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ABSTRACT 
Lung disease is common throughout the world. These include chronic obstructive pulmonary 
disease, pneumonia, asthma, tuberculosis, fibrosis, etc. Timely diagnosis of lung disease is 
essential. Many image processing and machine learning (ML) models have been developed to 
make more accurate with less time and effort. But still, the degraded accuracy performance 
was resulted in these systems. In recent days, Deep Learning (DL) model plays an important 
role in classifying the lung diseases for the early prediction process. Amongst, an efficient 
Convolutional Neural Network (CNN)-based lung disease detection system is developed with 
additional layers to classify the segregated lung sections into various lung diseases using Chest 
X-Ray (CXR) images. However, this model results in epistemic uncertainty which effects the 
performance of DL models employed for lung disease diagnosis. Hence, in this paper, a multi-
modal approach called Ensemble Deep Lung Disease Predictor (EDepLDP) framework is 
proposed to solve the epistemic uncertainty issue and develops a reliable solution for rapid 
detection of various diseases using CXR and Computerized Tomography (CT) images. 
Initially, the collected images are segmented using U-Net model to get enhanced lung Region 
of Interest (ROIs). Then, InceptionResNetV2 and Xception are used to hierarchically extract 
informative features from segmented CXR images and discriminative features from segmented 
CT images respectively.  The extracted deep features are fed into the softmax layer of conGRU-
LSTM to perform the classification task.  Moreover, the TL model is developed to learn the 
weight for the InceptionResNetV2, Xception and conGRU-LSTM which is obtained from the 
pre-trained Efficient-Net model. Also, the domain adaptation strategy is a subset of TL model 
which mainly addresses the situation where different but related datasets for a common learning 
task. This adaption strategy reduces the domain shift or data distribution using Maximum Mean 
Discrepancy (MMD) for the efficient classification of various lung diseases. The test outcomes 
reveal that the EDepLDP model accomplishes an overall accuracy of 92% and 92% on the 
collected CXR and CT images which is contrasted with the classical CNN models. 
Keywords: Chest X-Rays, Computerized Tomography, Epistemic Uncertainty, Transfer 
Learning, Normalized Feature Inputs 
1. INTRODUCTION 
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Lungs play a vital role in the human system, which performs expansion and relaxation to bring 
in oxygen and take out carbon dioxide. Lung diseases are respiratory diseases that affect the 
various organs and tissues associated with breathing, leading to airway diseases, lung tissue 
diseases, and lung circulation diseases [1, 2]. Some of the lung diseases like common cold and 
influenza cause mild discomfort and hindrance while others like lower  respiratory  infections  
(pneumonia), tuberculosis (TB), Chronic Obstructive Pulmonary Disease (COPD), lung 
cancer, COVID-19 are  leading  causes  of  respiratory morbidity and mortality among adults 
pneumonia, tuberculosis and lung cancer are life-threatening and cause severe acute respiratory 
problems [3].  The diagnosis of these lung diseases from clinical analysis are challenging and 
lacks sensitivity, preventing patients from making a prompt diagnosis.  
As a result, healthcare professionals opted for the diagnostic imaging modalities like CT 
imaging, CXR, Positron Emission Tomography (PET), and Magnetic Resonance Imaging 
(MRI) [4, 5]. Even though these state-of-the-art imaging techniques yield precise, reliable, and 
impermeable results, but their accessibility and availability are constrained in underdeveloped 
countries due to the lack of a strong healthcare system and patient comfort. To solve these 
issues, Computer-Aided Diagnostic (CAD) systems is developed which efficiently automate 
the medical image interpretation process and minimize the human effort [6, 7]. CAD  systems 
can help radiologists by doing the trivial processing and presenting the information in a 
meaningful way so that, the radiologist can make more accurate decisions by spending less 
amount of time and energy [8]. However, CAD diagnostics are inaccurate because the imaging 
films of each patient have different characteristics and anatomic structures like body fat or 
distorted bones and finds difficult to analyses vast amounts of medical image data. 
In recent days, DL models plays an important role in the medical field especially for medical 
image analysis [9, 10]. In DL model, there are mainly three steps involved in DL model like 
image preprocessing, training and classification for lung disease prediction. Lung disease 
detection generally deals with classifying an image into healthy lungs or disease-infected lungs. 
The lung disease classifier sometimes known as a model which is obtained via training. 
Training is the process in which a neural network learns to recognize a class of images. Using 
DL, it is possible to train a model that can classify images into their respective class labels. 
Therefore, to apply DL for lung disease detection, the first step is to gather images of lungs 
with the disease to be classified. The second step is to train the neural network until it is able 
to recognize the diseases. The final step is to classify new images. The classified new images 
unseen by the model before are shown to the model and the model predicts the class of those 
images [11].  
By utilizing the idea of DL models, various literature have been suggested for the automated 
identification of pulmonary diseases by utilizing various imaging modalities. For instance, 
automated DL -based lung disorder diagnosis model [12] for CXR scans is developed. In this 
model, the healthy and infected CXR classification is performed on the entire CRX image. For 
the infected CXR images, the classification model is trained on the segmented lung region.  
Finally, these segmented lung region images are used to train the model for the classification 
of pulmonary diseases. The gathering of the manual lung masks and using them to segment the 
lung region on the CXR. Finally, the DL architecture are exploited by proposing a custom CNN 
architecture with additional layers and modified hyperparameters to meet the required results. 
The input CXR is examined for healthy or infected at the surface level and the infected images 
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are further processed for class level label classification. However, this model suffers from 
epistemic uncertainty which has a major impact on the performance of DL models used to 
diagnose lung diseases. The ambiguity in CXR images must be successfully resolved by 
increasing the architecture of DL and the learning of multimodal features.  
Hence, in this paper, EDepLDP model is proposed to solve the epistemic uncertainty issue and 
develops a reliable solution for rapid detection of various diseases using CXR and CT images. 
Initially, image segmentation is performed using the U-Net model to obtain an enhanced lung 
ROIs. Then, the InceptionResNetV2 model is applied to extract informative features from 
segmented CXR images and Xception are used to extract discriminative features from 
segmented CT images. For the classification task, the retrieved deep features are given as input 
to the softmax layer of conGRU-LSTM. This conGRU-LSTM network is more suitable for 
learning the sequence patterns and provides effective classification task. Moreover, the TL 
model is developed to learn the weight for the InceptionResNetV2, Xception and conGRU-
LSTM which is obtained from the pre-trained Efficient-Net model. Also, the domain adaptation 
strategy is a subset of TL model which mainly addresses the situation where different but 
related datasets for a common learning task. This adaption strategy reduces the domain shift or 
data distribution using Maximum Mean Discrepancy (MMD) for the efficient classification of 
various lung diseases. 
The remaining sections of this manuscript are prepared as follows: Section II studies the work 
related to this research. Section III explains the proposed EDepLDP model for lung disease 
classification. Section IV illustrates its model’s performance effectiveness. Section V 
