A NOTE ON ROOT CUBE MEAN LABELING OF UNION RELATED GRAPHS

J. Periaswamy

PG and Research Department of Mathematics, A.V.C College (Autonomous), Mannampandal - 609 305, Mayiladuthurai, Tamil Nadu, India, Affiliated to Annamalai University, Mail Id: jperiaswamy@gmail.com

Dr.P.Hema

Assistant Professor, Department of Mathematics, R.M.K. College of Engineering and Technology, Puduvoyal -601206.

Dr. Muhammed Basheer

Assistant Professor, Mathematics, University of Technology and Applied science, Nizwa

Worood Mohammad Salah

Department of Mathematics, University of Kufa, Faculty of Comp Sciences and Math, Najaf, Iraq, Mail Id: woroodm.alkhalide@uokufa.edu.iq

Ohood Ayyed Hadi

Department of Mathematics, University of Kufa, Faculty of Comp Sciences and Math, Najaf, Iraq. Mail Id: ohooda.algburi@uokufa.edu.iq

Hayder Baqer Shelash

Department of Mathematics, University of Kufa, Faculty of Comp Sciences and Math, Najaf, Iraq, Mail Id: hayder.ameen@uokufa.edu.iq

Abstract

A graph $G=(V, E)$ with p vertices and q edges is said to be a Root Cube Mean graph if it is possible to label the vertices $x \in V$ with distinct lables $f(x)$ from $1,2, \ldots, q+1$ in such a way that when each edge $e=u v$ is labeled with $f(e=u v)=$ $\left\lceil\sqrt{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rceil$ or $\left\lfloor\sqrt{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rfloor$, then the resulting edge labels are distinct. Here f is called a root cube mean labeling of G. In this paper we prove that union related graphs such as Path union of two cycles, Path union of three cycles, k-Path union of two cycles C_{m} with path P_{k}, Path union of two crowns, Path union of three crowns, k-Path union of two crowns C_{m}^{*} with path P_{k} all are root cube mean graphs.

Keywords : Graph, Root cube mean labeling, Path, Cycle, Crown.

I. INTRODUCTION

In this paper we consider the graphs which are simple, finite and undirected with p vertices and q edges. For a detailed survey of graph labeling, we refer to Gallain [2]. For all other standard terminology and notations, we follow Harary [6]. Root Square Mean labeling
has been introduced by S.S.Sandhya, S.Somasundaram and S.Anusa in 2014 [7]. Some new results proved of root square mean labeling of some crown graphs by R. Abdul Saleem and R. Mani [1]. The concept of root cube mean labeling of graphs has been introduced by R.Gowri and G.Vembarasi [3] and they also proved that some root cube mean labeling graphs [4,5]. In this paper, we investigate the root cube mean labeling of union related graphs. Some new examples are presented and verified. We now give the definitions which are necessary for the present investigation.

Definition 1.1:

A walk in which $u_{1} u_{2} \ldots u_{n}$ are distinct is called a path. A path on n vertices is denoted by P_{n}.

Definition 1.2:

A closed path is called a cycle. A cycle on n vertices is denoted by C_{n}.

Definition 1.3:

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=G_{1} \cup$ G_{2}
with vertex set $V=V_{1} \cup V_{2}$ and the edge set $=E_{1} \cup E_{2}$.

Definition 1.4:

Let $G_{1}, G_{2}, \ldots, G_{n}, n \geq 2$ be n copies of a fixed graph G. The graph G obtained by adding an edge between G_{i} and G_{i+1} for $i=1,2, \ldots, n-1$ is called a path union of G.

Definition 1.5:

The Corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \odot G_{2}$ formed by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} where the $i^{t h}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition 1.6:

The k-path graph $P_{k}(H)$ of a graph H has all length $-k$ paths of H as vertices; two such vertices are adjacent in the new graph if their union forms a path or cycle of length $k+1$ in H, and if the common edges of both paths form a path of length $k-1$.

II. Main Results

In this paper, we investigate the root cube nean labeling of union related graphs.

