

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2795

3. Iteration T =1

4. Do

5. FOR every individual particle I that makes up the swarm

6. Compute Fitness value

7. Evaluate velocity and position

8. IF the current fitness value is better than the Personal Best in history

9. Set current fitness value to Personal Best

10. END IF

11. END FOR

12. Update Global best-based on Personal Best

13. For each particle i in the swarm

14. Compute Velocity

15. Compute Position

16. END FOR

17. T=T+1

18. WHILE Maximum iteration reached

19. Convert the output to binary format using Eq. 4.

20. Create an Optimal dataset using selected features from BPSO

21. Create Training Dataset

22. Create Testing Dataset

23. Train ML models (RF, MLP, SVM, LR, DT, KNN)

24. Test Predictive model

25. Get Confusion Matrix

26. Evaluate the performance of each model

Table 3. The BPSO parameter setting

BPSO (Parameters) BPSO(Parameter Values)

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2796

N

𝑤

c1f

c2f

No. of particles (search space) (X)

No of iteration =200

inertia coefficient 𝑤 =0.3

cognitive parameter (acceleration coefficient) c1f
=2.05

social parameter (acceleration coefficient c1f
=2.05)

215 for a dataset I and II

No. of particles (search space) (X)

𝑟 ,𝑟

𝑟𝑎𝑛𝑑_𝑛(𝜕)

�⃗�

301 for dataset III

a number between '0' and '1' selected at random

a number between '0' and '1' chosen at random

The initial velocity for all particles is set to zero.

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2797

Figure 2. Architecture of BPSODroid

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2798

5. Datasets Description, Prepossessing and Experimental Setup:

We examined the proposed approach using three publicly available android datasets in this
proposed work. A brief explanation of the datasets, their pre-processing steps, and the
experimental environment is given in this section.

5.1 Employed Datasets

The investigation executed to estimate the proposed approach was made using three datasets.
The first dataset (Malgenome-215) contains 3799 app samples, of which 2539 are benign apps,
and 1260 malware samples were taken from the genome project [39]. The second one is the
DREBIN-215 dataset, in which a total of 15036 app samples, of which 9476 are benign, and
5560 malware samples, were taken from the DREBIN Project [40]. The third dataset is the
MENDELEY-301 dataset, consisting of 18,850 benign apps and 10,000 malware samples [41].

5.2 Data Pre-processing Steps

All entries are examined in the pre-processing data phase, and the duplicate instances are
removed from the dataset. If an entry contains a NaN value, then such instances are removed
from the dataset, and the constant value attributes are also removed from the dataset. The
proposed BPSO method selects the most valuable features, removing unusable ones from the
dataset. The dataset is reduced in size as a result of this process. The resulting dataset is then
used for training and testing purposes.

5.3 Experimental environment

The experiments were done using Python 3.8 on a Jupyter notebook using the Anaconda
platform. The implementation was done on a machine with an Intel (R) Core (TM) i-7 8550U
@ 1. 80 GHz processor, 8 G.B. of RAM, and Windows 10 Home version 21H1.5.4

6. Performance Evaluation Matrix

The performance of the proposed method is evaluated using a confusion matrix. The confusion
matrix is an N*N matrix that represents the performance of the classifiers using true positive,
false positive, true negative, and false negative terms. The confusion matrix summarises the
model's predictive performance and describes which classes are correctly and incorrectly
classified.

A True Positive (TP) : A true positive represents the number of malware predicted by the
classifier from all malware samples.

A False Positive (FP) : A false positive denotes the number of benign-ware samples predicted
as malware.

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2799

A True Negative (TN) : A true negative represents the number of benign-ware samples detected
as benign ware.

A False Negative (FN): A false negative denotes the number of malware samples detected as
benign ware.

To evaluate the performance of the planned method, we used the following seven parameters:
The confusion metrics drive the five parameters ranging from 6.1 to 6.5.