summarizes the whole work and suggests future enhancement. 
2. LITERATURE SURVEY 
Bharati et al. [13] introduced a novel hybrid DL model by integrating VGG, data augmentation 
and Spatial Transformer Network (STN) with CNN called VDSNet to recognize lung disorders 
from CXR scans. The new model was applied to NIH CXR dataset collected from Kaggle 
repository. Full and sample versions of the dataset were considered. For both full and sample 
datasets, VDSNet outperforms existing methods in terms of a number of metrics including 
precision, recall and validation accuracy. However, the validated accuracy was slightly reduced 
while processing with full version of dataset. 
Hashmi et al. [14] presented a new method depending on the weighted classifier for recognizing 
pneumonia from CXR scans. In this method, the weighted predictions from the classical DL 
structures were combined. This approach was a supervised learning approach in which the 
network predicts the result based on the quality of the dataset used. Also, TL model was utilized 
to modify the DL and increase detection accuracy. Partial data augmentation techniques were 
employed to increase the training dataset in a balanced way to improve the model’s efficiency. 
Conversely, the amount of inaccurately labeled images was not limited. 
Wang et al. [15] developed a parallel Channel Attention feature Fusion (PCAF) scheme called 
MCFF-Net according to the characteristics of CXR images. Based on this module, a new CNN 
structure is proposed to classify CXR images in order to diagnose and detect COVID-19 cases. 
Also, the recognition efficiency was enhanced by adopting 3 classifiers such as fully connected 
(FC), GAP-FC, and Conv1-GAP.MCFF-Net was used to perform a 4-class classification 
experiment on a dataset containing four types of image of COVID-19, normal, bacterial 
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pneumonia, and viral pneumonia, with excellent performance. However, this model provides 
lower performances on larger dataset. 
Vieira et al. [16] presented a lung disorder recognition system based on the image resizing 
scheme with the maximum window function, which preserves anatomical structures of the 
chest. First, the CXR scans were acquired. Then, a pre-processing methodology was developed 
which includes a new image resizing method with the maximum window function that 
preserves anatomical structures of the CXR images. An evaluation methodology was defined 
that comprises different CNN architectures combined with TL and fine-tuning of all layers of 
CNN to categorize the scans into different types of pneumonia. However, this model have 
slower convergence rate. 
Cao & Zhao [17] described an automatic lung segmentation algorithm on chest x-ray images 
based on fusion variational auto-encoder and three-terminal attention mechanism. In this 
model, constructed VAE was introduced in every layer of the decoder-encoder to capture high-
level semantic characteristics like the symmetrical correlation between the left and right 
thoraxes. Also, a 3-terminal attention strategy was applied, which utilizes the channel and 
spatial attention units to automatically localize and identify the target lung region. However, 
this model finds difficulty in segmenting the local areas with large number of opacities. 
Tasci et al. [18] introduced a Voting-based ensemble DL (VEDL) method focusing on image 
augmentation and preprocessing variations for tuberculosis detection. The ensemble deep 
learning method selects the best pipelines employing different preprocessing, augmentation 
alternatives, and CNN models for tuberculosis detection. The voting-based (i.e., soft voting 
and Bayesian optimization-based weighted voting) ensemble of various fine-tuned CNN 
models (i.e., Inception V3 and Xception) with the preprocessing (e.g., Contrast-limited 
adaptive histogram equalization (CLAHE)) and image data augmentation (etranslation, 
rotation, and scaling) variations was used in this process for efficient TB detection. But, it 
needs more memory for training. 
Zhang et al. [19] designed a VGG framework with fewer layers for detecting pneumonia from 
CXR scans. First, the CXR scans were collected and pre-processed by the Dynamic Histogram 
Equalization (DHE) technique. Then, VGG-based CNN model was developed to extract the 
features from original images or previous feature maps which contained only six layers 
combining ReLU activation function, drop operation, and max-pooling layers. This model 
effectively capture the characteristics of CXR scans and learn them to recognize whether a 
person suffers from pneumonia or not. However, this model results in overfitting issues. 
Li et al. [20] introduced an innovative approach for earlier identification of COPD using a 
graph convolution network (GCN). This approach leverages minimal chest CT image 
information with inadequate labeling. The primary goal is to generate a graph utilizing 
arbitrarily generated areas of interest (i.e., ROIs) from the separated lung parenchyma and then 
input it into the GCN model for COPD identification. However, this method's classification 
accuracy was lower compared to other classical approaches. 
Junayed et al. [21] constructed an efficient End-to-End Deep Neural Network (E2E-DNN) for 
interstitial lung disease (ILD) recognition and classification using lung CT image patches. The 
collected data was pre-processed to remove noise and unstructured patterns. A new architecture 
was developed to classify captures of low-level textural characteristics of lung tissue. This 
architecture consists of various convolutional layers with various filters, ReLU activation, 
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batch normalization, max-pooling, and flatten, dense, and dropout layers. Categorical 
crossentropy was employed as a loss function for training purposes, and adam was also used 
to optimize the model. However, this model requires a considerable amount of time to train. 
Ravi et al. [22] presented a multichannel EfficientNet deep learning-based stacking ensemble 
approach for lung disease detection using chest X-ray images. In the model, different 
multichannel EfficientNet models were used to extract the features form the collected dataset. 
The features from EfficientNet models are fused together. Next, the fused features are passed 
into more than one non-linear fully connected layer. Finally, the features passed into a stacked 
ensemble learning classifier for lung disease detection. The stacked ensemble learning 
classifier contains random forest and Support Vector Machine (SVM) in the first stage and 
logistic regression in the second stage for lung disease detection. However, this model result 
lower generalizability on unseen data samples from lung diseases. 
Kim et al. [23] introduced a DL model called EfficientNet v2-M for multi-class lung diseases’ 
classification on CXR images. The constructed EfficientNet v2-M model utilizes the pre-
trained weights of ImageNet to classify lung diseases on CXR images to improve the efficiency 
and accuracy of CADs’ diagnostic performance. Initially, the data were augmented to increase 
the number of samples and variance diversities. Then, they were directly inputted into an 
EfficientNet v2-M model to extract their meaningful features in identifying lung disease 
categories. But, this model loses a substantial amount of useful data, resulting in overfitting 
difficulties. 
3. PROPOSED METHODOLOGY 
In this section, EDepLDP framework is briefly illustrated. Initially, the CXR and CT images 
are gathered. Then, the gathered images are segmented using U-Net architecture. The 
segmented images are given as input to the InceptionResNetV2 and Xception are used to 
determine an informative features from segmented CXR images and discriminative features 
from segmented CT images respectively. The extracted deep features are fed into the softmax 
layer of conGRU-LSTM to perform the classification task. By utilizing the transfer learning 
(TL) model, acquired the learned weight for InceptionResNetV2, Xception, and conGRU-
LSTM from a previously-trained Efficient-Net for the efficient classification of different lung 
diseases. The figure 1 depicts the complete structure of the proposed model. 
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Figure 1 Block Structure of the Proposed Model 

