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Abstract 
We conducted a study on combining Generative Adversarial Networks and learnt about the 
compression to create an advanced generative lossy compression system by utilizing KNN and 
GAN’s approach. Our study focused on examining factors such as normalization layers, 
generator and discriminator architectures, training strategies, and perceptual losses. Our system 
is capable of producing visually pleasing reconstructions that are similar to the original input, 
can operate at a wide range of bitrates, and can handle high-resolution images. We tested our 
system using various perceptual metrics and a user study, which showed that our approach was 
better than existing approach, even when using more than 2 x bitrate. In summary, our study 
bridged the gap between rate-distortion-perception theory and practice. 
1 Introduction 
The number of images being produced by cameras is increasing rapidly. To save these images 
efficiently, lossy compression algorithms are used to reduce their size while still retaining their 
important visual features. Many different algorithms have been proposed over the years 
[50,43,54,58], including using video compression algorithms for single image compression. 
Recently, there has been a lot of interest in deep learning-based lossy compression [45,5,31,58], 
which involves training a neural network to balance compression rates and visual quality. This 
has resulted in new and improved state-of-the-art methods for image compression. 
Although many image compression methods have been proposed, they all tend to cause 
noticeable image degradation as the compression factor increases. Classical algorithms start to 
exhibit artifacts like blocking or banding, while learning based approaches reveal issues with 
the distortion metric used to train the networks. Despite the development of various perceptual 
metrics, the weakness of each metric can be exploited by the learning algorithm, adding to 
problems such as checkerboard artifacts or blurry reconstructions. For instance, relying on MS-
SSIM [53,52,58] can result in poor text reconstructions, while using MSE can lead to blurry 
reconstructions. 
 
Agustsson et al [3] showed that Generative Adversarial Networks (GANs) could be used to 
reduce compression artifacts in extremely low bitrate compression (<0.08 bpp). While their 
approach produced reconstructions that looked convincing to the human eye, they tended to 
lose some of the finer details and deviate from the original input. 
 
Blau and Michaeli [9] discovered a trade-off between three factors: rate (how compressed an 
image is), distortion (how different the compressed image is from the original), and perceptual 
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quality (how visually pleasing the compressed image is). They defined distortion as a similarity 
metric comparing pairs of images and perceptual quality as the distance between the image 
distribution and the distribution of the reconstructions produced by the decoder, measured as a 
distribution divergence. They found that improving perceptual quality will always lead to 
worse distortion and vice versa, so a balance must be struck between the two. To do this, 
distortion can be traded for better perceptual quality by minimizing the difference between the 
input and reconstructed distributions, which can be done using Generative Adversarial 
Networks (GANs). While the theory is well-established, they only tested this trade-off on small 
datasets. 
 
In this paper a new approach to compress high-resolution images while maintaining their visual 
quality is proposed. The proposed methodology is compared with previous existing 
methodology and it is found that the results obtained by proposed methodology is visually 
preferred even when the previous approaches have used higher bitrates. Various quantitative 
metrics have been discussed to evaluate the performance of the suggested approach and to show 
that the results are consistent with a theory called rate-distortion-perception. Our research 
demonstrates that although no metric could accurately predict the exact ranking of the user 
study, metrics such as FID and KID can be helpful in guiding the exploration process. In other 
words, these metrics can provide useful insights that can aid in making informed decisions 
during the exploration phase. Ensuring a comprehensive perceptual evaluation involves 
utilizing a diverse range of metrics that cover various aspects, such as no-reference metrics, 
pair-wise similarities, distributional similarities, and deep feature-based metrics derived from 
different network architectures. By using this ensemble of metrics, a more robust and 
comprehensive evaluation of perceptual qualities can be achieved. Our analysis involves a 
thorough examination of the suggested architecture and its constituent parts, which include 
normalization layers, generator and discriminator architectures, training methods, and the loss 
function. We assess these components based on both perceptual metrics and stability to gain a 
comprehensive understanding of their effectiveness. 
 
2 Related Work 
JPEG is the most commonly used algorithm for lossy compression [50]. There have been 
multiple attempts to develop alternatives to JPEG, such as WebP [54] and JPEG2000 [43], 
which involve the use of manually crafted algorithms. BPG [7] achieves high Peak Signal-to-
Noise Ratio (PSNR) at different bitrates by utilizing the HEVC video codec [42]. In contrast, 
neural compression techniques aim to optimize Shannon's rate-distortion trade-off directly 
[14]. 
 