6.1 Recall (R):

Recall measures how well the model is appropriate for detecting events in the positive class.
The recall is the number of relevant predictions relevant to the total number. Eq. (5) is used to
calculate the recall value.

 Recall =TP/(TP+FN)
(5)

6.2 Precision (P):

Precision is also known as positive predictive value. The precision is represented by the ratio
of true positive predictions to the total predicted positive. The formulas of precision are given
in Eq. (6).

 Precision =TP/(TP+FP)
(6)

6.3 Accuracy

Accuracy is a metric that describes the performance of the classifier. This is useful when all
classes are of equal significance. It is computed as the ratio between correct predictions and
the total number of predictions. The classification accuracy is represented as Eq. (7).

 Accuracy =(TP+TN)/(TP+TN+FP+FN)
(7)

6.4 F1-Score:

The weighted average of accuracy and recall is known as the f1-score. Therefore, both false
positives and false negatives are considered for this score. It is not as simple as accuracy but is
more valuable than accuracy for unequal class distributions. The F1-Score can be described as
Eq. (8).

 F1Score = 2(R*P)/ (R+P)
(8)

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2800

6.5 MCC :

The Matthews Correlation Coefficient (MCC) measures the quality of binary classifications.
Eq. (9) was used to calculate the MCC.

 MCC=(TN*TP-FN*FP)/ (𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(9)

6.6 Mean Absolute Error :

The MAE is used to measure the prediction error in the classification problem. The MAE is
used to calculate performance on continuous data. It gives a linear value that averages the
weighted individual differences equally. The absolute difference ignores the negative value and
is not sensitive to outliers. The MAE goes from 0 to 1, and values near 0 represent the best
performance. Eq. (10) illustrates the Mean Absolute Error. Where yi denotes the true value, n
represents the total instance, and yp represents the predicted value.

MAE=
1

n
|yi -yp|

n

i=0

(10)

6.7. Root Mean Squared Error :

The RMSE () represents the standard deviation of the residual errors. The errors are measured
by subtracting the true value from predicted values. The errors are squared before they are
averaged. The values near 0 indicate the better performance of the model. The Eq. (11) define
the Root Mean Squared Error.

𝑅𝑀𝑆𝐸 =
1

n
(yi -yp)

n

i=0

2

(11)

Where yi denotes the true value, n represents the total instance, and yp represents the predicted
value.

7. RESULTS AND DISCUSSION:

To compare the performance of the proposed techniques with other existing systems, a total of
six hybrid models were generated by combining the six classification methods with the BAPSO
algorithm. These include Support Vector Machine (SVM), Random Forest (RF), K-Nearest
Neighbors (KNN), Decision Tree (DT), Logistic Regression (LR), and the Multi-Layer
Perception (MLP) classification method. Table 4 shows the precision, recall, TPR, F-1 score,
MCC, MAE, RMSE, and weighted average accuracy, of all the applied classification
techniques in the selected subset of all three datasets. It can be understood from Fig. 7. that the
two variants of the proposed hybrid approaches, (BPSO + kNN), and (BPSO + SVM), have
achieved higher accuracy than other applied approaches.

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2801

It is also clear from Table 4, and Fig. 8. that (BPSO + RF) performed better than other
commonly used methods in terms of MCC. If the precision of detecting malware is compared,
as per Table 4 and Fig. 3., (BPSO + LR) and (BPSO + LR) performed the best. The best recall
values for malware detection were obtained in (BPSO+MLP) as shown in Fig. 4. As shown in
Fig. 6., the BPSO+RF approach proved to be more effective with the least amount of error.
Fig. 5. shows that the (BPSO+LR) and (BPSO+MLP) provide the highest F1-Score in malware
detection. Fig. 8. compares MCC in three datasets and offers the highest MCC score obtained
in the (BPSO+RF) variant.

