£-SMARANDACHE PSEUDO FRESH AND FANTASTIC FUZZY IDEAL OF A

 PSEUDO BH-ALGEBRAFalah Mahdi Atshan*1, Ameer M. Sahi ${ }^{2}$
1 The General Directorate of Education in Al- Najaf Al-Ashraf, Al- Najaf Al-Ashraf, Iraq 2 department of mathematics, open educational college , Babylon, Babylon , Iraq

Abstract

The construct of a pseudo BH- algebra's $£$-Smarandache pseudo fuzzy ideal was used in this research. To learn more about this concept's characteristics and to understand how it relates to the pseudo $\mathrm{BH}-$ algebraic $£$-Smarandache pseudo ideal, some thoughts and examples are examined.

1. Introduction

In [10], an algebraic structure known as ISEKI and K.Y. IMAI is a BCK-algebra. In 1966. in [11], a BH-algebra is presented by Y. B. Jun in 1998. In [4], H.H. Abbass and Sh.J. Mohammed introduced the idea of £-Smarandache BH-algebra in 2013. In[15], 2015 saw the introduction of the idea of pseudo BH- algebra by Y.B.Jun et al. In [3], The concepts of pseudofresh ideal and pseudo-fantastic ideal of pseudo BH-algebra are introduced by H.H. Abbass and A.H. Nouri in 2017. In[7], the pseudo £-Smarandache implicative ideal, pseudo £Smarandache positive implicative ideal, and pseudo $£$-Smarandache pseudo BH-algebra presented by H.H. Abbass and A. A. Jabbar in 2018. The idea of a pseudo fuzzy ideal of a pseudo BH-algebra was introduced the same year by H.H. Abbass and A. A. Muteshr. The pseudo implicative fuzzy ideal and the pseudo positive implicative fuzzy ideal of a pseudo BHalgebra are studied in this.
Keywords: fuzzy ideal Pseudo, £-Smarandache Pseudo(closed fuzzy ideal, completely closed fuzzy ideal, strong fuzzy ideal, implicative fuzzy ideal and positive implicative fuzzy ideal).
Definition 2.1[13]:
Let ID be a non-empty subset of a Pseudo BH -alga G.Then ID is referred as a Pseudo ideal of G, abbreviated by Pso.ID if it matches:
i. $0 \in I D$; ii. $x \odot y, x \neq y \in I D$ and $y \in I D$ imply $x \in I D, \forall x, y \in G$.

Definition 2.2[3]:

Let ID be a non-empty subset of a Pseudo of a BH -alga G. Then ID is referred as a Pseudo closed ideal of G , abbreviated by Pso.C.ID if it matches:
For all $x \in I D, 0 \odot x, 0 \# x \in I D$.

Definition 2.3[3]:

Let ID be a Pseudo-ideal of a BH -alga G. Then ID is referred as a Pseudo compeletly closed ideal of G, abbreviated by Pso.C.C.ID if it matches :
$x \bigodot y, x \neq y \in I D$, for all $x, y \in I D$.

Remark 2.4[3]:

Every a Pso.C.C.ID of a Pso.BH -alga G is a Pso.C.ID of G.
Definition 2.5/13]:

A non-empty subset ID of a Pso.BH -alga G. ID is referred as a Pseudo strong ideal of G and abbreviated by Pso.St.ID if it satisfies: for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in G$:
i. $0 \in I D$;
ii. $(\mathrm{x} \odot \mathrm{y}) \# \mathrm{z} \in I D$ and $\mathrm{y} \in I D \Rightarrow \mathrm{x} \odot \mathrm{z} \in I D$;
iii. ($\mathrm{x} \# \mathrm{y}$) $\odot \mathrm{z} \in I D$ and $\mathrm{y} \in I D \Rightarrow \mathrm{x} \# \mathrm{z} \in I D$.

Definition 2.6[7]:
£-Smarandache Pseudo BH-algebra, abbreviated by £-S. Pso.BH -alga is Pso.BH-alga G It already has a suitable subset $£$ of G such that .
i. $0 \in £$ and $|£| \geq 2$;
ii. $£$ is a BCK-alga as part of the operations of G.

Definition 2.7[6]:

G, just be $£$-S. Pso.BH -algebra. Then a non-empty subset ID of G is referred as $£-$
Smarandache Pseudo ideal of G, abbreviated by £-S. Pso.ID of G if it :
i. $0 \in I D$;
ii. $x \odot y, x \neq y \in I D$ and $y \in I D$ imply $x \in I D, \forall x \in £$.

Definition 2.8[6]:

A £-S. Pso.ID of £-S. Pso.BH - alga is referred as £-Smarandache Pseudo closed ideal of G, abbreviated by $£$-S. Pso.C.ID if:
$0 \bigcirc x, 0 \# x \in I D, \forall x \in I D$.

