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Abstract

Let R be a commutative ring and Z(R)* be its set of all nonzero zero- divisors.
The zero-annihilator graph of a commutative ring R is the simple undirected
graph I'z(R) with vertices Z(R) \ J(R), and two distinct verticesx and y are
adjacent if and only if ann(x) N ann(y) = {0}. In this paper, we study some basic
algebraic and graph theoretical properties of I'z(R).
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1 INTRODUCTION

In [9], Beck associated to a ring R its zero-divisor graph G(R) whose vertices are the
zero-divisors of R (including 0), and two distinct vertices x and y are adjacentif xy is
zero. Later, in [5], Anderson and Livingston studied the subgraph I'(R) (of G(R))
whose vertices are the nonzero zero-divisors of R. In the recent years, several
researchers have done interesting and enormous works on this field of study.For instance,
see[1,3,7,8,10, 16]. The concept of co-annihilating ideal graph of a ring R, denoted
by AR was introduced by Akbari et al. in [2]. As in [2], co-annihilating ideal graph
of R is a graph whose vertex set is the set of all non- zero proper ideals of R and two
distinct vertices / and J are adjacent whenever

Anng(l) N Anng(J) = {0}. In [15], H. Mostafanasab have introduced and studiedthe
zero-annihilator graph of R denoted by I'z2(R). It is the graph whose vertex setis the
set of all nonzero nonunit elements of R and two distinct vertices x and y are adjacent
whenever Anngr(Rx+Ry) = Annr(x)NAnng(y) = {0}. For basic definitions on rings,
one may refer [6, 13, 14].

Let G = (V, E) be a simple graph. Letu, v € V (G), define d(x, y) to be the length of a
shortest path from u to v in G. The diameter of G is diam(G) = sup{d(x,y) x, yEV
}. The girth of G, denoted by gr(G) is the length of a shortest cycle in G. A complete
bipartite graph with part sizes m and » is denoted by K,,,. An undirected graph is an
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outerplanar graph if it can be drawn in the plane without crossings in sucha way that all of
the vertices belong to the unbounded face of the drawing. There is a characterization for
outerplanar graphs that says that a graph is outerplanar if and only if it does not contain
a subdivision of K4 or K2 3. A graph is said to be planar ifit can be drawn in the plane
so that its edges intersect only at their ends. For basic definitions on graphs, one may
refer [12].

2 BASIC PROPERTIES OF T'zZ(R)

In this section, we prove that T'z(R) is connected with diameter at most three. Fur-
ther, we classify all commutative ring R for which I'z(R) is split. Note that if R is
local ring, then I';(R) is empty.

Theorem 2.1. Let R be an Artinian ring which contains n mazximal ideals. Then
T'z(R) is connected with diam(T z(R) )< 3.

Proof. Let u,v € Z(R)\ J(R). If u € m;,v € m; and u,v ¢ m; Nm;, thenu —visa
path. If u,v € m;, then there exists w € m; such that v —w —u 1s a path of length 2.
If uw € m; \ m;, v € m; N m;, then there exists w € m, \ m; Um;, such that v —w —u is
a path of length 2. If u € Nm; \ my, v € Nm; \ m;, @ # k, then there existx ¢ € m;, and
d € m; such that u — ¢ — d — v is a path of length 3. Hence diam(I'z(R))< 3. U
Theorem 2.2. Let R be an Artinian ring which contains n maximal ideals. Then
Lz(R) is a complete bipartite graph if and only if R = Ry x Ry, where (R;,m;) is a
local ring.

Proof. Suppose I'z(R) is complete bipartite graph. Since R is Artinian, R & R; X
-+ X R, where (R;,m;) is a local ring for 1 <i <mn. If n > 3, then (1,1,0,1,...,1) —
(L0110, 1) — (0,0,3 0.0 1) — (A,1,0.1;, ., 1) 8@ cyele-of lenpth 3, which 15@

contradiction. Hence n = 2..
Conversely, If R =& R; x Ry, where (R;,m;) is local. Note that V(I'z(R))=

{(z,b),(a,y) : x* € R{',y € R}, a € my,b € my}. Also two vertices (z,b) and (a,y) are
adjacent. On the other hand, every two vertices (dy, by), (ds, by) cannot be adjacent.