Table 4. Performance of the proposed approaches

D
at

as
et

s

M
od

el
s

F
S

B
 o

r
M

P
re

ci
si

on

R
ec

al
l

F
1-

sc
or

e

M
C

C

M
A

E

R
M

SE

A
vg

.
A

cc
ur

ac
y

I

BPSO+KNN

67

B 97 98 98
86.1 0.04 0.201 96

M 92 85 88

BPSO+DT
B 91 92 92

84.4 0.047 0.217 90
M 89 87 88

BPSO+LR
B 85 99 92

87.9 0.035 0.187 91
M 99 85 91

BPSO+SVM
B 97 97 97

86 0.04 0.201 95
M 86 89 87

BPSO+RF
B 94 96 95

93.1 0.02 0.142 94
M 94 91 92

BPSO+MLP
B 93 98 95

89.9 0.029 0.172 95.4
M 98 93 95

II

BPSO+KNN

68

B 97 99 98
79.8 0.097 0.312 96

M 95 85 90

BPSO+DT
B 93 94 94

87.1 0.062 0.249 93
M 92 90 91

BPSO+LR
B 93 98 95

84.7 0.074 0.242 95
M 98 93 96

BPSO+SVM
B 96 99 98

85.3 0.071 0.266 96
M 95 82 88

BPSO+RF
B 92 96 94

86.5 0.065 0.255 93
M 94 89 91

BPSO+MLP
B 82 99 89

82.9 0.083 0.288 89
M 99 80 88

II
I

BPSO+KNN

10
3

B 98 99 99
83.9 0.085 0.292 98

M 96 93 94

BPSO+DT
B 94 95 94

90.4 0.048 0.22 93
M 93 91 92

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2802

BPSO+LR
B 93 98 96

91.1 0.045 0.212 96
M 98 94 96

BPSO+SVM
B 98 99 98

79.6 0.11 0.332 97
M 93 90 92

BPSO+RF
B 93 92 93

91.4 0.043 0.208 92
M 89 91 90

BPSO+MLP
B 94 98 96

91.3 0.043 0.208 96
M 98 94 96

The accuracy rate increase implies that the machine learning model's categorization is
connected to the low positive rate. When identifying malware also provides an accurate result.
However, the strong recall indicates that the malware traits are comparable to benign.
Consequently, it was found that the findings show accuracy precision with a high recall value
and that it is successful in identifying malware precisely.

0

20

40

60

80

100

120

B M B M B M B M B M B M B M B M B M B M B M B M B M B M B M B M B M B M

I II III I II III I II III I II III I II III I II III

BPSO+KNN BPSO+DT BPSO+LR BPSO+SVM BPSO+RF BPSO+MLP

Precision

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2803

Figure 3. The obtained precision of all six variants in three datasets

Figure 4. Obtained recall of all variants

 Figure 5. Obtained F1-Score of all applied hybrid

0

20

40

60

80

100

120

B M B M B M B M B M B M B M B M B M B M B M B M B M B M B M B M B M B M

I II III I II III I II III I II III I II III I II III

BPSO+KNN BPSO+DT BPSO+LR BPSO+SVM BPSO+RF BPSO+MLP

Recall/TPR

80
82
84
86
88
90
92
94
96
98

100

B B B B B B B B B B B B B B B B B B

I II III I II III I II III I II III I II III I II III

BPSO+KNN BPSO+DT BPSO+LR BPSO+SVM BPSO+RF BPSO+MLP

F1-score

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2804

Figure 6. The comparison of MAE and RMSE in all reduced dataset

According to the trial results, kNN surpasses the other machine learning classifiers. This is
because it builds a robust classifier from training data and then produces a second model to
rectify errors in the first model. This technique is repeated until the training set is perfectly
predicted. BPSO is an optimization technique that can yield promising results. Scanning an
entire high-dimensional problem space is an efficient optimization approach. It seeks the
optimal solution by distributing the particles according to their topology. It achieves the most
outstanding performance in predicting malware utilizing permissions and other features by
integrating kNN and the BPSO algorithm to attain 98 percent accuracy.