Definition 2.9[6]:

£-S.Pso.ID of $£$-S.Pso.BH-alga is referred as $£$-Smarandache Pseudo completely closed ideal of G, abbreviated by $£$-S. Pso.C.C.ID of G if:
$x \odot y, x \neq y \in I D, \forall x, y \in I D$.
Definition 2.10[7]:
£-S. Pso.ID of £-S. Pso.BH-alga G is referred as £-Smarandache Pseudo strong ideal of G, abbreviated by $£-S$. Pso.St.ID if it matches:

$$
\begin{aligned}
& \text { i. }(x \odot y) \# z \in I D \text { and } y \in I D \Rightarrow x \odot z \in I D, \forall x, z \in £ \\
& \text { ii. }(x \# y) \odot z \in I D \text { and } y \in I D \Rightarrow x \# z \in I D, \forall x, z \in £ .
\end{aligned}
$$

Definition 2.11[7]:

A pseudo ideal of a pseudo BH - alga G is referred as a pseudo implicative ideal of G , abbreviated by Pso.Im.ID if:
i. $0 \in \mathrm{ID}$
ii. $(x \odot(y \odot x)) \# z \in I D$ and $z \in I D \Rightarrow x \in I D \forall x, y, \in G$
iii. $(x \#(y \# x)) \odot z \in \operatorname{ID}$ and $z \in I D \Rightarrow x \in I D \forall x, y, \in G$

Definition 2.12 [7]:
A $£$-S. Pso.ID of a $£$-S. Pso.BH-alga is referred asa $£$-Smarandache pseudo implicative ideal of G , abbreviated by $£$-S. Pso.Im.ID if it matches:
i. $(x \odot(y \odot x)) \# z \in I D$ and $z \in I D \Rightarrow x \in I D \forall x, y, \in £$
ii. $(x \#(y \# x)) \odot z \in \operatorname{ID}$ and $z \in I D \Rightarrow x \in I D \forall x, y, \in £$

Definition 2.13[7]:

A pseudo ideal of a pseudo BH -alga G is referred as a pseudo positive implicative ideal of G , abbreviated by Pso.Po.Im.ID if:
i. $0 \in$ ID, ii. $(x \odot y) \# z \in I D$ and $y \# z \in I D \Rightarrow x \odot z \in I D \forall x, y \in G$ and $z \in I D$
iii.. ($x \# y$) $\odot z \in I D$ and $y \odot z \in I D \Rightarrow x \neq z \in I D \forall x, y \in G$ and $z \in I D$

Definition 2.14[7]:
A $£$-Pso.S.ID of a $£$-S.Pso.BH -alga is referred as a $£$-Smarandache pseudo positive implicative ideal of G, abbreviated by $£$-S. Pso.Po.Im.ID if it matches:
i. $(x \odot y) \# z \in I D$ and $y \# z \in I D \Rightarrow x \odot z \in I D \forall x, y \in £$ and $z \in I D$
ii.. $(x \not \# y) \odot z \in I D$ and $y \odot z \in I D \Rightarrow x \neq z \in \operatorname{ID} \forall x, y \in £$ and $z \in I D$

Definition 2.15[15]:

A ambiguousset (ambiguoussubset) in a non-empty set G is a function from G into the unitclosed real number range $[0,1]$.
Definition 2.16 [15]:
Let \mathcal{J} be a ambiguoussubset in G and $\alpha \in[0,1]$. The set $\mathcal{J}_{\alpha}=\{\mathrm{x} \in \mathrm{G}, \mathcal{J}(\mathrm{x}) \geq \alpha\}$ is referred as a level subset of \mathcal{J}.
Definition 2.17[9]:
In any two ambiguous sets $\mathcal{J}_{1}, \mathcal{J}_{2}$ and we have:
i. $\left(\mathcal{J}_{1} \cap \mathcal{J}_{2}\right)(x)=\min \left\{\left(\mathcal{J}_{1}(x), \mathcal{J}_{2}(x)\right\}, \forall x \in G\right.$;
ii. $\left(\mathcal{J}_{1} \cup \mathcal{J}_{2}\right)(\mathrm{x})=\max \left\{\left(\mathcal{J}_{1}(\mathrm{x}), \mathcal{J}_{2}(\mathrm{x})\right\}, \forall \mathrm{x} \in \mathrm{G}\right.$.
$\mathcal{J}_{1} \cap \mathcal{J}_{2}$ and $\mathcal{J}_{1} \cup \mathcal{J}_{2}$ are ambiguoussets in G. For the most part, if $\left\{\mathcal{J}_{\Gamma}, \Gamma \in \lambda\right\}$ is a family of ambiguoussets in G . Then $\left(\cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{x})\right)=\inf \left\{\mathcal{J}_{\Gamma}(\mathrm{x}), \Gamma \in \lambda\right\}, \forall \mathrm{x} \in \mathrm{G}$ and $\left(U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{x})\right)=$ $\operatorname{Sup}\left\{\mathcal{J}_{\Gamma}(\mathrm{x}): \Gamma \in \lambda\right\}, \forall \mathrm{x} \in \mathrm{G}$, and which ambiguoussets in G .
Definition 2.18[5]:
Suppose that ($\mathrm{G}, *, \#, 0$) is a Pso.BH-alga and ID is anonempty subset of a BH-alga G. Then \mathcal{J} is referred as a Pseudo fuzzy ideal of G. Abbreviated by Pso. Fu.ID if it matches : for all $x, y \in G$
i. $\mathcal{J}(0) \geq \mathcal{J}(\mathrm{x})$;
ii. $\mathcal{J}(\mathrm{x}) \geq \inf \{\mathcal{J}(\mathrm{x} \odot \mathrm{y}), \mathcal{J}(\mathrm{x} \# \mathrm{y}), \mathcal{J}(\mathrm{y})\}$.