3.1 Dataset Description 
In this study, two benchmark databases are considered, including: 
1. CXR data: CXR dataset [24] consists of 112,120 frontal-view X-ray images of 30,805 
distinct patients with fourteen disease image labels text-mined from the corresponding 
radiological reports using natural language processing. Each image may have multiple labels. 
This database includes fourteen common thoracic pathologies including Atelectasis, 
Consolidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, 
Pneumonia, Pleural thickness, Cardiomegaly, Nodule, Mass, and Hernia. The information of 
COVID-19 and Non-Covid is obtained from [25], which contains 25 images of COVID-19 and 
75 images of non-Covid chest X-ray cases. It is essential to emphasize that these Non-Covid 
(normal) situations might consist of other unhealthy conditions, such as bacterial or viral 
infections, chronic obstructive pulmonary disease, and even a combination of two or more. For 
the experimental purposes, only five pathologies i.e., atelectasis, infiltration, pneumonia along 
with COVID-19 and Non-Covid are considered in this framework. The total CXR images 
obtained from the given dataset for the performance evaluation are listed in table 1.  

Table 1 Observed CXR images 
Lung Disease 
Categorizes  

CXR Image Number of images 
Considered 

Covid          

 

1345 
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Normal 

 

1345 

Pneumonia 

 

1443 

Atelectasis 

 

290 

Infiltrate 

 

270 

 
2. CT data: As like CXR data, the CT images also opted for five diseases categories like 
atelectasis, infiltration, pneumonia along with COVID-19 and Non-Covid. In this study, 
different open public portals are analyzed to collect the CT data for the experiment purposes. 
The lung atelectasis images is taken form [26], The Covid and Non-Covid (Normal) images 
are gathered from [27], the viral pneumonia are taken from  [28] and infiltration is obtained 
from [29]. The total CT images obtained from the given dataset for the performance evaluation 
are listed in table 2.  
 

Table 2 Observed CT images  
Lung Disease 
Categorizes  

CT Image Number of images 
Considered 

Covid          

 

1002 
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Normal 

 

984 

Pneumonia 

 

1762 

Atelectasis 

 

310 

Infiltrate 

 

260 

 
3.2 U-Net based Segmentation task on CXR and CT images  
In this model, U-Net architecture model is used for the segmentation purposes, it composed of 
contraction (encoder) and expansion (decoder) paths. Where the contraction path is built up 
with repeated 3 × 3 convolution operations that are followed by the Relu Activation function 
and  2 × 2 max pooling operation for downsampling with the stride of 2. The number of 
feature channels are doubled by each downsampling operation. At the expansion path up-
convolution operation is applied that utilizes 2 × 2 transposed convolutions to increase the 
resolution. Moreover, the details that were lost in the contraction path after the downsampling 
are also recovered by using skipping operations which allows the network to pass the feature 
maps from the encoder to the decoder. The figure 2 depicts the U-Net structure for segmenting 
CXR and CT images. 