Figure 6. The comparison of accuracy in all applied techniques

0.
04

0.
04

7

0.
03

5

0.
04

0.
02

0.
02

9 0.
09

7

0.
06

2

0.
07

4

0.
07

1

0.
06

5

0.
08

3

0.
08

5

0.
04

8

0.
04

5 0.
11

0.
04

3

0.
04

3

0.
20

1

0.
21

7

0.
18

7

0.
20

1

0.
14

2

0.
17

2

0.
31

2

0.
24

9

0.
24

2

0.
26

6

0.
25

5

0.
28

8

0.
29

2

0.
22

0.
21

2 0.
33

2

0.
20

8

0.
20

8

B
P

S
O

+
K

N
N

B
P

S
O

+
D

T

B
P

S
O

+
L

R

B
P

S
O

+
S

V
M

B
P

S
O

+
R

F

B
P

S
O

+
M

L
P

B
P

S
O

+
K

N
N

B
P

S
O

+
D

T

B
P

S
O

+
L

R

B
P

S
O

+
S

V
M

B
P

S
O

+
R

F

B
P

S
O

+
M

L
P

B
P

S
O

+
K

N
N

B
P

S
O

+
D

T

B
P

S
O

+
L

R

B
P

S
O

+
S

V
M

B
P

S
O

+
R

F

B
P

S
O

+
M

L
P

D AT ASE T -I D AT ASET -I I DAT ASET -I I I

ERROR COMPARISION
MAE RMSE

80

85

90

95

100

B
P

SO
+

K
N

N

B
PS

O
+

D
T

B
PS

O
+

L
R

B
PS

O
+

S
V

M

B
PS

O
+

R
F

B
PS

O
+

M
L

P

A
cc

ur
ac

y

Approaches

Accuracy

Dataset-I

Dataset-II

Dataset-III

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2805

Figure 7. The comparison of MCC in all applied techniques

7.1 Comparison of the proposed approach with the earlier approach

The comparison of the proposed approach with the earlier methods is shown in Table 5. Except
for [42] and [43], the performance of the suggested technique is better, as shown in Table 5.
Heuristic algorithms do not re-examine previously covered pathways or actions since they
always aim to obtain an ideal solution by learning from past steps. Instead, using the knowledge
of the last steps, they search for new promising solutions and quickly find an optimal solution.
Thus, one of the benefits of using meta-heuristic optimization is that they significantly reduce
the size of the dataset by selecting the appropriate features, thereby reducing the detection time
and complexity.

The proposed BPSO algorithm chooses 68 optimal features from the first dataset and 67 and
103 from the second and third datasets, respectively, which reduces the dataset size by more
than 70%. Thus, it can be established that the proposed framework is more effective than many
other existing approaches. Table 6 displays the top 20 potentially harmful behavior patterns
chosen by the BPSO algorithm from the DREBIN dataset. Table 7 presents the twenty most
risky behavior patterns chosen by the BPSO algorithm from the MALGENOME dataset. Table
8 displays the top 20 potentially hazardous behavior patterns chosen by the BPSO algorithm
from the MENDELEY dataset.

Table 5. The performance comparison of the proposed approaches with the earlier
methods.

70

75

80

85

90

95

B
PS

O
+

K
N

N

B
P

SO
+

D
T

B
P

SO
+L

R

B
PS

O
+

S
V

M

B
P

SO
+R

F

B
P

SO
+

M
L

P

MCC

Dataset-I

Dataset-II

Dataset-III

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2806

Table 5. Top 20 Dangerous Behavior patterns selected by BPSO from DREBIN Dataset

S.No.
Top 20 Dangerous Behavior (DREBIN
DATSET) Types

1 ServiceConnection API call signature
2 Ljava.lang.Class.getCanonicalName API call signature
3 Ljava.lang.Class.getMethods API call signature
4 READ_PHONE_STATE Manifest Permission
5 getBinder API call signature
6 ClassLoader API call signature