Theorem 2.1

Path union of two cycles is a root cube mean graph.

Proof:

Let $\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ and $\beta_{1} \beta_{2} \ldots \beta_{m}$ be the vertices of two cycles C_{m} in G.
Let $V(G)=\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{m}, \beta_{1} \beta_{2} \ldots \beta_{m}\right\}$
$E(G)=\left\{\alpha_{i} \alpha_{i+1} / 1 \leq i \leq m-1\right\} \cup\left\{\beta_{i} \beta_{i+1} / 1 \leq i \leq m-1\right\} \cup$ $\left\{\alpha_{m} \alpha_{1}, \beta_{m} \beta_{1}, \alpha_{1} \beta_{1}\right\}$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, 2 m+1\}$ by

$$
\begin{aligned}
& f\left(\alpha_{i}\right)=1+i \quad \text { for } 1 \leq i \leq m-1 \\
& f\left(\alpha_{m}\right)=1 \\
& f\left(\beta_{i}\right)=1+m+i \text { for } 1 \leq i \leq m-1 \\
& f\left(\beta_{m}\right)=1+m
\end{aligned}
$$

Then the edge labels are distinct.
Hence f is a root cube mean labeling of G.

Example 2.1.1:

The root cube mean labeling of path union of two cycles C_{6} is given below:

Theorem 2.^ 6
Path union of \quad cycles is a root cubr 11 m graph.

Proof:

Let $\alpha_{1} \alpha_{2} \ldots \alpha_{m}, \beta_{1} \beta_{2} \ldots \beta_{m}$ and $\gamma_{1} \gamma_{2} \ldots \gamma_{m}$ be the vertices of three cycles C_{m} in G.
Let $V(G)=\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{m}, \beta_{1} \beta_{2} \ldots \beta_{m}, \gamma_{1} \gamma_{2} \ldots \gamma_{m}\right\}$

$$
\begin{aligned}
E(G)= & \left\{\alpha_{i} \alpha_{i+1} / 1 \leq i \leq m-1\right\} \cup\left\{\beta_{i} \beta_{i+1} / 1 \leq i \leq m-1\right\} \\
& \cup\left\{\gamma_{i} \gamma_{i+1} / 1 \leq i \leq m-1\right\} \cup\left\{\alpha_{m} \alpha_{1}, \alpha_{1} \beta_{1}, \beta_{m} \beta_{1}, \beta_{1} \gamma_{1}, \gamma_{m} \gamma_{1}\right\} .
\end{aligned}
$$

Define a function $f: V(G) \rightarrow\{1,2, \ldots, 3 m+2\}$ by

$$
\begin{aligned}
& f\left(\alpha_{i}\right)=1+i \quad \text { for } 1 \leq i \leq m-1 \\
& f\left(\alpha_{m}\right)=1 \\
& f\left(\beta_{i}\right)=1+m+i \text { for } 1 \leq i \leq m-1 \\
& f\left(\beta_{m}\right)=m+1 \\
& f\left(\gamma_{i}\right)=1+2 m+i \text { for } 1 \leq i \leq m-1 \\
& f\left(\gamma_{m}\right)=2 m+1
\end{aligned}
$$

Then the edge labels are distinct.
Hence f is a root cube mean labeling of G.

Example 2.2.1:

The root cube mean labeling of path union of three cycles C_{5} is given below:

Figure 2

Theorem 2.3

k-Path union of two cycles C_{m} with path P_{k} is a root cube mean graph.

Proof:

Let $\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ and $\beta_{1} \beta_{2} \ldots \beta_{m}$ be the vertices of two cycles C_{m} in G.
Let $\alpha_{1}=\gamma_{1} \gamma_{2} \ldots \gamma_{k}=\beta_{1}$ be the vertices of the path P_{k}.
Define a function $f: V(G) \rightarrow\{1,2, \ldots, 2 m+k\}$ by

$$
\begin{array}{ll}
f\left(\alpha_{i}\right)=1+i & \text { for } 1 \leq i \leq m-1 \\
f\left(\alpha_{m}\right)=1 & \\
f\left(\beta_{i}\right)=k+m+i-1 & \text { for } 1 \leq i \leq m-1 \\
f\left(\beta_{m}\right)=k+m-1 & \\
f\left(\gamma_{i}\right)=m+i-1 & \text { for } 2 \leq i \leq k-1
\end{array}
$$

Then the edge labels are distinct.
Hence f is a root cube mean labeling of G.

