ABSOLUTELY HARMONIOUS LABELING OF RING SUM OF A GRAPH WITH STAR GRAPH

M.Seenivasan
Associate Professor, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi627412, Tamilnadu, India, E-mail: msvasan_22@yahoo.com

P.ArunaRukmani

Research scholar, Registration number:19121282092009, Department of Mathematics, St.Xavier'scollege(Autonomous), Affiliated to ManonmaniamSundaranar University, Palayamkottai-627002, Tamilnadu, India, E-mail: parukmanimaths@gmail.com

A.Lourdusamy

Associate Professor, Department of Mathematics, St.Xavier'scollege(Autonomous), Palayamkottai-627002,Tamilnadu, India, E-mail: lourdusamy 15@gmail.com

Abstract

Absolutely harmonious labeling f is an injection from the vertex set of a graph G with q edges to the set $\{0,1,2, \ldots, q-1\}$, if each edge $u v$ is assigned $f(u)+f(v)$ then the resulting edge labels can be arranged as $\left\{a_{0}, a_{1} a_{2}, \ldots, a_{q-1}\right\}$ where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-$ 1.However, when G is a tree one of the vertex labels may be assigned to exactly two vertices. A graph which admits Absolutely harmonious labeling is called absolutely harmonious graph. In this paper, we study absolutely harmonious labeling of ring sum of a graph with star graph. Keywords : Harmonious labelling, Absolutely harmonious labelling, Star graph, Traingular ladder, Jelly Fish, Jewel graph, $\mathrm{P}_{\mathrm{n}}{ }^{2}$, Globe graph.

1. Introduction

In this paper, we consider finite and undirected graphs. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A vertex labeling of a graph G is an assignment f of labels to the vertices that induces a label for each edge $x y$ depending on the vertex labels. Seenivasan and Lourdusamy [3] introduced Absolutely harmonious labeling of graphs. In this paper we study the absolutely harmonious labeling of ring sum of a graph with star graph.

Definition 1.1.

Absolutely harmonious labeling f is an injection from the vertex set of a graph G with q edges to the set $\{0,1,2, \ldots, q-1\}$, if each edge $u v$ is assigned $f(u)+f(v)$ then the resulting edge labels can be arranged as $\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}\right\}$ where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$. A graph which admits absolutely harmonious labeling is called Absolutely harmonious graph.
Definition 1.2.

The Ring sum of two graphs G_{1} and G_{2} is a graph consisting of the vertex $\operatorname{set} V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edges that are either in G_{1} or G_{2} but not in both.It isdenoted by $G_{1} \oplus G_{2}$.

Definition 1.3.

Let G be a graph and u be any vertex of G. A new vertex u^{\prime} is said to be duplication of u if all the vertices which are adjacent to u are adjacent to u^{\prime}. The graph obtained by duplication of u is denoted by $D\left(G, u^{\prime}\right)$.

Definition 1.4.

The Triangular ladder $T L_{n}, n \geq 2$ is a graph obtained from the ladder $L_{n}=P_{n} \times P_{2}$ by adding the edges $u_{i} v_{i+1}$ for $1 \leq i \leq n-1$ where $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ are the consecutive vertices of the two copies of the path P_{n}.

1. MAIN RESULTS

Theorem 2.1.

$P_{n}^{2} \oplus K_{1, n}$ is an Absolutely harmonious graph.
Proof:Let $\mathrm{G}=P_{n}^{2} \oplus K_{1, n}$.
The vertex set $V(G)=V_{1} \cup V_{2}$, where $V_{1}=V\left(P_{n}^{2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and
$V_{2}=V\left(K_{1, n}\right)=\left\{w=u_{2}, w_{1}, w_{2}, \ldots, w_{n}\right\}$.
Here, $w_{1}, w_{2}, \ldots, w_{n}$ are the pendant vertices and w is the apex vertex of $K_{1, n}$.
The edge set $E(G)=E_{1} \cup E_{2}$
where $E_{1}=E\left(P_{n}^{2}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup \quad\left\{u_{i} u_{i+2}: 1 \leq i \leq n-2\right\}$ and $\quad E_{2}=$ $E\left(K_{1, n}\right)=\left\{w v_{i}: 1 \leq i \leq n\right\}$.
Here, G is of order 2 n and size $3 \mathrm{n}-3$.
Now,Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows:

$$
\begin{gathered}
f\left(u_{i}\right)=i-1,1 \leq i \leq n \\
f\left(w_{i}\right)=q-i, 1 \leq i \leq n . \\
f(w)=f\left(u_{2}\right)=1
\end{gathered}
$$