Referenc
e

Dataset Approaches Accurac
y

F1-
score

Recall/TP
R

Precisio
n

Proposed
approach

MALGENOM
E DREBIN,

MENDELEY

(BPSO and RF,
KNN, MLP,
SVM, DT, LR

98%

96%

94%

99%

[44] DREBIN

MALGENOM
E

SVM(Linear) 94%

95%

__

 __ __

[45] DREBIN SVM (2 class) 93.7%
__

 __ __

[26] DREBIN and
Androzoo

PSO and MLP
AdaBoost RF,
KNN, J48

 ___ 91.6

95.6%

__

[46] DREBIN PCA + RELIEF 95.2% ___ 94.7% __

[42] DREBIN (BNS + L-VM) 99.5% ___ 99.6% __

[43] MALGENOM
E

ORGB 96.9% 97.09
%

98.55% __

[47] DREBIN CNN 94.8% ___ 93.6% __

[35] Self dataset (GA +SVM)

(GA+NN)

95% and
94.1%

 __ __ __

[17] MALGENOM
E

J48,KNN,SVM,N
B

 ___ 94.5% 94.5% __

[48] Self dataset Gain Ratio + RF 91.7% __ 90.0% __

[49] Self dataset CNN,RF SVM 95.7% __ __ __

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2807

7 Landroid.content.Context.registerReceiver API call signature
8 Landroid.content.Context.unregisterReceiver API call signature
9 getCallingUid API call signature

10 MANAGE_ACCOUNTS Manifest Permission
11 SecretKey API call signature
12 WRITE_SMS Manifest Permission
13 android.telephony.gsm.SmsManager API call signature
14 mount Commands
15 INSTALL_PACKAGES Manifest Permission
16 Runtime.getRuntime API call signature
17 Ljava.lang.Object.getClass API call signature
18 WRITE_SYNC_SETTINGS Manifest Permission
19 android.intent.action.SEND_MULTIPLE Intent
20 createSubprocess API call signature

Table 6. Top 20 dangerous Behavior patterns selected by BPSO algorithm from
MALGENOME dataset

S. No. Dangerous Behavior Pattern Types

1 transact API call signature
2 attachInterface API call signature
3 ServiceConnection API call signature
4 android. Os.Binder API call signature
5 Ljava.lang.Class.getMethods API call signature
6 Class_Loader API call signature
7 Ljava.lang.Class.getDeclaredField API call signature
8 READ_SMS Manifest Permission
9 Key_Spec API call signature

10 DexClassLoader API call signature
11 HttpGet.init API call signature
12 Secret _Key API call signature
13 System.load library API call signature
14 android.telephony.gsm.SmsManager API call signature
15 mount Commands signature
16 INSTALL_PACKAGES Manifest Permission
17 CAMERA Manifest Permission
18 READ_HISTORY_BOOKMARKS Manifest Permission
19 INTERNET Manifest Permission
20 android.intent.action.PACKAGE_REPLACED Intent

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2808

8. Conclusion and future work

In this paper, we first determine the most dangerous behaviour pattern of android malware that
is significantly responsible for malware attacks. The hazardous behaviour pattern of android
malware is determined using the feature Selection mechanism of Binary particle swarm
optimization (BPSO). The feature selection problem is described as an NP-hard problem with
the challenge of picking a minimal-size subset of variables that contain all the information
needed to create an ideally predictive model for a target variable. The BPSO algorithm
identifies and eliminates unnecessary or detrimental pattern extraction characteristics to
achieve better, quicker, and more intelligible data mining solutions. The BPSO is a stochastic
optimization approach that identifies the optimum subset using swarm intelligence and
mobility with minimal computational cost.