Definition 2.19[1]:
G, just be £-S.Pso.BH-algebra. A ambiguous subset \mathcal{J} of G is referred as $£$-Smarandache Pseudo fuzzy ideal of G, abbreviated by $£$-S. Pso.Fu.ID of G if it matches:
i. $\mathcal{J}(0) \geq \mathcal{J}(x) \quad \forall x \in G ; \quad$ ii. $\mathcal{J}(x) \geq \inf \{\mathcal{J}(x \odot y), \mathcal{J}(x \neq y), \mathcal{J}(y)\}$ for all $y \in$
G and $x \in £$.
Definition 2.20[1]:
\mathcal{J} is £-S. Pso.Fu.ID of £-S.P.BH- alga G is said to be closed, abbreviated by $£$-S. Pso.C.Fu.ID if $\min \{\mathcal{J}(0 \odot \mathrm{x}), \mathcal{J}(0 \# \mathrm{x})\} \geq \mathcal{J}(\mathrm{x})$, for every $\mathrm{x} \in \mathrm{G}$.
Definition 2.21[1]:
G, just be £-S. Pso.BH-alga and \mathcal{J} be $£-S$. Pso.Fu.ID of G. Then , \mathcal{J} is referred as $£-$ Smarandache Pseudo completely closed fuzzy ideal, abbreviated by £-S.Pso.C.C.Fu.ID if $\min \{\mathcal{J}(\mathrm{x} \odot \mathrm{y}), \mathcal{J}(\mathrm{x} \# \mathrm{y})\} \geq \min \{\mathcal{J}(\mathrm{x}), \mathcal{J}(\mathrm{y})\}$ for every $\mathrm{x}, \mathrm{y} \in \mathrm{G}$.
Definition 2.22[1]:
£-S.P.Fu.ID \mathcal{J} of $£-S$. Pso.BH -alga G is said to be £-Smarandache Pseudo strong
fuzzy ideal of G, abbreviated by £-S. Pso.St. Fu.ID if it matches:
i. $\mathcal{J}(0) \geq \mathcal{J}(x), \forall x \in £$;
ii. $\mathcal{J}(\mathrm{x} \odot \mathrm{z}) \geq \min \{\mathcal{J}((\mathrm{x} \odot \mathrm{y}) \# \mathrm{z}), \mathcal{J}(\mathrm{y})\}, \quad \forall \mathrm{x}, \mathrm{z} \in £, \mathrm{y} \in \mathrm{G}$;
iii. $\mathcal{J}(\mathrm{x} \# \mathrm{z}) \geq \min \{\mathcal{J}((\mathrm{x} \# \mathrm{y}) \odot \mathrm{z}), \mathcal{J}(\mathrm{y})\}, \quad \forall \mathrm{x}, \mathrm{z} \in £, \mathrm{y} \in \mathrm{G}$.

Theorem 2.23[1]:
$\operatorname{Let}\left\{\mathcal{J}_{\Gamma}: \Gamma \in \lambda\right\}$ form a chain of $£$-S.Pso. Fu.ID of $£$-S. Pso.BH-alga G. Then $U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}$ is $£$ -
S. Pso. Fu.ID of G.

3. A £-Smarandache Pseudo Implicative Fuzzy Ideal of £-S. Pso.BH-algebra

This section introduces the concepts of a pseudo implicative fuzzy ideal, a pseudo positive implicative fuzzy ideal, and a pseudo implicative fuzzy ideal according to $£$ Smarandache with several theorems, suggestions, and examples.
Definition 3.1
A pseudo ambiguous ideal of a pseudo $\mathrm{BH}-$ alga G is denominated a pseudo implicative fuzzy ideal of G, abbreviated by Pso.Im. Fu.ID if :
i. $\mathcal{J}(0) \geq \mathcal{J}(\mathrm{x}) \quad \forall \mathrm{x} \in \mathrm{G}$;
ii. $\mathcal{J}(\mathrm{x}) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}(\mathrm{z})\}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{G}$
iii. $\mathcal{J}(\mathrm{x}) \geq \min \{\mathcal{J}((\mathrm{x} \#(\mathrm{y} \# \mathrm{x})) \odot \mathrm{z}), \mathcal{J}(\mathrm{z})\}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{G}$

Example 3.2
Meditation the a pseudo $\mathrm{BH}-$ alga $\mathrm{G}=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}\}$ using binary operations " $\mathrm{O}^{\mathrm{\prime}}$ and " \# "are displayed in the following spreadsheets:

\odot	0	k	m	n
0	0	k	0	0
k	k	0	k	k
m	m	m	0	m
n	n	n	n	0

Then The ambiguous

$\#$	0	k	m	n
0	0	0	k	0
k	k	0	0	k
m	m	m	0	m
n	n	m	n	0

subset \mathcal{J} it is described to as:
$\mathcal{J}(\mathrm{x})=\left\{\begin{array}{ll}\Psi_{1} & \mathrm{x}=0, \mathrm{k} \\ \Psi_{2} & \mathrm{x}=\mathrm{m}, \mathrm{n}\end{array} \quad\right.$ where $\Psi_{1}, \Psi_{2} \in[0,1]$ and $\Psi_{1}>\Psi_{2}$,
is a Pso.Im. Fu.ID of G.