MULTIMODAL FEATURE AND TRANSFER LEARNING IN DEEP ENSEMBLE MODEL FOR LUNG DISEASE PREDICTION 

Journal of Data Acquisition and Processing Vol. 38 (2) 2023      279 
 

 
Figure 2 U-Net structure based segmented CXR and CT images 

U-Net structure is trained on the manual lung masks of the CXR and CT image dataset to 
enhance the lung ROIs. Since the performance of a CNN architecture while training is highly 
dependent upon the initialization of the learnable parameters. So, the weights of U-Net 
architecture are trained on the collected dataset and obtained as initial weights in order to 
produce the optimal segmentation results on CXR and CT images.  These initial weights are 
then multiplied with the input data with an additional bias value is depicted in Eq. (1) 

𝐴 =  ∑ 𝑤  𝑢 +  𝑦  ,  ℎ = 1,2, . . , 𝐻                                                                                      (1) 

In above Eq. (1), 𝑤  represents the weights of the trained U-Net architecture, 𝑢 depicts the 

input variable, 𝑦  is the value add as a bias variable. The super and subscripts , ℎ, and 𝑗 donate 
hidden layer of the model, the number of input variables, and the neurons respectively. The 

resultant  𝐴  is given as input to the activation function which is responsible for activating or 

deactivating a neuron. 
The model is further optimized using binary cross-entropy (BCE) loss function that calculates 
the loss between the segmented masks and the manual reference masks gathered for each 
sample image i.e., CXR and CT which is formulated as in equation 2. 

𝐵𝐶𝐸 =  −  ∑ 𝑤  𝑙𝑜𝑔𝑤 + (1 − 𝑤 )log (1 − 𝑤 )                                                              (2) 

 
From Eq. (2),  𝑁 represents the total number of images used for training, 𝑤  donates the manual 

reference masks for each sample image 𝑖, and 𝑤  donates the segmented masks (image) 

generated by the model.  
3.3 Feature Extraction by InceptionResNetV2 and XceptionV3 
In this model, the segmented images form the U-Net model are given as input to the different 
CNN models like InceptionResNetV2 and XceptionV3 are used to hierarchically extract 
informative and discriminative features from the CXR and CT images respectively. The feature 
extraction processes through passing the segmented CXR images in every layers of the 
InceptionResNetV2 is illustrated in Table 3 and for CT image in layers of the XceptionV3 
structure is illustrated in Table 4. 
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Table 3 InceptionResNetV2 structure for segmented CXR images 
Layer Patch Size Input Size 

Conv 224  ×  224  ×  3 3  ×  3 

Conv 111  ×  111  ×  32 3  ×  3 

Filter contact 109  ×  109  ×  64 3  ×  3 𝑝𝑜𝑜𝑙  +  3  ×  3 𝑐𝑜𝑛𝑣 

Filter contact 54  ×  54  ×  160 1 ×  1 𝑐𝑜𝑛𝑣, 3  ×  3 𝑐𝑜𝑛𝑣 +  1  ×

 1 𝑐𝑜𝑛𝑣, 7  ×  1 𝑐𝑜𝑛𝑣, 1  ×

 7 𝑐𝑜𝑛𝑣, 3  ×  3 𝑐𝑜𝑛𝑣 

Filter contact 52  ×  52  ×  128 3  ×  3 𝑐𝑜𝑛𝑣  +  𝑚𝑎𝑥 𝑝𝑜𝑜𝑙 

Inception-ResNet-
A × 10 

26  ×  26  ×  256 — 

Reduction-A 26  ×  26  ×  256 — 

Inception-ResNet-
B × 20 

13  ×  13  ×  768 — 

Reduction-B 13  ×  13  ×  768 — 

Inception-ResNet-
C × 10 

6  ×  6  ×  1534 — 

Average pooling 6  ×  6  ×  1534 6  ×  6 

Dropout 1  ×  1  ×  1534 𝐾𝑒𝑒𝑝  =  0.5 

Fully Connected (FC) 1534 1534  ×  1000 

FC 1000 Logits 

Softmax 500 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 (3 𝑐𝑙𝑎𝑠𝑠𝑒𝑠) 

 
The InceptionResNetV2 is the combination of residual connection and the Inception 
architecture. This structure takes the advantages of residual network and retains the unique 
characteristics of the multi-convolutional core of the Inception network and these residual 
connections are implicit approaches for training very deep architectures. Generally, Inception-
ResNetV2 architecture represented in all layers are established before the FC layer. The 
Inception-ResNetV2 model contains three basic types of inception modules like Inception-
ResNet-A, Inception-ResNet-B, and Inception-ResNet-C. These modules are responsible for 
both reducing the number of parameters small Conv layers (e.g., 1  ×  7, 7  ×  1) and generating 
the discriminatory features. Each module is self-possessed of several Conv and pool layers. 
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Inception-ResNetV2 also contains two types of reduction modules, which are responsible for 
reducing the image size. In this framework, Inception-ResNetV2 model has a default input 
size299  ×  299 × 3; thus, it is resized to 224 × 224 during training. The structure of 
inceptionResNetV2 is illustrated in table 1, which is used to extract the informative features 
from the CXR images.   