The BPSO optimizes a problem by iteratively improving a potential solution's quality. It solves
a problem by moving candidate solutions, called particles, in the search space according to
basic mathematical equations for location and velocity. Each particle's movement is directed
by its local best-known location and the best-known positions in the search space, which are
updated when better places are identified. The swarm should migrate toward the best solution.
The proposed approach combines the BPSO with six machine learning techniques to find the
complete solution for feature optimization and android malware detection. The proposed
method achieved 98 % accuracy in malware detection, 96 % of the F1 score, and a recall rate
of 94%. It also optimized the dangerous behaviour pattern by 70 % and outperformed in

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2809

comparison with several previous algorithms. The primary objective of future work will be to
create other efficient hybrid models by utilizing deep learning techniques.

Reference
[1] "Smartphone users 2026 | Statista."https://www.statista.com/statistics/330695/number-

of-smartphone-users-worldwide/
[2] "Mobile OS market share 2021 |

Statista."https://www.statista.com/statistics/272698/global-market-share-held-by-
mobile-operating-systems-since-2009/

[3] "Google Play Store: number of apps 2021 | Statista."
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-
google-play-store/

[4] "Malware Statistics & Trends Report | AV-TEST." https://www.av-
test.org/en/statistics/malware/

[5] Joseph Johnson, "• Global Android malware volume 2020 | Statista," 2021.
https://www.statista.com/statistics/680705/global-android-malware-volume/

[6] Y. Suleiman, S. Sezer, G. McWilliams, and I. Muttik, "New Android malware detection
approach using Bayesian classification," in Proceedings - International Conference on
Advanced Information Networking and Applications, AINA, 2013, pp. 121–128, 2013.

[7] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y. Rahulamathavan, "PIndroid: A
novel Android malware detection system using ensemble learning methods,"Computers
and Security, vol. 68, pp. 36–46, 2017.

[8] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, "MADAM: Effective and
Efficient Behavior-based Android Malware Detection and Prevention,"IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 1, pp. 83–97, 2018.

[9] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian, and M. Conti,
"Similarity-based Android malware detection using Hamming distance of static binary
features,"Future Generation Computer Systems, vol. 105, pp. 230–247, 2020.

[10] Q. Wu, M. Li, X. Zhu, and B. Liu, "MVIIDroid: A Multiple View Information
Integration Approach for Android Malware Detection and Family Identification,"IEEE
Multimedia, vol. 27, no. 4, pp. 48–57,2020.

[11] K. Santosh Jhansi, S. Chakravarty, and R. K. P. Varma, "Feature Selection and
Evaluation of Permission-based Android Malware Detection," in Proceedings of the 4th
International Conference on Trends in Electronics and Informatics, ICOEI 2020, Jun.
2020, pp. 795–799, 2020.

[12] M. Zheng, M. Sun, and J. C. S. Lui, "DroidTrace: A ptrace based Android dynamic
analysis system with forward execution capability," in IWCMC 2014 - 10th
International Wireless Communications and Mobile Computing Conference, Sep. 2014,
pp. 128–133, 2014.

[13] M. Ahmad, V. Costamagna, B. Crispo, F. Bergadano, and Y. Zhauniarovich, "StaDART:
Addressing the problem of dynamic code updates in the security analysis of android
applications,"Journal of Systems and Software, vol. 159, 2020.

[14] M. Yang, X. Chen, Y. Luo, and H. Zhang, "An Android Malware Detection Model
Based on DT-SVM,"Security and Communication Networks, vol. 2020, pp. 1–11, 2020.

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2810

[15] L. Sun, Z. Li, Q. Yan, W. Srisa-An, and Y. Pan, "SigPID: Significant permission
identification for android malware detection,"2016 11th International Conference on
Malicious and Unwanted Software, MALWARE 2016, pp. 59–66, Mar. 2017.

[16] S. Wang et al., "Deep and Broad URL Feature Mining for Android Malware
Detection,"Information Sciences, Elsevier, vol. 513, pp. 600–613, 2020.

