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ABSTRACT 

Signal processing is a vast applied area of research, and It is applicable in engineering, 

medicine, war, and many more fields. Many signal processing methods are already available 

like Fourier transform, fractional Fourier transforms, and many more. In this work, we 

defined a generalized Fourier transform and proposed a new technique for signal denoising: 

the Fourier transform of signal in the presence of fractional calculus. This proposed method 

is more convenient than previous methods because of its applicability in the fractional 

variable. By fractional variable, we reached the more appropriate signal. 

Keywords: R-L Integrodifferential, Low pass filter, De-noising signal, Digital Signal 

Processing. 

1. INTRODUCTION 

Signal processing started as a numerical technique in the early 17th century, but it was a known 

subject in the 19th century. In 1948 Claud Shannon wrote a paper on communications mathematical 

theory [1]. His study proved to be a milestone in signal processing, and researchers started their 

work in this field. In 1996 Hall et al. wrote a book on SAGE- a Radar technology of the U.S.- an 

example of digital signal processing. The Fourier transform was a widely used practical method in 

signal processing in the 20th century; In 2006, Salih published a book on the use of the Fourier 

transform in signal processing [2], after some time, the fractional Fourier transform, a generalization 

of the Fourier transform, was developed, Namias initially proposed the fractional Fourier change in 

1980 [3], and the FRFT (Fractional Fourier Transform) defined by Namias is applicable in many 

problems of signal processing [4–6] and this definition move the researchers interest in the fractional 

domain. Presently many researchers are working in the field of signal processing using fractional 

calculus, viz., In 2000 Tseng wrote a paper on fractional calculus using Fourier transform [7], pulling 

the attention to the field of application of fractional calculus in signal processing with continuation 

to his work. In 2004 Margin and Richard found the application of fractional calculus in 

bioengineering [8]. Then in 2007, Assaleh et al. found the application of fractional calculus in their 
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work on modeling speech signals [9]. In 2018 Cruz-Duarte et al. wrote a paper based on applying 

the Caputo-Fabrizio derivative. Recently, many more research papers have been in the queue of 

application of various definitions of FC in signal processing [10, 11]. In this research article, we will 

explore the application of Reimann Liouville Fractional and Integration, called Integrodifferentiaon 

with Fourier transforms, to design a low-pass filter. In my work, I am using the MATLAB code 

FracUnif to find out the fractional derivative, which from the study of the following research articles 

[12–15]. My research work is inspired by the different mathematician’s work as referenced in my 

paper [7, 16]. 

In this paper, first, we define the fractional derivative and integral of Riemann Liouville and the 

fractional derivative of Caputo; after this, we will find out the Fourier transform of the fractional 

Riemann-Liouville product of a function then we will find the fractional Riemann- Liouville integral 

of the inverse Fourier transform of a process. In the end, we will find out the Graph of the corrupted 

and denoised sinusoidal signal using various values of fractional parameter a between 0 to 1 by 

numerical simulation. 

 

2. Preliminaries 
In this section, we'll review a few terminologies and essential fractional calculus findings pertinent to the 

rest of the inquiry. 

Definition 2.1. [17] Following is the definition of the fractional integral of a function 𝜉 with order, 𝑎 > 0 

lower bound zero in Riemann-Lioville sense: 

𝐼𝑎𝜉(𝑡) =
1

Γ(𝑎)
∫  

𝑡

0

(𝑡 − 𝜂)𝑎−1𝜉(𝜂)𝑑𝜂,  𝑡 > 0 

and 𝐼0𝜙(𝑡): = 𝜙(𝑡), where the Euler Gamma function is Γ(⋅). For 𝑏 > 0, this fractional integral satisfies 

the conditions 𝐼𝑎 ∘ 𝐼𝑏 = 𝐼𝑎+𝑏. 

Definition 2.2. [18] Given is the function's Riemann-Liouville fractional derivative at the lower limit 

zero of order 𝑎 > 0. 

𝐷𝑎𝜉(𝑡) =
1

Γ(𝑛 − 𝑎)

𝑑𝑛

𝑑𝑡𝑛
∫  

𝑡

0

(𝑡 − 𝜂)𝑛−𝑎−1𝜉(𝜂)𝑑𝜂 

where 𝑛 − 1 < 𝑎 < 𝑛, 𝑛 ∈ ℕ, up to order (𝑛 − 1), an absolutely continuous derivative exists for the 

function 𝜉(𝑡). Moreover 𝐷0𝜉(𝑡) = 𝜉(𝑡) and 𝐷𝑎𝐼𝑎𝜉(𝑡) = 𝜉(𝑡) for 𝑡 > 0. 