Definition 3.3

£-S. Pso. Fu.ID of $£-\mathrm{S}$. Pso.BH-alga is denominated $£$-Smarandache pseudo implicative fuzzy ideal of G, abbreviated by $\mathbf{f - S}$. Pso. Fu.Im.ID if:
i. $\mathcal{J}(x) \geq \min \{\mathcal{J}((x \odot(y \odot x)) \# z), \mathcal{J}(z)\} \forall x, y \in £, z \in G$
ii. $\mathcal{J}(\mathrm{x}) \geq \min \{\mathcal{J}((\mathrm{x} \#(\mathrm{y} \# \mathrm{x})) \odot \mathrm{z}), \mathcal{J}(\mathrm{z})\} \forall \mathrm{x}, \mathrm{y} \in £, \mathrm{z} \in \mathrm{G}$

Example 3.4

Meditation the $£-\mathrm{S} . \mathrm{Pso} . \mathrm{BH}-\mathrm{alga} \mathrm{G}=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}\}$ using binary operations " $\mathrm{O}^{\prime \prime}$ and " \# "are displayed in the following spreadsheets:

\odot	0	k	m	n
0	0	0	0	n
k	k	0	k	n
m	m	m	0	n
n	n	n	n	0

$\#$	0	k	m	n
0	0	0	0	n
k	k	0	m	n
m	m	m	0	n
n	n	n	n	0

and $£=\{0, \mathrm{~b}\}$. The ambiguous subset \mathcal{J} it is described to as
$\mathcal{J}(\mathrm{x})=\left\{\begin{array}{cc}\Psi_{1} & \mathrm{x}=0, \mathrm{k}, \\ \Psi_{2} & \text { o. w }\end{array} \quad\right.$ where $\Psi_{1}, \Psi_{2} \in[0,1]$ and $\Psi_{1}>\Psi_{2}$, is $£$-S. Pso.Im. Fu.ID of
G.

Theorem 3.5

G, just be $£$-S.P.BH-algebra. Then \mathcal{J} is $£$-S. Pso. Im. Fu.ID of G if and only if \mathcal{J}_{Ψ} is $£-S$.
Pso. Im.ID of G, for all $\beta \in[0, \mathcal{J}(0)], \mathcal{J}(0)=\operatorname{Sup}\{\mathcal{J}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{X}\}$.

Proof:

Let $\Psi \in[0, \mathcal{J}(0)]$.
To prove \mathcal{J}_{Ψ} is £-S. Im. Pso.ID of G. [Since \mathcal{J} is £-S. Im. Pso. Fu.ID of G]
Now, let $\mathcal{J}((x \odot(y \odot x)) \# z) \in \mathcal{J}_{\Psi}$ and $\mathcal{J}(z) \in \mathcal{J}_{\Psi}$
$\Rightarrow \mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z} \geq \Psi$ and $\mathcal{J}(\mathrm{z}) \geq \Psi$.
To prove $\mathrm{x} \in \mathcal{J}_{\Psi}$
We have $\mathcal{J}(x) \geq \min \{\mathcal{J}((x \odot(y \odot x)) \# z), \mathcal{J}(z)\}[B y$ Definitionf-S. Im. Pso. Fu.ID]
Since $\mathcal{J}((x \odot(y \odot x)) \# z) \geq \Psi$ and $\mathcal{J}(z) \geq \Psi$
$\Rightarrow \min \{\mathcal{J}((x \odot(y \odot x)) \# z), \mathcal{J}(z)\} \geq \Psi$
$\Rightarrow \mathcal{J}(\mathrm{x}) \geq \Psi \Rightarrow \mathrm{x} \in \mathcal{J}_{\Psi}$
Similarly, $\mathcal{J}(\mathrm{x}) \geq \Psi \Rightarrow \mathrm{x} \in \mathcal{J}_{\Psi} \Rightarrow \mathcal{J}_{\Psi}$ is $£$-S. Pso. Im.ID of G.
Conversely, to prove \mathcal{J} is $£$-S. Pso. Im. Fu.ID of G.
Since \mathcal{J}_{Ψ} is $£$-S. Pso. Im.ID of G.
Let $\Psi=\operatorname{Sup}\{\mathcal{J}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{X}\}, \mathrm{x}, \mathrm{y} \in £$ and $\mathrm{z} \in \mathrm{G}$ and $((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}),(\mathrm{z})) \in \mathcal{J}_{\Psi}$
$\Rightarrow \mathrm{x} \in \mathcal{J}_{\Psi}$
[By Definition $£-$ S. Pso. Im. ID]
$\Rightarrow \mathcal{J}(\mathrm{x}) \geq \Psi \Rightarrow \mathcal{J}(\mathrm{x})=\Psi$
$[$ Since $\Psi=\operatorname{Sup}\{\mathcal{J}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{G}\}]$
Similarly, $\mathcal{J}((x \odot(y \odot x)) \# z)=\Psi$ and $\mathcal{J}(z)=\Psi$
$\square \Psi=\min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \neq \mathrm{z}), \mathcal{J}(\mathrm{z})\} \square \square \square$
$\square \mathcal{J}(\mathrm{x}) \geq \min \{\mathcal{J}(((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}(\mathrm{z})\}$
Similarly, $\square \square \mathrm{x} \in \mathcal{J}_{\Psi} \quad$ [By Definition $£$ - S. Pso. Im. ID]
$\Rightarrow \mathcal{J}(\mathrm{x}) \geq \Psi \Rightarrow \mathcal{J}(\mathrm{x})=\Psi \quad[$ Since $\Psi=\operatorname{Sup}\{\mathcal{J}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{G}\}]$
and
$\Rightarrow \mathcal{J}((x \#(y \# x)) \odot z)=\Psi$ and $\mathcal{J}(z)=\Psi$
$\Rightarrow \Psi=\min \{\mathcal{J}((x \#(y \# x)) \odot z), \mathcal{J}(z)\}$
$\Rightarrow \mathcal{J}(x) \geq \min \{\mathcal{J}(((x \#(y \# x)) \odot z), \mathcal{J}(z)\} \Rightarrow \mathcal{J}$ is $£-S$. Pso. Im. Fu.ID of G

Suggestion 3.6

If G is $£-$ S.Pso.BH-alga and \mathcal{J} be a Pso.Im.ID of G. then \mathcal{J} is $£$-S.Pso.Fu.Im.ID of G.