[17] X. Jiang, B. Mao, J. Guan, and X. Huang, "Android Malware Detection Using Fine-
Grained Features,"Scientific Programming, vol. 2020, no. 5190138, pp. 1–13, 2020.

[18] A Singh, Ajeet, and Anurag Jain. "Hybrid bio-inspired model for fraud detection with
correlation based feature selection." Journal of Discrete Mathematical Sciences and
Cryptography 24, vol. no. 5 (2021): pp. 1365-1374.

[19] M. A. Jerlin and K. Marimuthu, "A New Malware Detection System Using Machine
Learning Techniques for API Call Sequences,"Journal of Applied Security Research,
vol. 13, no. 1, pp. 45–62, 2018.

[20] A. Mehtab et al., "AdDroid: Rule-Based Machine Learning Framework for Android
Malware Analysis,"Mobile Networks and Applications, vol. 25, no. 1, pp. 180–192,
2020.

[21] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, "DL-Droid: Deep learning based android
malware detection using real devices,"Computers and Security, vol. 89, Feb. 2020.

[22] A. Mahindru and A. L. Sangal, SemiDroid: a behavioral malware detector based on
unsupervised machine learning techniques using feature selection approaches, vol. 12,
no. 5. Springer Berlin Heidelberg, 2021.

[23] J. Feng, L. Shen, Z. Chen, Y. Wang, and H. Li, "A Two-Layer Deep Learning Method
for Android Malware Detection Using Network Traffic,"IEEE Access, vol. 8, pp.
125786–125796, 2020.

[24] B. Selvakumar and K. Muneeswaran, "Firefly algorithm based feature selection for
network intrusion detection,"Computers and Security, vol. 81, pp. 148–155, 2019.

[25] S. Alam, S. Alharbi, S. Y.-C. Networks, and undefined 2020, "Mining nested flow of
dominant APIs for detecting android malware,"Elsevier, Accessed: May 02, 2022.

[26] M. F. A. Razak, N. B. Anuar, F. Othman, A. Firdaus, F. Afifi, and R. Salleh, "Bio-
inspired for Features Optimization and Malware Detection,"Arabian Journal for Science
and Engineering, vol. 43, no. 12, pp. 6963–6979, 2018.

[27] Y. Zhou, G. Cheng, S. Jiang, and M. Dai, "Building an efficient intrusion detection
system based on feature selection and ensemble classifier,"Computer Networks, vol.
174, p. 107247, Jun. 2020.

[28] V. Ravindranath, … S. R.-2020 I. C., and undefined 2020, "Swarm intelligence based
feature selection for intrusion and detection system in cloud
infrastructure,"ieeexplore.ieee.org.

[29] R. Sihwail, K. Omar, K. A. Z. Ariffin, and M. Tubishat, "Improved Harris Hawks
Optimization Using Elite Opposition-Based Learning and Novel Search Mechanism for
Feature Selection,"IEEE Access, vol. 8, pp. 121127–121145, 2020.

[30] B. K. Khotimah, M. Miswanto, and H. Suprajitno, "Optimization of feature selection
using genetic algorithm in naïve Bayes classification for incomplete data,"International
Journal of Intelligent Engineering and Systems, vol. 13, no. 1, pp. 334–343, Feb. 2020.

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2811

[31] M. M. Mafarja and S. Mirjalili, "Hybrid Whale Optimization Algorithm with simulated
annealing for feature selection,"Neurocomputing, vol. 260, pp. 302–312, Oct. 2017.

[32] S. W. Lin, K. C. Ying, S. C. Chen, and Z. J. Lee, "Particle swarm optimization for
parameter determination and feature selection of support vector machines,"Expert
Systems with Applications, vol. 35, no. 4, pp. 1817–1824, 2008.

[33] A. Firdaus, N. B. Anuar, A. Karim, and M. F. A. Razak, "Discovering optimal features
using static analysis and a genetic search based method for Android malware
detection,"Frontiers of Information Technology and Electronic Engineering, vol. 19, no.
6, pp. 712–736, 2018.