Table 4 Xception structure for segmented CT images 
Layer Outcome dimension Patch size/Stride 

Convolutional layer 
(𝑐𝑜𝑛𝑣) 

149 × 149 × 32  

147 × 147 × 64  

3 × 3 × 32/2  

3 × 3 × 64  

Separable convolution 147 × 147 × 128  3 × 3 × 128/1  

Max pooling 74 × 74 × 128  3 × 3/2  

Separable convolution 74 × 74 × 256  3 × 3 × 256/1  

Max pooling 37 × 37 × 256  3 × 3/2  

Separable convolution 37 × 37 × 728  3 × 3 × 728/1  

Max pooling 19 × 19 × 728  3 × 3/2  

Separable convolution 19 × 19 × 728  3 × 3 × 728/1  

Separable convolution 19 × 19 × 728  

19 × 19 × 1024  

3 × 3 × 728/1  

3 × 3 × 1024/1  

Max pooling 10 × 10 × 1024  3 × 3/2  

Separable convolution 10 × 10 × 1536  

10 × 10 × 2048  

3 × 3 × 1536/1  

3 × 3 × 2048/1  

Mean pooling 1 × 1 × 2048   

FC 2 × 2048  Logits 

Softmax 1000 Classifier 

 
The Xception structure is extended extended form of the Inception layout in which the basic 
Inception units have been substituted with the adapted depthwise discrete convolutions. It is 
the pointwise convolution preceded by the depthwise convolution. Additionally, this Xception 
architecture contains the residual/skip links analogous to the ResNet architecture. It may be 
partitioned into 3 units: input stream, core stream and output stream. The core stream unit is 
continued 8 times. In table 2, the pre-trained Xception structure applied in this methodology is 
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depicted. By using this Xception structure, the discriminative features are extracted from the 
segmented CT images. 
3.4 Transferring learned weights using pretrained EfficientNet with MMD 
In this model, the pretrained EfficientNet models is used as a transfer learning model with the 
aim to achieve better performances for lung disease classification using CXR and CT images. 
The EfficientNet group consists of 8 models between EfficientNet B0 and EfficientNet B7, as 
the model number grows, the number of calculated parameters does not increase much, while 
accuracy increases noticeably. The main building block for EfficientNet is the inverted 
bottleneck MBConv, it is a blocks consist of a layer that first expands and then compresses the 
channels, so direct connections are used between bottlenecks that connect much fewer channels 
than expansion layers. The EfficientNet model efficiently improves the resolution of image 
data (i.e., segmented CXR and CT images) by uniformly scaling depth, width, and resolution 
while scaling down the model. The first step in the compound scaling method is to search for 
a grid to find the relationship between the different scaling dimensions of the baseline network 
under a fixed resource constraint. In this way, a suitable scaling factor for depth, width and 
resolution dimensions is determined. These coefficients are then applied to scale the baseline 
network to the desired target network [30]. The width, depth and resolution of the network are 
balanced by calculating the appropriate composite ratio coefficient 𝜗 which is formulated in 
Eq. (3), 

𝐷𝑒𝑝𝑡ℎ 𝑑 =  𝛼   

𝑊𝑖𝑑𝑡ℎ 𝑤 =  𝛽  

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑟 =  𝛾                                                                                                                           (3) 
𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1  
Where  𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1  can be used for scaling network width, depth and resolution 
coefficient, given value 𝜙 can be used to determine the amount of effective resources extension 
model, constant 𝛼, 𝛽, 𝛾 is used to allocate these resources to the network depth, width and 
resolution of three dimensions.  Since the cost of computing in convolution networks is largely 
due to convolution operations and scaling convolution network as given in Eq. (3) increases 
the Floating Point Operations Per Second (FLOPS) of the network by approximately 
(𝛼, 𝛽2, 𝛾2) 𝜑 in total [30].  The structure of  EfficientNet is given in table 5. 