Proof:

It is clear. [since $£ \subseteq G$].

Remark 3.7

The converse of Suggestion (3.5) not be true generally .

Example 3.8

Meditation the $£$-S. Pso. Fu.ID in example (3.4) is $£$-S.Pso. Fu.Im.ID of G, but is not is a Pso. Fu.Im.ID of G. Since

$$
\begin{aligned}
& \mathcal{J}(\mathrm{n})<\min \{\mathcal{J}((\mathrm{n} \odot(\mathrm{~m} \odot \mathrm{n})) \nexists 0), \mathcal{J}(0)\} \\
& \mathcal{J}(\mathrm{n})<\min \{\mathcal{J}(\mathrm{n} \#(\mathrm{~m} \# \mathrm{n})) \odot 0), \mathcal{J}(0)\}
\end{aligned}
$$

Suggestion 3.9

G, just be $£-$ S. Pso.BH-alga and \mathcal{J} be $£$-S.Pso. Fu.Im.ID of G. then \mathcal{J} is $£$-S. Pso. Fu.ID of G.

Proof:

It is clear. [since $£ \subseteq G]$.

Remark 3.10

The converse of Suggestion (3.8) not be true in general.

Example 3.11

Meditation the $£$-S.Pso. $\mathrm{BH}-$ alga $\mathrm{G}=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{t}\}$ with the binary operations " \odot " and "\#"are displayed in the following spreadsheets:

\odot	0	k	m	n	p	t
0	0	0	0	0	0	t
k	k	0	k	0	k	k
m	m	m	0	m	0	n
n	n	k	n	0	n	m
p	p	p	p	p	0	m
t	t	t	t	t	t	0

$\#$	0	k	m	n	p	t
0	0	0	0	0	0	t
k	k	0	k	0	k	k
m	m	m	0	m	0	m
n	n	k	n	0	n	m
p	p	p	p	p	0	p
t	t	t	t	t	t	0

and $£=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{p}\}$. The ambiguoussubset \mathcal{J} it is described to as
$\mathcal{J}(\mathrm{x})=\left\{\begin{array}{ll}\Psi_{1} & \mathrm{x}=0, \mathrm{k}, \mathrm{n} \\ \Psi_{2} & \text { o. } \mathrm{w}\end{array} \quad\right.$ where $\Psi_{1}, \Psi_{2} \in[0,1]$ and $\Psi_{1}>\Psi_{2}$,
is $£$-S.Pso.ID of G, but it is not $£$-S.Pso. Fu.Im.ID of G. Since:

$$
\begin{aligned}
& \left.\mathcal{J}(\mathrm{m})=\Psi_{2}<\min \{\mathcal{J}(\mathrm{m} \odot(\mathrm{p} \odot \mathrm{~m})) \sharp \mathrm{k}), \mathcal{J}(\mathrm{k})\right\}=\Psi_{1} \\
& \mathcal{J}(\mathrm{~m})=\Psi_{2}<\min \{\mathcal{J}((\mathrm{m} \#(\mathrm{p} \# \mathrm{~m})) \odot \mathrm{k}), \mathcal{J}(\mathrm{k})\}=\Psi_{1}
\end{aligned}
$$

Suggestion 3.12

If \mathcal{J} is $£$-S. Pso. Fu.ID of $£$-S. Pso.BH-alga G satisfiesthe condition ,$x \odot y=x \neq y=x$ with $x \neq y, \forall x \in £$. then \mathcal{J} £-S. Pso. Fu.Im.ID of G .

Proof:

Let \mathcal{J} be $£$-S. Pso. Fu.ID of G Now, let $x, y \in £$ suth that $\mathcal{J}(\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}(\mathrm{z})\}$ [since $\mathcal{J} £-S$. Pso. Fu.ID of G$]$
Now, we have two cases.
Case 1 If $x=y$
$\Rightarrow \mathcal{J}(\mathrm{x} \odot(\mathrm{x} \odot \mathrm{x}))=\mathcal{J}(\mathrm{x} \odot 0)=\mathcal{J}(\mathrm{x}) \quad$ [Since G is BCK-algebra

$$
\mathcal{J}(\mathrm{G}) \geq \min \{\mathcal{J}(\mathrm{x} \odot \mathrm{x})=\mathcal{J}(0), \mathcal{J}(\mathrm{x} \odot 0)=\mathcal{J}(\mathrm{x})]
$$

Case 2

If $x \neq y \Rightarrow \mathcal{J}(x) \geq(x \odot(y \odot x))=\mathcal{J}(x \odot y)=\mathcal{J}(x) \quad[$ since $x \odot y=x]$
Similarly, $\mathcal{J}(x) \geq \min \{\mathcal{J}((x \#(y \# x)) \odot z), \mathcal{J}(z)\}$
Therefore, ID $£$-S. Pso. Fu.Im.ID of G

Suggestion 3.13

G, just be $£-\mathrm{S}$. Pso.BH-alga If \mathcal{J} is $£-\mathrm{S}$. Pso. Fu.Fr.ID of G such that $£ \odot \mathcal{J}$ is ambiguous ideal of \mathcal{J} and $£ \nexists \mathcal{J}$ is ambiguous ideal of \mathcal{J}. then \mathcal{J} is $£$-S. Pso.Im.ID of G.