In the beginning, RNNs were utilized in the initial works [45, 47], whereas subsequent works 
were based on auto-encoders [5, 44, 1]. To achieve a reduced bitrate, various approaches have 
been employed to enhance the modeling of the probability density of auto-encoder latents, 
which, in turn, leads to more efficient arithmetic coding. These methods include hierarchical 
priors, auto-regression with different context shapes, or a combination of both [6, 31, 28, 39, 
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32, 26, 33]. State-of-the-art models, such as the one proposed by Minnen et al. [32], now 
surpass BPG in terms of PSNR. 
 
GANs, introduced by Goodfellow et al. [17], have facilitated significant advancements in the 
field of unconditional and conditional image generation. The latest GAN models can generate 
high-resolution photo-realistic images [10, 21, 38], marking a remarkable progress in the 
field.The progress made in this area can be largely attributed to several key factors, including 
the expansion of training data and model size [10], the introduction of novel network 
architectures [21], and the development of new normalization techniques that help stabilize the 
training process [36]. These factors have collectively contributed to the significant 
advancements in the field. In addition to unconditional and conditional image generation, 
adversarial losses have also resulted in significant progress in various image enhancement 
tasks. These include tasks such as compression artifact removal [15], image de-noising [11], 
and image super-resolution [25]. Moreover, adversarial losses have also been utilized in the 
past to enhance the visual quality of neural compression systems [39, 40, 48, 3, 9]. For instance, 
[39] integrates an adversarial loss as a component in their full-resolution compression system. 
However, they do not thoroughly assess the advantages of this loss in terms of the quality of 
their reconstructions. 
Although [40] offers a preliminary implementation of a low-resolution compression system 
with a GAN discriminator as the decoder, the primary focus of [48, 9] is to integrate a GAN 
loss into the rate-distortion objective in a logically coherent manner. To be specific, [48] 
suggests enhancing the rate-distortion objective by incorporating a distribution constraint to 
ensure that the reconstructions' distribution corresponds to the input distribution at all rates. On 
the other hand, [9] introduces and examines a triple trade-off between rate, distortion, and 
distribution matching. Lastly, [3] demonstrates that utilizing GAN-based compression systems 
at significantly low bitrates can result in bitrate savings of 2 times greater than those obtained 
from state-of-the-art engineered and learned compression algorithms. 
 
3 Method 
3.1 Background 
Conditional GANs: 
In the context of machine learning, Conditional Generative Adversarial Networks (GANs) refer 
to a method that enables the learning of a generative model of a conditional distribution p(X|S), 
where a given data point X is associated with additional information or context S, such as class 
labels or semantic maps. The joint distribution p (X,S) between the data point and context is 
unknown, and the conditional GANs help in estimating it. The approach has been used in 
various applications to generate images and other data that are conditioned on specific contexts. 
In Conditional GANs, two opposing networks are trained to learn a generative model of a 
conditional distribution p (X|S). The generator G, which is dependent on the information s, 
transforms samples y from a fixed known distribution pY into p(X|S). On the other hand, the 
discriminator D receives (x, s) input and evaluates the probability of it being a sample from p 
(X|S) rather than from G's output. The aim is to train the generator G to generate samples that 
can deceive the discriminator D into classifying them as real data coming from the distribution 
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p(X|S). To achieve this, a "non-saturating" loss can be optimized, with s being kept constant 
during the process[17,58]. 
                                      
                       VDG = E X~Pdata(x) [log D (X)] + EZ – Pdata (z) [ log (1- D (G (Z))]                (1) 
 
G- generator, X- sample from real data, Z- sample from generator, D- Discriminator, Pdata(x)- 

distribution of real data, Pdata (z)- distribution of generator data, D(x) – Discriminator network 
and G(x)- generator network 
 
KNN (K-Nearest Neighbors) classifier: 
The KNN classifier is a machine learning algorithm utilized for regression and classification 
analysis. Its method involves identifying the k nearest data points to a given input data point 
from the training set, and classifying the input based on the most frequent class among its k-
nearest neighbours. Typically, k is set to an odd number to prevent ties, and the similarity 
between data points is measured using a distance metric, such as Euclidean or Manhattan 
distance. KNN is a straightforward and efficient algorithm that can handle both binary and 
multi-class classification problems. To mathematically represent the k-NN algorithm, the 
following steps are followed. Firstly, the distance between the input data point and each data 
point in the training dataset is computed, which can be done using Euclidean distance, 
Manhattan distance, or other distance metrics. Secondly, the k data points that are the closest 
to the input data point are selected based on the computed distances. Thirdly, the number of 
data points in each class is counted among the k nearest neighbors. Finally, the majority class 
among the k nearest neighbors is assigned as the label for the input data point. The k-NN 
classifier can be expressed mathematically with the following equation: 

                                                   y = mode({yi | xi ∈ Nk(x)})                                       (2) 

Here, y denotes the anticipated class label for the input data point x. The i-th data point in the 
training dataset is assigned a class label of yi, and Nk(x) signifies the set of k data points that 
are nearest to the input data point x. The mode function identifies the most frequently occurring 
class label among the k nearest neighbors. 
 