Then the induced edge labels are as follows

$$
\begin{gathered}
f^{*}\left(u_{i} u_{i+1}\right)=a_{[q-(2 i-1)]}, 1 \leq i \leq n-1 \\
f^{*}\left(u_{i} u_{i+2}\right)=a_{[q-2 i]}, 1 \leq i \leq n-2 \\
f^{*}\left(w w_{i}\right)=a_{k} ; 1 \leq i \leq n ; 0 \leq k \leq n-1 .
\end{gathered}
$$

From the above $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$, where $a_{i}=q-i$ (or) $q+i ; 0 \leq i \leq q-1$ are the arranged edge labels.
Therefore f is an absolutely harmonious labeling of $P_{n}^{2} \oplus K_{1, n}$ and hence $P_{n}^{2} \oplus K_{1, n}$ is an Absolutely harmonious graph.

Example 2.2

Figure 1: $P_{5}^{2} \oplus K_{1,5}$

Theorem 2.3.

$J_{m} \oplus K_{1, m}$ is an Absolutely harmonious graph.

Proof:

Let $G=J_{m} \oplus K_{1, m}$
Let $V(G)=V_{1} \cup V_{2}$
where $V_{1}=V\left(J_{m}\right)=\left\{u, v, w, x, y_{i}: 1 \leq i \leq m\right\}$ and
$V_{2}=V\left(K_{1, m}\right)=\left\{z=u, z_{1}, z_{2}, z_{3}, \ldots, z_{m}\right\}$
Here, $z_{1}, z_{2}, z_{3}, \ldots, z_{m}$ are the pendant vertices and z is the apex vertex of $K_{1, m}$.
The edge set $E(G)=E_{1} \cup E_{2}$ where
$E_{1}=E\left(J_{m}\right)=\left\{u x, u w, u v,, x v, v w, x y_{i}, w y_{i}: 1 \leq i \leq m\right\}$ and
$E_{2}=E\left(K_{1, m}\right)=\left\{z z_{i}: 1 \leq i \leq m\right\}$.
Here, G is of order $2 \mathrm{~m}+4$ and size $3 \mathrm{~m}+5$.
Now, We define $f: V(G) \rightarrow\{0,1,2, \ldots,(q-1)\}$ as follows:
$f(u)=f(z)=0$
$f(v)=3$
$f(x)=1$
$f(w)=2$
$f\left(y_{i}\right)=2 t+1 ; 1 \leq i \leq m-1 ; 2 \leq t \leq m$
$f\left(y_{i}\right)=q-1 ; i=m$
$f\left(z_{i}\right)=[q-(m+1)]+j ; 1 \leq i \leq m ; 0 \leq j \leq m-1$.
Then,the edge labels can be clearly arranged as $a_{0}, a_{1}, a_{2}, \ldots a_{q-1}$ where $a_{i}=q-i$ (or) $q+i ; 0 \leq i \leq q-1$.
Therefore, f is an Absolutely harmonious labeling of $J_{m} \oplus K_{1, m}$. and hence $J_{m} \oplus K_{1, m}$ is an Absolutely harmonious graph.

Example 2.4

Figure 2: $\boldsymbol{J}_{5} \oplus K_{1,5}$

Theorem 2.5

The Triangular ladder $T L_{n} \oplus K_{1, n}$ is an Absolutely harmonious graph.
Proof
Let $G=T L_{n} \oplus K_{1, n}$.
Let $V(G)=V_{1} \cup V_{2}$, where $V_{1}=V\left(T L_{n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $V_{2}=V\left(K_{1, n}\right)=\left\{v_{1}=w, w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}$.
Here, $w_{1}, w_{2}, w_{3}, \ldots, w_{m}$ are the pendant vertices and w is the apex vertex of $K_{1, n}$.
The edge set $E(G)=E_{1} \cup E_{2}$ where