Table 5 EfficientNet structure  

Stage 𝒊 Layer Resolution  Channels Layers 

1 (𝐶𝑜𝑛𝑣 3 × 3) 224 × 224 32 1 

2 𝑀𝐵𝐶𝑜𝑛𝑣1, 𝑘3 × 3 112 × 112 16 1 

3 𝑀𝐵𝐶𝑜𝑛𝑣6, 𝑘3 × 3 112 × 112 24 2 

4 𝑀𝐵𝐶𝑜𝑛𝑣6, 𝑘5 × 5 56 × 56 40 2 

5 𝑀𝐵𝐶𝑜𝑛𝑣6, 𝑘3 × 3 28 × 28 80 3 

6 𝑀𝐵𝐶𝑜𝑛𝑣6, 𝑘5 × 5 28 × 28 112 3 



MULTIMODAL FEATURE AND TRANSFER LEARNING IN DEEP ENSEMBLE MODEL FOR LUNG DISEASE PREDICTION 

Journal of Data Acquisition and Processing Vol. 38 (2) 2023      283 
 

7 𝑀𝐵𝐶𝑜𝑛𝑣6, 𝑘5 × 5 14 × 14 192 4 

8 𝑀𝐵𝐶𝑜𝑛𝑣6, 𝑘3 × 3 7 × 7 320 1 

9 𝐶𝑜𝑛𝑣1;  𝑃𝑜𝑜𝑙𝑖𝑛𝑔; 𝐹𝐶 7 × 7 1280 1 

 
In the EDepLDP framework, the pre-trained Efficient-Net model is introduced for transferring 
the learned weights to the feature extraction models like InceptionResNetV2, XceptionV3.  The 
pretrained Efficient-Net model models has rich features and contain deeper depth or width or 
more input image resolution which effectively fine-tunes the weights of the model on medical 
image classification, reduce the training time, provides faster convergence rate, and achieve 
optimal performances in detecting patient’s data samples of CXR and CT as either lung disease 
or normal. Since, EfficientNet model prefers to learn domain specific features on top layers, 
the main challenge is to reduce the shift between two domain (Source and target) distributions 
on these layers. The framework develops a domain adaptation learning method in Efficient Net 
model to conduct transfer learning. EfficientNet combines domain adaptation and feature 
learning in a training process, so that the features of domain invariance can be predicted. Then, 
the proposed transfer learning-based model trained by source domain site data can be used to 
assist in predicting target site data without degradation of the prediction performance due to 
domain drift. 
While transferring the learned weights, it is necessary to measure the distribution distance 
between source domain sites and target domain sites, and select the source domain sites closest 
to the target domain sites. The maximum mean discrepancy (MMD) in the regenerative kernel 
Hilbert space is an effective method for estimating the distance between two distributions. 
Based on two distributed samples, the average difference between two samples corresponding 
to f can be obtained by subtracting the function mean of different samples, and MMD is the 
maximum value of the average difference. For the convenience of calculation, the square form 
of MMD is generally adopted. The process of using MMD to estimate the difference between 
two domains is constructed as follows. 
The source domain site data in a given source domain is denoted as: 
𝐷 =  (𝑥 , 𝑥 , … . , 𝑥 )                                                                                                               (4) 
where 𝑥 represents the source domain site data and 𝑚 represents the source domain site data 
number. The target site data in the target domain is denoted as: 
𝐷 =  (𝑦 , 𝑦 , … . , 𝑦 )                                                                                                                    (5) 
Where 𝑦 represents the target domain site data and 𝑛 represents the target domain site data 
number. The nonlinear mapping function in the Hilbert space (H) of the regenerative kernel is 
denoted as  𝜇. Then the squared form of MMD is defined as follows: 

𝑀𝑀𝐷  (𝐷 , 𝐷 ) =   ∑ 𝜇(𝑥 ) −  ∑ 𝜇(𝑦 )                                                                                (6) 

The difference in distribution between two domains is the distance between the two data 
distributions. The smaller the MMD value, the closer the two domains are. MMD is mainly 
used in transfer learning to select the source domain site that is most suitable for migration to 
the target domain site by calculating the similarity between the source domain and the target 
domain based on MMD. 
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3.5 Transfer Learning Based Classification Model 
The extracted deep features from the InceptionResNetV2, Xception and Efficient-Net are fed 
into the conGRU-LSTM model to accurately classify the various lung disease. In the proposed 
conGRU-LSTM model, transfer learning is used for knowledge exchange between features and 
classes relation among X-ray and CT images and improve the target task of lung disease 
classification.  The transformed features conGRU-LSTM model have been trained in the source 
domain, while their parameter will be frozen during the transfer learning. The conGRU-LSTM 
replaces the matrix multiplication with a convolution operation for each gate in the LSTM cell. 
In this way, it captures the underlying spatial features by performing convolution operations in 
multidimensional data. 
In constructive conGRU-LSTM, LSTM architecture includes three gate the input, forget and 
output while the conGRU has only two gates layers: reset gate 𝑟  and an update gate 𝑢 . The 
update gate checks the memory of the earlier cell to stay active and the reset gate is used to 
combine input sequence of next cell with preceding cell memory. However, LSTM is a bit 
different in some ways: firstly, the conGRU cell consists of two gates as a substitute LSTM are 
three. Secondly, the input and forget gate in LSTM are merged to update gate and for hidden 
state reset gate are directly applied.  The constructive steps involved in conGRU-LSTM is 
listed below. 
𝑖 =  𝜎(𝑊 ∗ 𝑥 + 𝑊 ∗ ℎ + 𝑊 ∘ 𝑐 + 𝑏 )                                                                 (7) 
𝑓 =  𝜎(𝑊 ∗ 𝑥 + 𝑊 ∗ ℎ + 𝑊 ∘  𝑐 + 𝑏 )                                                               (8) 

𝑜 =  𝜎(𝑊 ∗ 𝑥 + 𝑊 ∗ ℎ + 𝑊 ∘ 𝑐 + 𝑏 )                                                              (9) 
𝑔 =  𝑡𝑎𝑛ℎ(𝑊 ∗ 𝑥 + 𝑊 ∗ ℎ + 𝑏 )                                                                           (10) 

𝑐 =  𝑓 tanh  𝑐 + 𝑖  ∘ 𝑔                                                                                                  (11) 
ℎ =  𝑜 ∘ tanh  (𝑐 )                                                                                                              (12) 
The Eq. () and () shows that is passed as an input to the first layer of conGRU (𝑢 ), whereas 
𝑢  and ℎ  are multiplied to weight and this information is forwarded to reset gate (𝑟 ). 
𝑢 =  𝜎(𝑊 ∗ 𝑐 + 𝑊  ∗ ℎ + 𝑏 )                                                                                (13) 
𝑟 =  𝜎(𝑊 ∗ 𝑐 +  𝑊  ∗ ℎ + 𝑏 )                                                                                  (14) 
𝑧 =  𝑡𝑎𝑛ℎ(𝑊 ∗ 𝑥 + 𝑊 ∗ ℎ + 𝑏 )                                                                            (15) 

𝑝 =  𝑢 ∘ ℎ + (1 − 𝑢 ) ∘ 𝑧                                                                                              (16) 
From above Eq. (7-16), 𝑡 denotes the time step in conGRU-LSTM, 𝑥 , ℎ  and 𝑐   denotes 
the input data at time t, ℎ  denotes the final state; 𝑐   denotes the state of the storage (memory) 
cell; 𝑖 , 𝑓   𝑜  are the input gate, forget gate and output gate of LSTM respectively. 𝑢  and 𝑟  
are the gates of GRU. The hidden layer of conGRU-LSTM model are 𝑔 , 𝑧  and  𝑝 . The 
weights of conGRU is 𝑊 , 𝑊  and 𝑊 ; the weight of LSTM is depicted as 𝑊 , 𝑊  ,  𝑊 , 

𝑊 ; The biases of  conGRU-LSTM are 𝑏  , 𝑏 , 𝑏 , 𝑏  𝑏 , 𝑏  and 𝑏  ∗,∘, 𝜎 and 𝑡𝑎𝑛ℎ denote the 

convolution operation, element multiplication, Sigmoid function and 𝑡𝑎𝑛ℎ function. 