Neural Image Compression 
The concept of learned lossy compression relies on Shannon's rate-distortion theory, which 
considers the trade-off between the amount of information (rate) and the level of distortion that 
can be tolerated during compression. Typically, this problem is approached by utilizing an 
auto-encoder architecture that involves two main components: an encoder (E) and a decoder 
(G). In learned lossy compression, Shannon’s rate-distortion theory [14,58] is used as a basis. 
An auto-encoder is used, which consists of an encoder E and a decoder G. In this process, to 
encode an image x, it is quantized into a latent representation y = E(x). The decoder G is used 
to reconstruct the image x’ using y. The lossy compression results in a certain level of 
distortion, which can be measured using various metrics, such as MSE (mean squared error). 
The process of storing the quantized latent y is done through the introduction of a probability 
model P for y. With the help of an entropy coding algorithm, such as arithmetic coding, we can 
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store y in a lossless manner. The bitrate required to store y can be calculated as r(y) = -log(P(y)), 
where the entropy coder may have a minor overhead of bits. By parameterizing the encoder E, 
decoder G, and probability model P as convolutional neural networks (CNNs), we can train 
them simultaneously to minimize the trade-off between rate and distortion, where a parameter 
ζ controls the trade-off: 
                      
                      VEG = EX~Px [ζ r(y) + d ( x, x’)]                                                      (3) 
 
3.2 Formulation and Optimization 
Our approach to neural image compression involves integrating a conditional GAN into the 
formulation, which involves combining equations 1 and 2 to train the networks E, G, K, and 
D. We utilize y = E(x) and s = y, while also incorporating the "perceptual distortion" dP = 
LPIPS based on the findings of a previous study that employed a VGG-based loss. In 
accordance with the formalism of another study, we group dP with MSE to form our overall 
distortion d = kMMSE+kP dP, where kM and kP are hyperparameters. By adjusting the 
hyperparameters ζ, ح, and to fine-tune the trade-off between the terms, we can achieve optimal 
results. 
 
        L EGK = E x~px [ ζ r(y) + d (x,x’) – حlog D (x’,y)]                                           (4) 
 

 
Our architecture is illustrated in Figure 1. ConvC refers to a convolution operation with C 
channels, using 3x3 filters, unless stated otherwise. Strided down or up convolutions are 
denoted by ↓2 and ↑2 respectively. ChannelNorm, as explained in the text, is used for 
normalization. LReLU with α=0.2 represents the leaky ReLU activation function [56,58]. 
Upsampling using nearest neighbor interpolation by a factor of 16 is referred to as NN↑16. 
Finally, Q quantization is employed [58]. 
 
Constrained Rate 
While training a neural compression model with respect to the loss function mentioned in 
Equation 2, the only conflicting factor with the rate term r(y) is the solitary term d(x, x’). By 
manipulating only ζ, it is possible to regulate the ultimate (mean) bitrate of the model. 
Nevertheless, in our context, the MSE, dP, and -log(D(x')) are in conflict with the rate. When ζ 
is constant, models with varying kM, kP, and  ح would have different bitrates, leading to 
difficulty in comparisons. To mitigate this issue, we introduce a hyper-parameter, "rate target" 
(rt), and modify Eq. 3 by replacing ζ with an adaptive term, ζ’. ζ’ depends on two hyper-
parameters, ζ(a) and ζ(b), such that ζ’ equals ζ(a) if r(y) is greater than rt and ζ’ equals ζ(b) 
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otherwise. We set ζ(a) to be much greater than ζ(b) to train models with an average bitrate close 
to rt. 
3.3 Architecture 
Figure 1 depicts our architecture, comprising of the encoder E, generator G, discriminator D 
and KNN classifier block. We adopt the straight-through estimator, as in [44,58], for rounding 
y before inputting it into G. While our E, G, and D are based on [51,58,3], we introduce several 
distinctive modifications in the discriminator and normalization layers, which will be described 
in detail in the upcoming sections. While both [51,58, 3] utilize a multi-scale patch-
discriminator D, we implement a single-scale patch-discriminator D and replace InstanceNorm 
[49,58] with SpectralNorm [36,58]. In contrast to [3], we condition D on y by concatenating 
an upscaled version of it with the image, as illustrated in Figure 1 [58]. This approach is 
inspired by the use of a conditional GAN formulation associated with KNN, where D can 
access the conditioning information (in our case, y as described in Section 3.2). 
 