$$
E_{1}=E\left(T L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}
$$

$E_{2}=E\left(K_{1, n}\right)=\left\{w w_{i}: 1 \leq i \leq n\right\}$.
Then G is of order 3 n and size $5 \mathrm{n}-3$.
Now,Define $f: V(G) \rightarrow\{0,1,2, \cdots, q-1\}$ as follows:
$f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq n$
$f\left(u_{1}\right)=0$
$f\left(u_{i}\right)=2 j ; 2 \leq i \leq n ; 1 \leq j \leq n-1$
$f\left(w_{i}\right)=q-i ; 1 \leq i \leq n$.
Then the induced edge labels are as follows
$f^{*}\left(u_{1} v_{1}\right)=a_{q-1}$
$f^{*}\left(u_{i} v_{i}\right)=a_{[q-(4 k+1)]} ; 2 \leq i \leq n ; 1 \leq k \leq n-1$
$f^{*}\left(v_{i} v_{i+1}\right)=a_{q-4 i}, 1 \leq i \leq n-1$
$f^{*}\left(u_{i} v_{i+1}\right)=a_{[q-(4 k+3)]} ; 1 \leq i \leq n-1,0 \leq k \leq n-2$
$f^{*}\left(u_{1} u_{2}\right)=a_{q-2}$
$f^{*}\left(u_{i} u_{i+1}\right)=a_{[q-(3 i+k)]}, 2 \leq i \leq n-1,0 \leq k \leq n-3$
$f^{*}\left(v_{1} w_{i}\right)=a_{k}, 1 \leq i \leq n, 0 \leq k \leq n-1$.
From the above, $a_{0}, a_{1}, a_{2}, \ldots a_{q-1}$
where $a_{i}=q-i$ (or) $q+i ; 0 \leq i \leq q-1$ are the arranged edge labels.
Therefore f is an absolutely harmonious labeling of Triangular ladder $T L_{n} \oplus K_{1, n}$ and hence the Triangular ladder $T L_{n} \oplus K_{1, n}$ is an Absolutely harmonious graph.

Example 2.6

Figure 3: $\boldsymbol{T L}_{\mathbf{4}} \oplus \boldsymbol{K}_{1,4}$

Theorem 2.7

The duplication of a vertex in Jellyfish, $D\left(J(n, n), y^{\prime}\right)$ is an Absolutely harmonious graph.

Proof

Let $\mathrm{G}=\mathrm{D}\left(\mathrm{J}(\mathrm{n}, \mathrm{n}), y^{\prime}\right)$.
The vertex set and the edge set of G are given by
$V(G)=\left\{\left(u, v, x, y, y^{\prime}\right),\left(u_{i}, v_{i}, 1 \leq i \leq n\right)\right\}$ and
$E(G)=\left\{[(u x) \cup(u y) \cup(v x) \cup(v y) \cup(x y)] \cup\left[\left(u u_{i} ; 1 \leq i \leq n\right] \cup\right.\right.$
$\left[\left(v v_{i} ; 1 \leq i \leq n\right] \cup\left[u y^{\prime}\right] \cup\left[x y^{\prime}\right] \cup\left[v y^{\prime}\right]\right\}$.
Here, G is of order $2 \mathrm{n}+5$ and size $2 \mathrm{n}+8$.
Now,Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows:
$f(u)=1$
$f(v)=2$
$f(x)=3$
$f(y)=0$
$f\left(y^{\prime}\right)=q-1$
$f\left(u_{i}\right)=(q-3)-i, 1 \leq i \leq n$
$f\left(v_{i}\right)=4+j, 1 \leq i \leq n, 0 \leq j \leq n-1$.
Then the induced edge labels are as follows

$$
\begin{gathered}
f^{*}\left(u y^{\prime}\right)=a_{0} \\
f^{*}\left(x y^{\prime}\right)=a_{2} \\
f^{*}\left(v y^{\prime}\right)=a_{1} \\
f^{*}(u y)=a_{q-1} \\
f^{*}(y v)=a_{q-2} \\
f^{*}(x y)=a_{q-3} \\
f^{*}(x u)=a_{q-4} \\
f^{*}(v x)=a_{q-5} \\
f^{*}\left(u u_{i}\right)=a_{k+3} ; 1 \leq i \leq n ; 0 \leq k \leq n-1 \\
f^{*}\left(v v_{i}\right)=a_{n+k+3} ; n \leq i \leq 1 ; 0 \leq k \leq n-1 .
\end{gathered}
$$

Then,the edge labels can be clearly arranged as $a_{0}, a_{1}, a_{2}, \ldots a_{q-1}$ where $a_{i}=q-i$ (or) $q+$ $i ; 0 \leq i \leq q-1$.
Therefore, f is an absolutely harmonious labeling of the duplication of a vertex in Jellyfish, $D\left(J(n, n), y^{\prime}\right)$.
Hence the duplication of a vertex in Jellyfish, $D\left(J(n, n), y^{\prime}\right)$ is an Absolutely harmonious graph.

Example 2.8

Figure 4: $D\left(J(3,3), y^{\prime}\right)$
Theorem 2.9

The duplication graph $D\left(T L_{n}, u^{\prime}\right)$ is an Absolutely harmonious graph.