Example 2.3.1:

The root cube mean labeling of k-path union of C_{5} is given below:

Theorem 2.4

Path union of two crowns is a root cube mean graph.

Proof:

Let $\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ and $\beta_{1} \beta_{2} \ldots \beta_{m}$ be the vertices of two cycles C_{m} in G.
Let $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \ldots \alpha_{m}^{\prime}$ be the pendent vertices attached at $\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ respectively and $\beta_{1}^{\prime} \beta_{2}^{\prime} \ldots \beta_{m}^{\prime}$ be the pendent vertices attached at $\beta_{1} \beta_{2} \ldots \beta_{m}$ respectively.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, 4 m+1\}$ by

$$
\begin{aligned}
& f\left(\alpha_{i}\right)=1+2 i \quad \text { for } 1 \leq i \leq m-1 \\
& f\left(\alpha_{m}\right)=1 \\
& f\left(\beta_{i}\right)=1+2 m+2 i \text { for } 1 \leq i \leq m-1 \\
& f\left(\beta_{m}\right)=1+2 m \\
& f\left(\alpha_{i}^{\prime}\right)=2+2 i \quad \text { for } 1 \leq i \leq m-1 \\
& f\left(\alpha_{m}^{\prime}\right)=2 \\
& f\left(\beta_{i}^{\prime}\right)=2+2 m+2 i \text { for } 1 \leq i \leq m-1 \\
& f\left(\beta_{m}^{\prime}\right)=2+2 m
\end{aligned}
$$

Then the edge labels are distinct.
Hence f is a root cube mean labeling of G.

Example 2.4.1:

The root cube mean labeling of path union of two crowns C_{4}^{*} is given below:

Theorem 2.5

Path union of three crowns is a root cube mean graph.

Proof:

Let $\alpha_{1} \alpha_{2} \ldots \alpha_{m}, \beta_{1} \beta_{2} \ldots \beta_{m}$ and $\gamma_{1} \gamma_{2} \ldots \gamma_{m}$ be the vertices of three cycles C_{m} in G.
Let $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \ldots \alpha_{m}^{\prime}, \beta_{1}^{\prime} \beta_{2}^{\prime} \ldots \beta_{m}^{\prime}$ and $\gamma_{1}^{\prime} \gamma_{2}^{\prime} \ldots \gamma_{m}^{\prime}$ be the pendent vertices attached at $\alpha_{1} \alpha_{2} \ldots \alpha_{m}, \beta_{1} \beta_{2} \ldots \beta_{m}$ and $\gamma_{1} \gamma_{2} \ldots \gamma_{m}$ respectively.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, 6 m+2\}$ by

$$
\begin{array}{ll}
f\left(\alpha_{i}\right)=1+2 i & \text { for } 1 \leq i \leq m-1 \\
f\left(\alpha_{m}\right)=1 & \\
f\left(\beta_{i}\right)=1+2 m+2 i & \text { for } 1 \leq i \leq m-1 \\
f\left(\beta_{m}\right)=1+2 m & \\
f\left(\gamma_{i}\right)=1+4 m+2 i & \text { for } 1 \leq i \leq m-1 \\
f\left(\gamma_{m}\right)=1+4 m & \\
f\left(\alpha_{i}^{\prime}\right)=2+2 i & \text { for } 1 \leq i \leq m-1 \\
f\left(\alpha_{m}^{\prime}\right)=2 & \\
f\left(\beta_{i}^{\prime}\right)=2+2 m+2 i & \text { for } 1 \leq i \leq m-1 \\
f\left(\beta_{m}^{\prime}\right)=2+2 m & \\
f\left(\gamma_{i}^{\prime}\right)=2+4 m+2 i & \text { for } 1 \leq i \leq m-1 \\
f\left(\gamma_{m}^{\prime}\right)=2+4 m &
\end{array}
$$

Then the edge labels are distinct.
Hence f is a root cube mean labeling of G.