Assume the mapping function 𝑀  (.) denote the 𝑖  layer of the ConGRU-LSTM (cGL) 
layers, and then the representation features of source and target subjected CXR and CT image 
data can be formulated as:  
𝑀 =  𝑚 ((… 𝑀 (𝜒 )))                                                                                              (17) 

𝑀 =  𝑚 (… 𝑀 (𝜒 )))                                                                                               (18) 
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𝑀  and 𝑀  are the final feature representation of the two image domain through  

ConGRU-LSTM layers. The output  𝑀  and 𝑀  through conGRU-LSTM layers are then 
input their discriminative and informative features obtained through InceptionResNetV2, 
Xception and Efficient-Net.  The MMD is also employed in this classification assignment to 
enforce the extracted features constraints during transfer learning. By embedding the learned 
representations output by feature extraction layers from two domains into a reproducing kernel 
Hilbert space, MMD eliminates the domain discrepancy with the help of adaptation network, 
and, the squared formulation of MMD in computed in Eq. (6).  Since, the transfer learning is 
also applied in ConGRU-LSTM classification part, the constructed MMD in Eq. (6) is re-
modified according to the ConGRU-LSTM layers. 

Assume, 𝑀  denote the 𝑖  layer of ConGRU-LSTM for two domain 2𝑑, then the transfer loss 
𝐿  form the feature extraction-MMD can be computed as 

 𝐷 = 𝑚 ((𝑚 … 𝑚 (𝑀 ) )                                                                                       (18) 

𝐷 = 𝑚 ((𝑚 … 𝑚 (𝑀 ) )                                                                                       (19) 

𝐿 =  ∑ 𝑑  (𝐷 , 𝐷 )                                                                                              (20) 
From Eq. (20), it is proved that the source and target domain in ConGRU-LSTM shares the 

same parameters of  𝑀  (.) and the parameters are independent in 𝑀  (.) to classify the 
extracted CXR and CT images.  Finally, the reshaped output features are fed into softmax layer 
to classify different types of lung diseases.Thus, the constructed framework is trained and 
utilized to resolve the epistemic uncertainty issue and develops a reliable solution for rapid 
detection of various diseases using CXR and CT images. 
4. RESULT AND DISCUSSION 
In this section, the efficiency of the EDepLDP model is examined by implementing it in 
MATLAB 2019a using the CXR and CT images which is discussed in Section 3.1. For the 
experimental purposes, 70% of images are taken for training and the remaining 30% are taken 
for testing of the EDepLDP model from each categories of lung diseases using both CXR and 
CT images. Further a comparative analysis is carried out to understand the improvement of the 
EDepLDP model contrasted to the existing models including VEDL model [17], VGG model 
[18], GCN model [19], CNN model [12], E2E-DNN model [20], EfficientNet v2-M model 
[23]. The evaluation metrics used to measure the success of the proposed and existing models 
are briefly illustrated below. 
4. 1. Accuracy 
It is the fraction of accurately categorized examples in each category of lung diseases over the 
sum amount of examples considered. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =                    (21) 

In above Eq. (21), TP (True Positive) defines the outcome that the model accurately classifies 
the lung diseases types as itself e.g., pneumonia is classified as pneumonia. TN (True Negative) 
defines the outcome that the model the classifier accurately classifies the Covid-19 as Covid-
19. FP (False Positive) defines the outcome that the model inaccurately classifies the lung 
diseases (Atelectasis\Covid-19\Infiltrate\Normal\Pneumonia) as Atelectasis. FN (False 
Negative) defines the outcome that the model inaccurately classifies the Normal as Infiltrate. 
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Figure 3. Accuracy Comparison for lung disease category using CXR images 

 
Figure 4. Accuracy Comparison for lung disease category using CT images 

Figure 3 and  4 displays the accuracy (in %) achieved by CNN, VEDL, VGG, GCN, E2E-
DNN, EfficientNet v2-M, and EDepLDP models for diagnosing various lung disease 
categories such as Covid-19, Normal, Pneumonia, Atelectasis and Infiltrate using CT and CXR 
images respectively.  It is determined that the accuracy of EDepLDP for each category of lung 
diseases is superior to that of other classification models because it enhances the number of 
learning examples for each category of diseases from CXR and CT images. For example, in 
the categorization of atelectasis, the accuracy of EDepLDP is 22.90% and 29.44% greater than 
CNN, 16.27% and 24.61% greater than VEDL, 13.03% and 19.94% greater than VGG, 10.71% 
and 14.84% greater than GCN, 5.66% and 7.63% greater than E2E-DNN, 2.27% and 3.72% 
greater than EfficientNet v2-M for CXR and CT images respectively. This demonstrates that 
the suggested EDepLDP model is efficient to categorize lung disease with greater accuracy han 
all other existing models. 
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4.2 Precision 
It is the percentage of accurately categorized examples of lung diseases categories at TP and 
FP rates. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 

                                                                                            (22) 