Similarly for (c;,vy) and (es, v9). |
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Theorem 2.3. Let R be an Artinian ring which contains n mazximal ideals. Then the

following are equivalent:
(a) Tz(R) is a star.
(b) I'z(R) is a tree.

(¢) R=7Zsy x F where F is a field.

Proof. (a) = (b) follows from the definition of tree.

(b) = (c) Suppose I'z(R) is a tree. Since R is finite, R = Ry x --- x R, where each
(R;, m;) is alocal ring. Ifn > 3, then (1,1,0,1,...,1)—(1,0,1,...,1)—(0,1,1,...,1)—
(1,1,0,1,...,1) is a cycle in I'z(R), a contradiction. Thus n =2 and R = R; X Rs.
If [m%| > 1, then (u3,0) — (0,1) — (u2,0) — (a, 1) — (uq,0), where uy,us € Ry, a € mj
is a cycle in I'z(R), a contradiction. Hence R; and R, are fields. IF |R;| > 3 for all 7,
then (u;,0) — (0,v1) — (u2,0) — (0,v2) — (u1,0), where u;, us € R} and vy, v2 € R} is
a cycle, a contradiction. Hence |R;| = 2 for some i and therefore R = Zy x F, where

F'is a field.
(€)= (a) If R=7Zy x F, where F is a field, then I'z(R)= K| |- []

Theorem 2.4. Let R be an Artinian ring which contains n mazximal ideals. Then

(a) gr(T'z(R))=3 if and only if |Max(R)| > 3.

(b) gr(T'z(R))=4 if and only if |Maz(R)| =2 and R 2 Zs x F where F is a finite
field.
(¢) gr(I'z(R) )= oo if and only if R =2 Zy x F where F is a finite field.
Proof. Proof follows from above theorems. [
A split graph is a simple graph in which the vertices can be partitioned into a
cligue and an independent set. There is a characterization for split graphs that says
that a graph is a split graph if and only if it contains no induced subgraph isomorphic
to 2Ky, Cy, Cs.
Theorem 2.5. Let R be an Artinian ring which contains n mazimal ideals. Then
T'z(R) is a split graph if and only if R is isomorphic to Za X Za X Lo, Za x F, where
F is a field.
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Proof. Since R is finite, R = Ry x Ry X --- x R, where each R; is local for 1 <i < mn.
Clearly n > 2. Suppose I'z(R) is split graph.

Suppose n > 4. Then there exist vertices (1,0,1,1,1,...,1), (0,1,1,0,1...,1),
(1,0,0,1,...,1),(0,1,1,1,1,...,1) € Z(R) \ J(R) which makes Cy in I'z(R), which

is a contradiction. Hence n < 3.
Suppose n = 3 and |R;| > 3 for some i. Without loss of generality, assume

that |3] > 3. Then there exist vertices z; = (1,1,0), zo = (0,1,1), z3 = (1,0,0),
zy = (0,1,0) € Z(R) \ J(R), where a € R} make C, as a subgraph in I'z(R), which
is a contradiction. Thus |R;| =2 for all i and so R = Zs X Zy X Zs.

Suppose n = 2 and m; # {0} for some i. Assume that m; # {0}. Then |R,| > 4.
Consider z; = (u;,0), 2o = (0,1), 23 = (u2,0), z4 = (a,1) € Z(R) \ J(R), where
a € mj, uy,up € Ry. Then {xy,..., 24} induced a subgraph which is isomorphic to C,
in I'z(R), which is a contradiction. Thus R; is field for all i. Since I'z(R)= Kpz|rs|
and so I'z(R) is split graph, R = Zy x F where F'is a field. O
Theorem 2.6. Let R be an Artinian ring which contains n mazximal ideals. Then
I'z(R)=T(R) if and only if R = Z§.
Proof. Suppose I'z(R)= T'(R). If m; # {0} for some i, then |Z(R) \ J(R)| < |Z(R)|.
Hence m; = {0} for all 7 and so R; is field for 1 < i < n. Suppose |R;| > 3 for some
i. It is clear that |[E(I'(R)| < |E(T'z(R))|. Hence |R;| = 2 for all i and R = ZJ.