Definition 2.3. [18] The Caputo fractional derivative of a function 𝜉 ∈ 𝒞𝑛([0, ∞)) with the lower limit 

zero of order 𝑎 > 0 is given by 

 𝑐𝐷𝑎𝜉(𝑡) =
1

Γ(𝑛 − 𝑎)
∫  

𝑡

0

(𝑡 − 𝜂)𝑛−𝑎−1
𝑑𝑛

𝑑𝜂𝑛
𝜉(𝜂)𝑑𝜂, 

where 𝑛 − 1 < 𝑎 < 𝑛, 𝑛 ∈ ℕ.  

Definition 2.4. [19] Let 𝜉 be a function of class 𝐶, then its Fourier transform FT is defined as- 

𝐹𝑇(𝜉(𝑡)) = 𝜉‾(𝑤) =
1

√2𝜋
∫  

∞

−∞

𝑒𝑖𝑤𝑡𝜉(𝑡)𝑑𝑡 
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Definition 2.5. [19] Let 𝜉 be a function of class 𝐶, then its Inverse Fourier transform IFT is defined as- 

IFT (𝜉‾(𝑤)) = 𝜉(𝑡) =
1

√2𝜋
∫  

∞

−∞

𝑒−𝑖𝑤𝑡𝜉‾(𝑤)𝑑𝑡 

 

3. Main Result 

3.1. Fourier transform of derivative of 𝜉(𝑡) 

                             𝐹𝑇 (
𝑑𝑛(𝜉)

𝑑𝑡𝑛 ) = (−𝑖𝑤)𝑛𝜉‾(𝑤)        (3. 1) 

. Where function 𝜉(𝑡) and its nth order derivatives vanish at ±∞ 

3.2. Fourier transform of fractional derivative defined in (2.2) of 𝝃(𝒕) 

𝐹𝑇(𝐷𝑎(𝜉(𝑡)) = 𝜉‾𝑎(𝑤)  = 𝐹𝑇 (
1

Γ(𝑛 − 𝑎)

𝑑𝑛

𝑑𝑡𝑛
∫  

𝑡

0

  (𝑡 − 𝜂)𝑛−𝑎−1𝜉(𝜂)𝑑𝜂)

=
1

Γ(𝑛 − 𝑎)
𝐹𝑇 (

𝑑𝑛

𝑑𝑡𝑛
∫  

𝑡

0

  (𝑡 − 𝜂)𝑛−𝑎−1𝜉(𝜂)𝑑𝜂))

 

from (3.1) we find 

𝐹𝑇 (𝐷𝑎(𝜉(𝑡)) =
1

Γ(𝑛 − 𝑎)
(−𝑖𝑤)𝑛𝐹𝑇 (∫  

𝑡

0

  (𝑡 − 𝜂)𝑛−𝑎−1𝜉(𝜂)𝑑𝜂)) ,

=
1

Γ(𝑛 − 𝑎)
(−𝑖𝑤)𝑛𝐹𝑇(𝑡(𝑛−𝑎−1) ∗ 𝜉(𝑡)),

=
1

Γ(𝑛 − 𝑎)
(−𝑖𝑤)𝑛𝐹𝑇(𝑡(𝑛−𝑎−1)𝐹𝑇(𝜉(𝑡)),

=
1

Γ(𝑛 − 𝑎)
(−𝑖𝑤)𝑛Γ(𝑛 − 𝑎)(−𝑖𝑤)(𝑎−𝑛)𝜉(𝑤),

 

Where 𝐹𝑇(𝑡(𝑛−𝑎−1) = Γ(𝑛 − 𝑎)(−𝑖𝑤)(𝑎−𝑛), Hence 

                                    𝐹𝑇(𝐷𝑎(𝜉(𝑡)) = 𝜉‾𝑎(𝑤) = (−𝑖𝑤)𝑎𝜉‾(𝑤)     (3. 2) 

3.3 Fractional order integration of inverse Fourier transforms for (3.2) 

𝐷−𝑎IFT (𝜉‾𝑎(𝑤)) = 𝐷−𝑎IFT ((−𝑖𝑤)𝑎𝜉‾(𝑤)) 

From (3.1) one can see that (−𝑖𝑤)𝑎𝜉‾(𝑤) = 𝐹𝑇 (
𝑑𝑛(𝜉)

𝑑𝑡𝑛 ) then 
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𝐷−𝑎IFT (𝜉‾𝑎(𝑤)) = 𝐷−𝑎𝐼𝐹𝑇(𝐹𝑇(𝐷𝑎(𝜉))),

= 𝐷−𝑎𝐷𝑎(𝜉(𝑡)),

⟹ 𝐷−𝑎IFT (𝜉‾𝑎(𝑤)) = 𝜉(𝑡).