4 Experiments  
Our study compares the performance of the proposed method, "High-Fidelity Generative Image 
Compression Using GAN's and KNN," which itself branches in to three approaches: Hi-fi-
GAN's+KNN High, Hi-fi-GAN's+KNN Medium, and Hi-fi-GAN's+KNN Low with an 
approach that solely uses GAN, called "High-Fidelity Generative Image Compression," across 
three variations: Hi-fi-low, Hi-fi-medium, and Hi-fi-high [58]. To evaluate the effectiveness of 
these approaches, we use metrics such as MSE, SSIM, Histogram, and Compression Size. 
Original Image Original 

size 
Hi-fi-
Gan’s+KNN 
High 

Hi-fi-
Gan’s+KNN 
Medium 

Hi-fi-
Gan’s+KNN 
Low 

 
Image 1  
Resolution: 2048*1366 

4.3 MB 1.9 MB 1.8MB 1.9 MB 

Hi-fi-high Hi-fi-
medium 

Hi-fi-low 

2.8 MB 2.0 MB 2.5 MB 

 
Image 2 
Resolution:2016*1562 

3.5 MB Hi-fi-
Gan’s+KNN 
High 

Hi-fi-
Gan’s+KNN 
Medium 

Hi-fi-
Gan’s+KNN 
Low 

1.5 MB 1.6 MB 1.6 MB 

Hi-fi-high Hi-fi-
medium 

Hi-fi-low 

1.9 MB 2.0 MB 2.1 MB 
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Image 3 
Resolution:2040*1356 

4.5 MB Hi-fi-
Gan’s+KNN 
High 

Hi-fi-
Gan’s+KNN 
Medium 

Hi-fi-
Gan’s+KNN 
Low 

2.7 MB 2.7 MB 2.8 MB 

 

Hi-fi-high Hi-fi-
medium 

Hi-fi-low 

3.4 MB 3.7 MB 3.7 MB 

 

 
Image 4 
Resolution:2040*1356 

3.9 MB Hi-fi-
Gan’s+KNN 
High 

Hi-fi-
Gan’s+KNN 
Medium 

Hi-fi-
Gan’s+KNN 
Low 

1.4 MB 1.4 MB 1.4 MB 

Hi-fi-high Hi-fi-
medium 

Hi-fi-low 

2.3 MB 2.6 MB 2.7 MB 

 
Image 5 
Resolution:2040 *1536 

3.4 MB Hi-fi-
Gan’s+KNN 
High 

Hi-fi-
Gan’s+KNN 
Medium 

Hi-fi-
Gan’s+KNN 
Low 

623.9 KB 617.5  KB 638.0  KB 

Hi-fi-high Hi-fi-
medium 

Hi-fi-low 

1.0 MB 1.2 MB 1.3 MB 

 
Image 6 

4.1 MB Hi-fi-
Gan’s+KNN 
High 

Hi-fi-
Gan’s+KNN 
Medium 

Hi-fi-
Gan’s+KNN 
Low 

1.7 MB 1.8 MB 1.8 MB 

Hi-fi-high Hi-fi-
medium 

Hi-fi-low 
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Resolution:2040*1200 2.6 MB 2.9 MB 2.9MB 

 
Image 7 
Resolution: 2040*1152 

3.7 MB Hi-fi-
Gan’s+KNN 
High 

Hi-fi-
Gan’s+KNN 
Medium 

Hi-fi-
Gan’s+KNN 
Low 

1.4 MB 1.4 MB 1.4 MB 

Hi-fi-high Hi-fi-
medium 

Hi-fi-low 

2.5 MB 2.4 MB 2.4 MB 

 Table 1.  Compressed size is showcased for Hi-fi-Gan’s+KNN high, medium and low approach 
Vs Hi-fi-high, medium and low approach 
 

COMPRESSED IMAGE VISUAL CLARITY 

Hi-fi-Gan’s+KNN High Hi-fi-Gan’s+KNN Medium Hi-fi-Gan’s+KNN Low 

Image 1 
 

Image 2 
 

Image 3 
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Image 4 

Image 5 

 
Image 6 

Image 7 

 

Table 2: Compressed Image visual quality is showcased for Hi-fi-Gan’s+KNN high, medium 
and low approach. 
 