[34] P. Shunmugapriya and S. Kanmani, "A hybrid algorithm using ant and bee colony
optimization for feature selection and classification (AC-ABC Hybrid),"Swarm and
Evolutionary Computation, vol. 36, pp. 27–36, 2017.

[35] A. Fatima, R. Maurya, M. K. Dutta, R. Burget, and J. Masek, "Android malware
detection using genetic algorithm based optimized feature selection and machine
learning,"2019 42nd International Conference on Telecommunications and Signal
Processing, TSP 2019, pp. 220–223, 2019.

[36] A. Bhattacharya, R. T. Goswami, and K. Mukherjee, "A feature selection technique
based on rough set and improvised PSO algorithm (PSORS-FS) for permission based
detection of Android malwares,"International Journal of Machine Learning and
Cybernetics, vol. 10, no. 7, pp. 1893–1907, Jul. 2019.

[37] L. Wang, Y. Gao, S. Gao, and X. Yong, "A New Feature Selection Method Based on a
Self-Variant Genetic Algorithm Applied to Android Malware Detection,"Symmetry
2021, Vol. 13, Page 1290, vol. 13, no. 7, p. 1290, Jul. 2021.

[38] H. Faris, M. Habib, I. Almomani, M. Eshtay, and I. Aljarah, "Optimizing Extreme
Learning Machines Using Chains of Salps for Efficient Android Ransomware
Detection,"Applied Sciences 2020, Vol. 10, Page 3706, vol. 10, no. 11, p. 3706, May
2020.

[39] "Android malware dataset for machine learning 1."
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_
1/5854590/1.

[40] "Android malware dataset for machine learning 2."
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_
2/5854653.

[41] "Research Data - Mendeley Data." https://data.mendeley.com/research-
data/?type=DATASET&search=android malware.

[42] A. Kumar, S. C. D. Jaidhar, and M. A. A. Kumara, "Experimental analysis of Android
malware detection based on combinations of permissions and API-calls,"Journal of
Computer Virology and Hacking Techniques, vol. 15, no. 3, pp. 209–218, 2019.

[43] W. Zhang, H. Wang, H. He, P. L.-I. T. On, and U. 2020, "DAMBA: detecting android
malware by ORGB analysis,"ieeexplore.ieee.org, vol. vol 69, no. 1, pp. 55–69, 2020.

[44] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin: Effective and
Explainable Detection of Android Malware in Your Pocket,” NDSS, vol. 14, pp. 23–26,
2014.

ANDROID FORTIFY: ELEVATING ANDROID SECURITY THROUGH THE SYNERGY OF MACHINE
LEARNING AND BINARY PARTICLE SWARM OPTIMIZATION

Journal of Data Acquisition and Processing Vol. 37 (5) 2022 2812

[45] S. Lou, S. Cheng, J. Huang, and F. Jiang, "Tfdroid: Android malware detection by topics
and sensitive data flows using machine learning techniques," in 2019 IEEE 2nd
International Conference on Information and Computer Technologies, ICICT 2019, pp.
30–36, 2019.

[46] "An Android malware detection system based on machine learning," vol. 020136,
no.2018 2018.

[47] Y. Ding, X. Zhang, J. Hu, and W. Xu, "Android malware detection method based on
bytecode image,"Journal of Ambient Intelligence and Humanized Computing, no.
0123456789, 2020.

[48] R. Thangaveloo, W. W. Jing, C. K. Leng, and J. Abdullah, "DATDroid: Dynamic
analysis technique in android malware detection,"International Journal on Advanced
Science, Engineering and Information Technology, vol. 10, no. 2, pp. 536–541, 2020.

[49] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan, and T. D. Pham. "EfficientNet
convolutional neural networks-based Android malware detection." Computers &
Security vol. 115 , no.2022 pp.102622, 2022.