 

3.4 Generalized Fourier transform 

One can see from (3.2) the Fourier transform of fractional order derivative of function 𝜉(𝑡) can be defined 

as a generalized Fourier transforms as for fractional angle 𝑎 = 0, it will become Fourier transform. 

Generalized Fourier transform will be notated as 𝜉‾𝑎(𝑤) and defined as- 

𝜉‾𝑎(𝑤) = (−𝑖𝑤)𝑎𝜉‾(𝑤) 

3.5 Convolution of two functions in Generalized Fourier transform Environment 

The convolution of two functions, f, and g, can be defined as- 

𝑓 ∗ 𝑔 = (−𝑖𝑤)𝑎 ∫  
∞

−∞

𝑓(𝑡 − 𝑢)𝑔(𝑢)𝑑𝑢 

3.6 Convolution theorem for Generalized Fourier transform 

Theorem 3.1. If ℎ(𝑡) is the convolution of two functions 𝑓(𝑡) and 𝑔(𝑡), then the generalized Fourier 

transform of ℎ(𝑡) is equal to the multiplication of the generalized Fourier transform of 𝑓(𝑡) and 𝑔(𝑡) i. 𝑒. 

ℎ𝑎
̅̅ ̅ = 𝑓‾𝑎𝑔𝑎̅̅ ̅ 

, Where ℎ𝑎
̅̅ ̅ is fractional Fourier transform of ℎ(𝑡). 

Proof. Given that- 

ℎ(𝑡) = 𝑓(𝑡) ∗ 𝑔(𝑡) = (−𝑖𝑤)𝑎 ∫  
∞

−∞

𝑓(𝑡 − 𝑢)𝑔(𝑢)𝑑𝑢 

Then 

ℎ𝑎
̅̅ ̅ = (−𝑖𝑤)𝑎 ∫  

∞

−∞

 𝑒𝑖𝑤𝑡ℎ(𝑡)𝑑𝑡,

= (−𝑖𝑤)𝑎(−𝑖𝑤)𝑎 ∫  
∞

−∞

 ∫  
∞

−∞

  𝑒𝑖𝑤𝑡𝑓(𝑡 − 𝑢)𝑔(𝑢)𝑑𝑢𝑑𝑡

 

Choose 𝑡 − 𝑢 = 𝑥, Then 

ℎ𝑎
̅̅ ̅ = (−𝑖𝑤)𝑎(−𝑖𝑤)𝑎 ∫   ∫  

∞

−∞

∞

−∞

 𝑒𝑖𝑤(𝑥+𝑢)𝑓(𝑥)g(u)𝑑𝑢𝑑𝑥 

(3.3) 

(3.4) 

(3.5) 
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ℎ𝑎
̅̅ ̅ = (−𝑖𝑤)𝑎   ∫  

∞

−∞

eiwxf(x)dx. (−𝑖𝑤)𝑎   ∫  
∞

−∞

𝑒𝑖𝑤𝑢𝑔(𝑢)𝑑𝑢 

ℎ𝑎
̅̅ ̅ = 𝑓‾𝑎𝑔𝑎̅̅ ̅ 

Hence convolution theorem proved. 

 

4. Numerical Analysis 

In the numerical part, we have developed a digital low-pass filter for denoising the sinusoidal 

signal. The Sinusoidal function x = sin (2pi600t/F) corrupted by mixing high- frequency sinusoidal 

function into it and considering impulse transfer with Hann window function for denoising the 

corrupted signal. Then we applied the generalized Fourier trans- form on the corrupted signal and 

window mixed impulse transfer function, multiplied their generalized Fourier transforms, took the 

Inverse generalized Fourier transform of the result, and got the denoised signal. It can be seen from 

Figure-(1) that the filtering by Generalized Fourier transform is better than the frequency domain 

filtering. From Figure- (2), somebody can observe that when we vary the value of the fractional 

parameter a, we get a more accurate signal. 

 

5. Conclusion 

The definition of the generalized Fourier transform is (3.4), (3.5) shows the convolution of two 

functions. In (3.6), the Convolution Theorem for the Generalized Fourier Transform is 

demonstrated. The Low Pass filter is designed using the generalized Fourier transform. The 

Generalized Fourier transform is superior to the Fourier transform, as the numerical simulation 

shows. Additionally, it is observed from the Figure-(2) that the filter produces accurate results for 

various values of a and the and more accurate obtained when the value of the fractional parameter 

a is equal to 0.5. 
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Figure 1: Comparative Graph between Time domain filtering, frequency domain filtering, and 

Fourier transform in fractional calculus environment filtering at a=0.95.  

 

 

Figure 2: Graph of the filtered signal for various values of fractional parameter a = 0.9, 0.8, 0.7, 0.6, 

0.5. 