Proof:

Let \mathcal{J} be $£-S$. Pso.Fr. Fu.ID of $G . \Rightarrow \mathcal{J}$ be $£-\mathrm{S}$. Pso. Fu.ID of G .
Now, let $x, y \in £$ and $z \in \mathcal{J}$
$\mathcal{J}(\mathrm{x} \odot \mathrm{z}) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}(\mathrm{z})\}$
since $y, x \in £$ and $y \odot x \in £, \quad[$ since $£ \odot \mathcal{J}$ is ambiguous ideal of $\mathcal{J}]$
$\Rightarrow \mathcal{J}(x \odot z) \geq \min \{\mathcal{J}((x \odot(y \odot x)) \# z), \mathcal{J}((y \odot x) \# z)\}[$ since $£-S . P s o$. Fu.Fr.ID of G]
$\Rightarrow \mathcal{J}(\mathrm{x}) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}((\mathrm{y} \odot \mathrm{x}) \# \mathrm{z})\} \quad$ [since $£$-S.Pso. Fu.ID of G$]$
Similarly, $\mathcal{J}(x) \geq \min \{\mathcal{J}((x \#(y \# x)) \odot z), \mathcal{J}((y \odot x) \# z)\}$
Hence, \mathcal{J} is $£$-S. Pso. Fu.Im.ID of G

Suggestion 3.14

G, just be $£-S$. Pso.BH-alga and \mathcal{J} be $£-S$. Pso.St. Fu.ID of G that is contained in $£$. then \mathcal{J} is $£$-S.Pso.Fu.Im.ID of G.

Proof:

Let \mathcal{J} be $£$-S. Pso.St. Fu.ID of G. $\Rightarrow \mathcal{J}$ be $£-S$. Pso. Fu.ID of G
Now, let $x, y \in £$
$\mathcal{J}(\mathrm{y} \odot \mathrm{x}) \geq \min \mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}(\mathrm{z})\} \quad[$ since, $\mathrm{x}, \mathrm{y} \in £$ and $£ \subseteq \mathcal{J}]$
$\mathcal{J}(y \odot z) \geq \min \mathcal{J}((x \odot(y \odot x)) \# z), \mathcal{J}(y \odot x)\} \quad$ [by definition £-S. Pso.St. Fu.ID of G]
$\mathcal{J}(\mathrm{x}) \geq \min \mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}(\mathrm{z})\} \quad$ [since \mathcal{J} is $£$-S. Pso. Fu.ID of G]
Similarly, $\mathcal{J}(x) \geq \min \mathcal{J}((x \#(y \# x)) \odot z), \mathcal{J}(z)\}$
Hence , \mathcal{J} is $£$-S. Pso. Fu.Im.ID of G.

Remark 3.15

£-S. Pso. Fu.Im.ID of $£-S$. Pso.BH-alga may not be $£-S$. Pso.St.Fu.ID as in the following example.
Example 3.16
Meditation the £-S.Pso.BH-alga $\mathrm{G}=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{t}\}$ using binary operations " O "and " \#"are displayed in the following spreadsheets:

\odot	0	k	m	n	p	t
0	0	0	0	0	0	t
k	k	0	0	0	k	k
m	m	p	0	0	n	n
n	n	m	n	0	n	p
p	p	p	p	p	0	p
t	t	t	t	t	t	0

$\#$	0	k	m	n	p	t
0	0	0	0	0	0	t
k	k	0	0	0	k	k
m	m	p	0	m	0	m
n	n	m	n	0	n	m
p	p	p	p	p	0	p
t	t	t	t	t	t	0

and $£=\{0, \mathrm{~m}, \mathrm{n}\}$. The ambiguoussubset \mathcal{J} it is described to as
$\mathcal{J}(\mathrm{x})=\left\{\begin{array}{cc}\Psi_{1} & \mathrm{x}=0, \mathrm{n} \\ \Psi_{2} & \text { o. w }\end{array} \quad\right.$ where $\Psi_{1}, \Psi_{2} \in[0,1]$ and $\Psi_{1}>\Psi_{2}$,
is $£$-S. Pso. Fu.Im.ID of G, but it is not $£-S$. Pso.St. Fu.ID of G. Since:
$\mathcal{J}(\mathrm{m} \odot 0)=\mathcal{J}(\mathrm{m})=\Psi_{2}<\min \{\mathcal{J}((\mathrm{m} \odot \mathrm{n}) \# 0), \mathcal{J}(\mathrm{n})\}=\Psi_{1}$

Suggestion 3.17

If $\left\{\mathcal{J}_{\Gamma}: \Gamma \in \lambda\right\}$ is a family of $£$-S. Pso.Im. Fu.ID of a S. Pso. BH - alga , then $\cap_{\Gamma \in \lambda} \mathcal{J}{ }_{\Gamma}$ is £-S. Pso.Im.. Fu.ID of G.