Conversely, suppose R = Z3. Let x = (z1,22...,2,) € Z(R)*. Define ¥ :
Z(R)* = Z(R)* by

1 it @ =0
U(z) =
0 if otherwise
Clearly W is bijective. Let x = (z1,...,2z,) and ¥y = (¥1,--.,Yn) € Z(R)*. If z and y

are adjacent in I'z(R), then anng(z) Nanng(y) = {0} and so anng, (z;) Nanng,(y;) =
{0}. Clearly z;3; = 0 for all i and so zy = 0. Similarly ¥ preserves non adjacency

also. Thus I'z(R)2 T'(R). [
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3  PLANAR PROPERTY OF I'z(R)

In this section, we determined the class of rings for which I'z(R) is planar.

Theorem 3.1. Let R be an Artinian ring which contains n mazimal ideals. Then
I'z(R) is outerplanar if and only if R is isomorphic to Zy X Zy X ZLgy, Zy X F, 7y x s,

Zy X Lo, OT % X 2o, where F is a field.

Proof. Since R is Artinian, R = R; X Ry x --- X R,,, where each R; is local for
1 <i < n. Clearly n > 2. Assume that I'z(R) is outerplanar.

Suppose nn > 4. Then there exist vertices (1,1,1,0,1,...,1), (1,1,0,1...,1),
(1,0,1,1,...,1),(0,1,1,...,1) € Z(R)\J(R) which makes K, as a subgraph in 'z (R),

a contradiction. Thus n < 3.

Suppose n = 3 and |R;| > 3 for some 7. Without loss of generality, assume that

|Bs| 2 8. Letias —(1, 1,0, 2a—1(1,0,1), #3= (0,1,1), ms— (1.0.8), 25— (0,1,0),

where a € R} in I'z(R). Then {z;,...,25} induces a subgraph which contains a
subdivision of K, in I'z(R), a contradiction. Thus |R;| = 2 for all i and so R =
ZQ X ZQ X ZQ.

If n = 2 and m; # {0} for all 4, then |R;| > 4 for i = 1,2. Consider z; =
(u1,0), 22 = (up,0), 23 = (0,v1), 24 = (0,02), x5 = (a,v1) € Z(R) \ J(R), where

a € mj, up,us € RY and vy, vy € RY. Then {z,,..., 5} induces a subgraph which is

7

isomorphic to K, 3 in I'y(R), which is a contradiction. Thus at least one of the R; is
local with m; = {0}. Suppose that my, = {0}.
Suppose |mi| > 2. Clearly |R‘| > 4. Let z1 = (u1,0), 3 = (u9,0), 3 = (u3,0),

zy = (ug,0), x5 = (0,1), s = (a,1) € Z(R) \ J(R), where u; € R{,a € m}. Then

{z1,..., 26} make K, as a subgraph in I';(R), which is a contradiction. Therefore
[mi| =1 or 0 and so R, is either field or R, = Zj or ?i—[;i.

Suppose R = R; x Ry where R!s are field. Since I';(R) = Kipspgyy R=Zy x F

or Zs X Zs where F is a field.
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Suppose i = R; x Ry where R!s are field. Since I'z(R) = K ryy REZy x F
or 7y x 7Zs where F is a field.