Proof

Let G be a $D\left(T L_{n}, u^{\prime}\right)$ graph.
Let $V(G)=\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{1}^{\prime}\right\}$ and
$E(G)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{1}^{\prime} v_{1}\right\} \cup\left\{u_{1}^{\prime} v_{2}\right\}$ $\cup\left\{u_{1}^{\prime} u_{2}\right\}$.
Then G is of order $2 \mathrm{n}+1$ and size 4 n .
Now, $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows:
$f\left(u_{1}^{\prime}\right)=q-1$
$f\left(u_{1}\right)=0$
$f\left(u_{i}\right)=2 k ; 2 \leq i \leq n, 1 \leq k \leq n-1$
$f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq n$.
Then the induced edge labels are as follows
$f^{*}\left(u_{1}^{\prime} v_{1}\right)=a_{0}$
$f^{*}\left(u_{1}^{\prime} u_{2}\right)=a_{1}$
$f^{*}\left(u_{1}^{\prime} v_{2}\right)=a_{2}$
$f^{*}\left(u_{1} v_{1}\right)=a_{q-1}$
$f^{*}\left(u_{i} v_{i}\right)=a_{[q-(4 k+1)]} ; 2 \leq i \leq n ; 1 \leq k \leq n-1$
$f^{*}\left(v_{i} v_{i+1}\right)=a_{q-4 i}, 1 \leq i \leq n-1$
$f^{*}\left(u_{i} v_{i+1}\right)=a_{[q-(4 k+3)]} ; 1 \leq i \leq n-1,0 \leq k \leq n-2$
$f^{*}\left(u_{1} u_{2}\right)=a_{q-2}$
$f^{*}\left(u_{i} u_{i+1}\right)=a_{[q-(3 i+k)]}, 2 \leq i \leq n-1,0 \leq k \leq n-3$
From the above, $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$, where $a_{i}=q-i($ or $) q+i ; 0 \leq i \leq q-1$ are the arranged edge labels.
Therefore f is an absolutely harmonious labelingof $D\left(T L_{n}, u^{\prime}\right)$.
Hence $D\left(T L_{n}, u^{\prime}\right)$ is an Absolutely harmonious graph.

Example 2.10

Figure 5: $\boldsymbol{D}\left(T L_{5}, u^{\prime}\right)$

Theorem 2.11

The graph $\left(K_{2}+m K_{1}\right) \oplus K_{1, n}$ is an Absolutely harmonious graph.

Proof

Let $G=\left(K_{2}+m K_{1}\right) \oplus K_{1, n}$.
Let $V(G)=V_{1} \cup V_{2}$
where $V_{1}=V\left(K_{2}+m K_{1}\right)=\left\{x, y, z_{1}, z_{2}, \ldots, z_{m}\right\}$ and
$V_{2}=V\left(K_{1, m}\right)=\left\{w=x, w_{1}, w_{2}, \ldots, w_{m}\right\}$.
The edge set $E(G)=E_{1} \cup E_{2}$ where
$E_{1}=E\left(K_{2}+m K_{1}\right)=\left\{x y, x z_{i}, y z_{i}: 1 \leq i \leq m\right\}$
and $E_{2}=E\left(K_{1, m}\right)=\left\{w w_{i}: 1 \leq i \leq m\right\}$.
Here, G is of order $2 \mathrm{~m}+2$ and size $3 \mathrm{~m}+1$.
Now,Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2,3, \ldots \mathrm{q}-1\}$ as follows
$f(x)=0$
$f(y)=p-1$
$f\left(w_{i}\right)=m+i, 1 \leq i \leq m$
$f\left(z_{i}\right)=i ; 1 \leq i \leq m$.
The induced edge labels are as follows
$f^{*}(x y)=a_{m}$
$f^{*}\left(x z_{i}\right)=a_{q-i} ; 1 \leq i \leq m$
$f^{*}\left(y z_{i}\right)=a_{m-i} ; 1 \leq i \leq m$
$f^{*}\left(x w_{i}\right)=a_{q-(m+i)} ; 1 \leq i \leq m$.
From the above, $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$ where $a_{i}=q-i($ or $) q+i ; 0 \leq i \leq q-1$
are the arranged edge labels.
Therefore, f is an absolutely harmonious labeling and hence $\left(K_{2}+m K_{1}\right) \oplus K_{1, n}$ is an Absolutely harmonious graph.

Example 2.12

Figure 6: $\left(K_{2}+5 K_{1}\right) \oplus K_{1,5}$

3. References

1. F.Harary,Graphtheory,Addisionwesely,New Delhi (1969).
2. J.A.Gallian,A.dynamical survey of graph labeling,The Electronic Journal of Combinatorics, 23 (2020) DS6.
3. M.Seenivasan, A.Lourdusamy, Absolutely harmonious labeling of Graphs,International J.Math.Combin,240-51 (2011).
4. M.Seenivasan,P.ArunaRukmani and A.Lourdusamy, Absolutely harmonious labeling of Graphs,Pre-Conference Proceedings ICDM2021-MSU, ISBN 978-93-91077-53-2,(111116).