Proof:

i. Let us just say $\mathrm{x} \in \mathrm{G} . \cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(0)=\inf \left\{\mathcal{J}_{\Gamma}(0), \Gamma \in \lambda\right\} \geq \inf \left\{\mathcal{J}_{\Gamma}(\mathrm{x}), \Gamma \in \lambda\right\}$
[Since \mathcal{J}_{Γ} is $£$-S. Pso.Im. Fu.ID of $G, \forall \Gamma \in \lambda$ and using Definition (3.1)(i)];

$$
=\bigcap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{x}) \Rightarrow \cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(0) \geq \cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{x})
$$

ii. Let $\mathrm{x}, \mathrm{y} \in £$ and $\mathrm{z} \in \bigcap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}$
such that $\mathcal{J}_{\Gamma}(\mathrm{x}) \geq \min \left\{\mathcal{J}_{\Gamma}(\mathrm{x} *(\mathrm{y} \mathcal{O}) \# \mathrm{z}), \mathcal{J}_{\Gamma}(\mathrm{z})\right\}, \forall \Gamma \in \lambda$
$\cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{x})=\inf \left\{\mathcal{J}_{\Gamma}(\mathrm{x}): \Gamma \in \lambda\right\} \geq \min \left\{\mathcal{J}_{\Gamma}(\mathrm{x} *(\mathrm{y} \odot \mathrm{x}) \# \mathrm{z}), \mathcal{J}_{\Gamma}(\mathrm{z}), \Gamma \in \lambda\right\}$
[since \mathcal{J}_{Γ} is $£$-S. Pso.Im. Fu.ID of $G, \forall \Gamma \in \lambda$ and using Definition (3.1)(ii)].
$\geq \min \left\{\inf \left\{\mathcal{J}_{\Gamma}(\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x}) \# \mathrm{z}), \Gamma \in \lambda\right\}, \inf \left\{\mathcal{J}_{\Gamma}(\mathrm{z}), \Gamma \in \lambda\right\}\right\}$
$\geq \inf \left\{\cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(x \odot(y \odot x) \# z), \cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(z)\right\}$
$\Rightarrow \bigcap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}$ is $\quad £$-S. Pso.Im. Fu.ID of G.
Similarly, $\cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma} \geq \inf \left\{\cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{x} \#(\mathrm{y} \# \mathrm{x}) \odot \mathrm{z}), \cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{z})\right\}$
Therefore, $\cap_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}$ is $£$-S. Pso.Im. Fu.ID of G.

Remark 3.18

If $\{\mathcal{J} \Gamma: \Gamma \in \lambda\}$ is a family of $£$-S. Pso.Im. Fu.ID of $£$-S. Pso.BH-alga G. Then $U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}$ maybe not to be $£$-S. Pso.Im. Fu.ID of G.

Example 3.19

Meditation the $£-\mathrm{S}$. Pso. $\mathrm{BH}-$ alga $\mathrm{G}=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{t}\}$ using binary operations " \bigcirc " and " \# "are displayed in the following spreadsheets:

		k		n	p	t
	0	0	0	0	0	0
k	k	0	0	0	0	k
	m	m	0	0	k	k
n	n	m	k	0	k	k
p	p	p	p	p	0	k
t	t	t	t	t	t	0

		k		n	p	t
	0	0	0	0	0	0
k	k	0	0	0	k	k
	m	m	0	0	k	k
n	n	m	k	0	k	k
p	p	p	p	p	p	k
t	t	t	t	t	t	0

and $£=\{0, \mathrm{~m}\}$. The ambiguoussubsets \mathcal{J}_{1} and \mathcal{J}_{2} which are recognized as :
$\mathcal{J}_{1}(\mathrm{x})=\left\{\begin{array}{c}0.9 \text { if } \mathrm{x}=0, \mathrm{k} \\ 0.4 \text { if } \mathrm{x}=\mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{t}\end{array} \quad, \quad \mathcal{J}_{2}(\mathrm{x})=\left\{\begin{array}{c}0.8 \text { if } \mathrm{x}=0, \mathrm{t} \\ 0.3 \text { if } \mathrm{x}=\mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{p}\end{array}\right.\right.$
are $£$-S. Pso.Im. Fu.ID of G but the ambiguoussubset $\mathcal{J}_{1} \cup \mathcal{J}_{2}$ defined by
$\mathcal{J}_{1} \cup \mathcal{J}_{2}(\mathrm{x})=\left\{\begin{array}{ccc}0.9 & \text { if } & \mathrm{x}=0, \mathrm{k} \\ 0.8 & \text { if } & \mathrm{x}=\mathrm{t} \\ 0.4 & \text { if } & \mathrm{x}=\mathrm{m}, \mathrm{n}, \mathrm{p}\end{array}\right.$
is not $£$-S. Pso.Im. Fu.ID of G, since

$$
\begin{gathered}
\mathcal{J}_{1} \cup \mathcal{J}_{2}(\mathrm{~m})=0.4<\min \left\{\mathcal{J}_{1} \cup \mathcal{J}_{2}(\mathrm{~m} \odot(0 \odot \mathrm{~m}) \# \mathrm{t}), \mathcal{J}_{1} \cup \mathcal{J}_{2}(\mathrm{t})\right\} \\
\left.=\min \left\{\mathcal{J}_{1} \cup \mathcal{J}_{2}(\mathrm{~m} \odot 0) \# \mathrm{t}\right), \mathcal{J}_{1} \cup \mathcal{J}_{2}(\mathrm{t})\right\}=\min \left\{\mathcal{J}_{1} \cup \mathcal{J}_{2}(\mathrm{~m} \# \mathrm{t}), \mathcal{J}_{1} \cup \mathcal{J}_{2}(\mathrm{t})\right\} \\
=\min \left\{\mathcal{J}_{1} \cup \mathcal{J}_{2}(\mathrm{k}), \mathcal{J}_{1} \cup \mathcal{J}_{2}(\mathrm{t})\right\}=0.8
\end{gathered}
$$

Suggestion 3.20

If $\left\{\mathcal{J}_{\Gamma}: \Gamma \in \lambda\right\}$ is a chain of $£-$ S. Pso.Im. Fu.ID of $£$-S. Pso. BH-alga G. then $U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}$ is $£-$ S. Pso.Im. Fu.ID of G .