Suppose R = Ry x Ry, where Ry = Z, or fi[zi] and Ry is a field. If |Ry| > 3, then

there exist vertices z; = (u1,0), g3 = (us,0), 23 = (0,1), 4 = (0,a), z5 = (2,1),
where uy,us € Ry, 2 € mj and 1 # a € R;. Then {z,,...,25} make a subgraph
isomorphic to K; 3 in I'z(R), which is a contradiction. Thus |Ry| = 2 and so R =

Zs|z]
<> X Zz. O

Zy x s, Or
Theorem 3.2. Let R be an Artinian reduced ring which contains n > 2 mazimal
ideals. Then I'z(R) is planar if and only if R is isomorphic to Zg X Zg X Lo, Zg X F,

Zg x F, where F is a field.
Proof. Since R is reduced, R = F; x .-+ x F,, where each F; is field and n >

2. Suppose that T'z(R) is planar. Suppose n > 4. Consider S = {x1,..., Te},
whete 5 = (11,10, .0ul)s o = (1, 1.0, 1,000, 1) s = (1,000,000 1), 30 =
(L 10, 1)y s = (1,0,4,0.0,...50), Bg = (0,1,0.1.3.. .. T} & (R JLH)

Then the subgraph induced by S contains a contraction of K5, a contradiction. Thus
n < 3.

Suppose n = 3 and |F;| = 3 for some i. Without loss of generality assume that
|7 = 3. Lebsy = (1, 1,0), &5 =(1,0, D),.2s = (1,0,a), 2i="(0,1,71), 5= [0,1;a),
r¢ = (1,0,0), zr = (0,1,0) where 1 £ a € Fj. Then the subgraph induced by

{Eiyemn s a7} is isomorphic to a subdivision of Ky, a contradiction. Therefore |F;| = 2
for all 7 and hence R = Zo X Zo X Zs.

Suppose n = 2. Then R = F; x F,. Clearly I'z(R) & K|r: | r;). Therefore |Fil <3
at least one i. Hence R = 7y x F or Zs; x I, where F is a field. ]

Theorem 3.3. Let R be an Artinian non-reduced ring which contains n > 2 mazimal
ideals. Then T'z(R) is nonplanar.

Proof. Since R is Artinian ring, R = R; X --- x R,, where each R; is local with
m; # {0} and n > 2. Since m; # {0}, |R;| > 4 for all 1 < i < n. Consider
S ={z1,...,Z4,Y1,.-., Y1}, where 1 = (u1,0), T2 = (u2,0), z3 = (u1,b), T4 = (u2,b),
y1 = (0,11), y2 = (0,v2), y3 = (a,v1), ya = (a,va), U1, Uz € R, v1,v9 € RY,a € mj
and b € mj. Then the subgraph induced by S is isomorphic to /{44, a contradiction,

which completes the proof. 1
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Theorem 3.4. Let R= Ry X --- X R, X Fy x -+ X F,,, where R; is a local ring with
m; # {0} and F; is a field. Then T4z(R) is planar if and only if R is isomorphic to
Zy x F or fi—g x F, where F' is a field.

Proof. Assume that I'z(R) is planar. Then by Theorem 3.3, m = 1. Suppose n > 2.
Consider S = {zi,...,z7}, where 1 = (uy,1,0), s = (uo,1,0), z3 = (0,1,1),
zy = (u1,0,1), 25 = (uy,0,1), ¢ = (0,0,1), z7 = (1,0,0), where u;,us € R". Then
the subgraph induced by S contains a subdivision of Ky, which is a contradiction.

Hencen=1and R = R, x F.

Suppose |mj| > 2, then |R{| > 4. Let 1 = (w1,0), 2 = (u2,0), z3 = (us,0),
zs = (ug,0), y1 = (0,1), yo = (a,1), y3 = (b,1), where u; € B*,1 <i <4, a,b e mj.
It is clear that each z; is adjacent to y; for 1 < i <4, 1 < j < 3. Therefore I'z(R)

: S et
contains K4 3 as a subgraph, a contradiction. Hence |mj| =1 and Ry = Z, or <i[f>]

(1,0)

(3,0)

Figure 1: T'z(R)(Z4 x F) = FZ(Rj(figﬂ x F)

B

Converse follows from Figure 1. O
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