Example 2.5.1:

The root cube mean labeling of path union of three crowns C_{4}^{*} is given below:

Figure 5
Theorem 2.6
k-Path union of two crowns C_{m}^{*} with path P_{k} is a root cube mean graph.
Proof:

Let $\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ and $\beta_{1} \beta_{2} \ldots \beta_{m}$ be the vertices of two cycles C_{m} in G.
Let $\alpha_{1}=\gamma_{1} \gamma_{2} \ldots \gamma_{k}=\beta_{1}$ be the vertices of the path P_{k}.
Let $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \ldots \alpha_{m}^{\prime}$ be the pendent vertices attached at $\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ respectively and $\beta_{1}^{\prime} \beta_{2}^{\prime} \ldots \beta_{m}^{\prime}$ be the pendent vertices attached at $\beta_{1} \beta_{2} \ldots \beta_{m}$ respectively.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, 4 m+k\}$ by

$$
\begin{array}{lr}
f\left(\alpha_{i}\right)=1+2 i & \text { for } 1 \leq i \leq m-1 \\
f\left(\alpha_{m}\right)=1 & \\
f\left(\beta_{i}\right)=k+2 m+2 i-1 & \text { for } 1 \leq i \leq m-1 \\
f\left(\beta_{m}\right)=k+2 m-1 & \\
f\left(\gamma_{i}\right)=2 m+i-1 & \text { for } 2 \leq i \leq k-1 \\
f\left(\alpha_{i}^{\prime}\right)=2+2 i & \text { for } 1 \leq i \leq m-1 \\
f\left(\alpha_{m}^{\prime}\right)=2 & \\
f\left(\beta_{i}^{\prime}\right)=k+2 m+2 i & \text { for } 1 \leq i \leq m-1 \\
f\left(\beta_{m}^{\prime}\right)=k+2 m &
\end{array}
$$

Then the edge labels are distinct.
Hence f is a root cube mean labeling of G.

Example 2.6.1:

The root cube mean labeling of k-path union of C_{4}^{*} is given below::

Figure 6

III CONCLUSION

As all graphs are not root cube mean graphs, it is very interesting to investigate graphs which admits root cube mean labeling. In this paper we prove that path union of some cycle, crown are root cube mean graphs. Then, we present six new results on root cube mean labeling of graphs. It is possible to investigate similar results for several other graphs.

IV REFERENCE

[1]. Abdul Saleem. R and Mani. R, "Root Square Mean Labeling of Some Crown Graphs", The International Journal of Analytical and Experimental Modal Analysis, Vol. XI, Issue X, Oct 2019, PP. 70-78.
[2]. Gallian. J.A, 2010, A dynamic Survey of graph labeling. The electronic Journal of Combinatories.
[3]. Gowri. R and Vembarasi. G, "Root Cube Mean Labeling of Graphs", International Journal of Engineering Science, Advanced Computing and Bio-Technology, Vol.8, No.4, October December 2017, pp. 248-255.
[4]. Gowri. R and Vembarasi. G, "Root Cube Mean Labeling of Graphs", International Journal of Engineering Science, Advanced Computing and Bio-Technology, Vol.8, No.4, October December 2017, pp. 564-571.
[5]. Gowri. R and Vembarasi. G, "Root Cube of Cube Difference Labeling of Graphs", Strd Research, 2020, 7(7), 722-729.
[6] Harary. F, 1988, Graph Theory, Narosa Publishing House Reading, New Delhi.
[7]. Sandhya. S.S, Somasundaram. S, Anusa. S, "Root Square Mean labeling of Graphs" International Journal of Contemporary Mathematical Sciences, Vol.9, 2014, no.14, 667676.