 
Figure 5. Precision Comparison for lung disease category using CXR images 

 
Figure 6. Precision Comparison for lung disease category using CT images 

Figure 5 and  6 illustrates the precision (in %) obtained by CNN, VEDL, VGG, GCN, E2E-
DNN, EfficientNet v2-M, and EDepLDP models for diagnosing various lung disease 
categories such as Covid-19, Normal, Pneumonia, Atelectasis and Infiltrate using CT and CXR 
images respectively.  It is determined that the precision of EDepLDP for each category of lung 
diseases is superior to that of other classification models for each category of diseases from 
CXR and CT images. For example, in the case of Covid classification, the precision of 
EDepLDP is 22.27% and 28.11% greater than CNN, 17.18% and 20.78% greater than VEDL, 
14.76% and 14.75% greater than VGG, 11.68% and 10.26% greater than GCN, 7.69% and 
5.37% greater than E2E-DNN, 3.45 % and 2.87% greater than EfficientNet v2-M for CXR and 

70

75

80

85

90

95

Covid Normal Pneumonia Atelectasis Infiltrate

P
re

ci
si

on
 (

%
)

Lung diseases Categories

CXR Images

VEDL

 VGG

GCN

CNN

 E2E-DNN

EfficientNet v2-M

EDepLDP

70

75

80

85

90

95

100

Covid Normal Pneumonia Atelectasis Infiltrate

P
re

ci
si

on
 (

%
)

Lung diseases Categories

CT Images VEDL

 VGG

GCN

CNN

 E2E-DNN

EfficientNet v2-
M
EDepLDP



MULTIMODAL FEATURE AND TRANSFER LEARNING IN DEEP ENSEMBLE MODEL FOR LUNG DISEASE PREDICTION 

Journal of Data Acquisition and Processing Vol. 38 (2) 2023      288 
 

CT images respectively. This demonstrates that the suggested EDepLDP model is efficient to 
categorize lung disease with greater precision than all other existing models. 
4.3 Recall 
 It is the ratio of exactly classified categories of lung diseases cases at TP and FN rates. 

𝑅𝑒𝑐𝑎𝑙𝑙 =   
   

                                                                                                                     (23) 

 
Figure 7. Recall Comparison for lung disease category using CXR images 

 
Figure 8. Recall Comparison for lung disease category using CT images 

Figure 7 and  8 depicted the recall (in %) obtained by CNN, VEDL, VGG, GCN, E2E-DNN, 
EfficientNet v2-M, and EDepLDP models for diagnosing various lung disease categories such 
as Covid-19, Normal, Pneumonia, Atelectasis and Infiltrate using CT and CXR images 
respectively.  It is determined that the recall of EDepLDP for each category of lung diseases is 
superior to that of other classification models for each category of diseases from CXR and CT 
images. For example, in the case of pneumonia classification, the recall of EDepLDP is 30.11% 
and 23.97% greater than CNN, 20.55% and 19.16% greater than VEDL, 9.39 and 16.38% 
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greater than VGG, 7.38% and 10.59% greater than GCN, 4.16% and 8.65% greater than E2E-
DNN, 1.55% and 5.74% greater than EfficientNet v2-M for CXR and CT images respectively. 
Thus, it proves that the proposed models can increase the recall of classifying the lung diseases 
types compared to all other existing models. 
4.4 F1-Score 
It is defined as the weighted mean of precision and recall, with '1' being the highest and '0' 
being the lowest.  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
∙

                                                                                      (24) 

 
Figure 9. F1-score Comparison for lung disease category using CT images 

 
Figure 10. Comparison for lung disease category using CT images 

Figure 9 and  10 provides the F1-score (in %) obtained by CNN, VEDL, VGG, GCN, E2E-
DNN, EfficientNet v2-M, and EDepLDP models for diagnosing various lung disease 
categories such as Covid-19, Normal, Pneumonia, Atelectasis and Infiltrate using CT and CXR 
images respectively.  It is determined that the F1-score of EDepLDP for each category of lung 
diseases is superior to that of other classification models for each category of diseases from 
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CXR and CT images. For example, in the case of normal classification, the F1-score of 
EDepLDP is 30.27% and 30.90 greater than CNN, 24.62% and 25.34% greater than VEDL, 
9.39 and 20.09% greater than VGG, 14.62% and 13.25% greater than GCN, 8.77% and 7.68% 
greater than E2E-DNN, 4.56% and 3.29% greater than EfficientNet v2-M for CXR and CT 
images respectively. Thus, it proves that the proposed models can increase the F1-score of 
classifying the lung diseases types compared to all other existing models. 
5. CONCLUSION 
Lung diseases are one of the common causes of death worldwide and the number is increasing 
as new lethal viruses and infections are reported to infect the thoracic region e.g. Pneumonia 
Covid-19. Several CXR and CT based CAD systems are developed for timely diagnosis of 
lungs diseases. Most of these disease classification systems are not robust enough to provide 
an accurate classification results which also results in uncertainty. To overcome the limitations 
of existing approaches, this paper develops a DL model for rapid lung disease diagnosis using 
CXR and CT images. Initially, image segmentation is performed using the U-Net model to 
obtain an enhanced lung ROIs. Then, InceptionResNetV2 and Xception are used to extract 
hierarchically informative and discriminative features from segmented images. Finally, the 
retrieved deep features are sent into the softmax layer of conGRU-LSTM. Utilizing the TL 
model, learnt weight for InceptionResNetV2, Xception, and conGRU-LSTM was gained from 
an pre-trained Efficient-Net for the efficient classification of various lung disorders. Compared 
to conventional CNN models, the EDepLDP model achieves an accuracy of % and % on the 
gathered CXR and CT images as demonstrated by the test results. 
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