Histogram plot for Original image and Hi-fi-Gan’s+KNN high, medium and low approach is 
shown below. 
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Figure 2 : Histogram plot for image 1. 

 
Figure 3 : Histogram plot for image 2. 

 
Figure 3 : Histogram plot for image 3. 
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Figure 4 : Histogram plot for image 4. 

 
Figure 5 : Histogram plot for image 5. 

 
Figure 6 : Histogram plot for image 6. 
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Figure 7 : Histogram plot for image 7. 
 

 
 
 
 
 

Image 1 

 
 

 
Hi-fi-

Gan’s+KNN 
low 

 
Hi-fi-

Gan’s+KNN 
medium 

 
Hi-fi-

Gan’s+KNN 
high 

 

Mean Square Error Structural Similarity Index 
Measure 

 
69.30 

 
0.86 

 
41.16 

 
0.89 

 
28.10 

 
0.91 

 
 
 
 

Image 2 
 

 
 

Hi-fi-
Gan’s+KNN 

low 
 

Hi-fi-
Gan’s+KNN 

medium 
 

Hi-fi-
Gan’s+KNN 

high 

 
72.34 

 
0.83 

 
71.52 

 
0.88 

 
43.94 

 
0.91 

 
 
 

Image 3 
 
 

 
 

Hi-fi-
Gan’s+KNN 

low 
Hi-fi-

Gan’s+KNN 
medium 

 
Hi-fi-

Gan’s+KNN 
high 

 

 
87.55 

 
0.83 

 
49.73 

 
0.90 

 
31.39 

 
0.93 

 
 

 
48.73 

 
0.79 
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Image 4 

 
 
 
 
 

Hi-fi-
Gan’s+KNN 

low 
 

Hi-fi-
Gan’s+KNN 

medium 
 

Hi-fi-
Gan’s+KNN 

high 
 

 
35.74 

 
0.84 

 
31.56 

 
0.86 

 
 
 

Image 5 
  
 

 

Hi-fi-
Gan’s+KNN 

low 
 

Hi-fi-
Gan’s+KNN 

medium 
 

Hi-fi-
Gan’s+KNN 

high 
 

 
50.12 

 
0.83 

 
47.59 

 
0.84 

 
46.05 

 
0.85 

 
 
 

Image 6 
 
 
 
 

Hi-fi-
Gan’s+KNN 

low 
 

Hi-fi-
Gan’s+KNN 

medium 
 

Hi-fi-
Gan’s+KNN 

high 
 

 
84.51 

 
0.77 

 
82.25 

 
0.83 

 
59.46 

 
0.87 

 
 
 

Image 7 
 

Hi-fi-
Gan’s+KNN 

low 
 

 
85.99 

 
0.81 

 
57.93 

 
0.85 
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Hi-fi-
Gan’s+KNN 

medium 
 

Hi-fi-
Gan’s+KNN 

high 
 

 
45.78 

 
0.87 

Table 3. Test result for proposed system for different images 
 

It is evident from table 3, that Hi-fi-Gan’s+KNN high approach produces higher structural 
similarity index measure and lesser Mean square error when compared to Hi-fi-Gan’s+KNN 
low and medium approach. 
 
Conclusion: 
In this paper a novel compression technique is proposed High-Fidelity Generative Image 
Compression Using GAN's and KNN," which itself branches in to three approaches: Hi-fi-
GAN's+KNN High, Hi-fi-GAN's+KNN Medium, and Hi-fi-GAN's+KNN Low. The 
architecture of the proposed system was discussed , the learning rate as well as performance of 
the system is better as well as compression size and the clarity of the compressed image is more 
when compared to the approach that solely uses GAN, called "High-Fidelity Generative Image 
Compression," across three variations: Hi-fi-low, Hi-fi-medium, and Hi-fi-high. The 
architecture was designed with an encoder E, generator G, discriminator D and KNN classifier 
block. The Gan works on two parameters (x,s). x represents data point or picture location and 
s represents extra information from absolute location about features. In our work x is fixed as 
7*7 (49 pixels). This is done to avoid multiple size of samples that can be generated by the 
generator G. In Gan network Y represents the total number of samples. The Y is also fixed in 
order to avoid non saturating loss. It is fixed as 120,240, 480 and 960. By implementing our 
approach instead of training the whole image , 7*7 (49 pixel) in one single location of the 
sample is trained, thereby reducing the permutation and accuracy is increased. In the 
discriminator part rectified linear unit and Leaky ReLU is employed to improve the accuracy. 
Our proposed architecture outperforms the High-Fidelity Generative Image Compression 
technique with Gan’s network. 
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