Proof:

since each \mathcal{J}_{Γ} is $£$-S. Pso. Fu.ID of $G \forall \Gamma \in \lambda$
$\Rightarrow U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}$ is $£$-S. Pso. Fu.ID of $G \forall \Gamma \in \lambda$ [by theorm (1-2-9)]
Let $\left\{\mathcal{J}_{\Gamma}: \Gamma \in \lambda\right\}$ be a chain of $£$-S. Pso.Im. Fu.ID of $£-$ S.P.BH-alga of G:
i. Let $\mathrm{x} \in \mathrm{G}$. Then $U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(0)=\sup \left\{\mathcal{J}_{\Gamma}(\mathrm{x}): \Gamma \in \lambda\right\} \geq \sup \left\{\mathcal{J}_{\Gamma}(\mathrm{x}): \Gamma \in \lambda\right\}$
$=\cup_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(x)$ [Since \mathcal{J}_{Γ} is $£$-S. Pso.Im. Fu.ID, $\forall \Gamma \in \lambda$ and using Definition(3.1)(i)]
ii. Let $\mathrm{x}, \mathrm{y} \in £$ and $\mathrm{z} \in \mathcal{J}_{\Gamma}$.

Then $\left.U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{x})=\sup \left\{\mathcal{J}_{\Gamma}: \Gamma \in \lambda\right\}\right\} \geq \max \left\{\inf \left\{\mathcal{J}_{\Gamma}(\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x}) \# \mathrm{z}), \mathcal{J}_{\Gamma}(\mathrm{z}), \Gamma \in \lambda\right\} \quad\left[\right.\right.$ Since \mathcal{J}_{Γ} is $£$-S. Pso.Im. Fu.ID , $\forall \Gamma \in \lambda$ and using Definition (3.1)(ii)]
but $\left\{\mathcal{J}_{\Gamma}: \Gamma \in \lambda\right\}$ the chain \Rightarrow it exists, $\mathrm{j} \in \lambda$ in which
$\max \left\{\inf \left\{\mathcal{J}_{\Gamma}(\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x}) \# \mathrm{z}), \mathcal{J}_{\Gamma}(\mathrm{z}), \Gamma \in \lambda\right\}=\min \left\{\sup \left\{\mathcal{J}_{\mathrm{j}}(\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x}) \# \mathrm{z}), \mathcal{J}_{\mathrm{j}}(\mathrm{z})\right\}\right\}\right.$
$=\min \left\{\sup \left\{\mathcal{J}_{\Gamma}(\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x}) \# \mathrm{z}), \Gamma \in \lambda\right\}, \sup \left\{\mathcal{J}_{\Gamma}(\mathrm{z}), \Gamma \in \lambda\right\}\right\}$
$\Rightarrow U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{x}) \geq \min \left\{\mathrm{U}_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x}) \# \mathrm{z}), \mathrm{U}_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(\mathrm{z})\right\}$

Similarly, $\left.U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(x) \geq \min \left\{U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(x \#(y \# x)) * z\right), U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}(z)\right\}$
$\Rightarrow U_{\Gamma \in \lambda} \mathcal{J}_{\Gamma}$ is $£$-S. Pso.Im. Fu.ID of $G ■$

Suggestion 3.21

G, just be $£-S$. Pso.BH-alga .and ID be $£-S$. Pso.C.C. Fu.ID of G such that $£$ a ambiguous ideal of \mathcal{J}. then \mathcal{J} is $£$-S. Pso.Im. Fu.ID of G.

Proof:

Let \mathcal{J} be $£-S$. Pso.C.C. Fu.ID of G.
$\Rightarrow \mathcal{J}$ is $£$-S. Pso. Fu.ID of G.
Now, let $x, y \in £$ and $z \in G$ such that
$\mathcal{J}(\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}(\mathrm{z})\}$ [since \mathcal{J} is $£$-S. Pso. Fu.ID.of G$]$
since $x, y \in £ \Rightarrow x, y \in \mathcal{J}$ [since $£$ aambiguous ideal of $\mathcal{J}]$, So
$\mathcal{J}(\mathrm{x} \odot \mathrm{y}) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}(\mathrm{z})\}[$ since \mathcal{J} a $£-$ S. Pso. C. C. ID of G.]
$\Rightarrow \mathcal{J}(\mathrm{x}) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \neq \mathrm{z}), \mathcal{J}(\mathrm{y} \odot \mathrm{x})\}$ [by Definition £-S. Pso.ID of G]
$\Rightarrow \mathcal{J}(\mathrm{x}) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}(\mathrm{z})\}$
Similarly,$\Rightarrow \mathcal{J}(\mathrm{x}) \geq \min \{\mathcal{J}((\mathrm{x} \#(\mathrm{y} \# \mathrm{x})) \odot \mathrm{z}), \mathcal{J}(\mathrm{z})\}$
Therefor, ID is $£-$ S. Pso.Im. Fu,ID of G.

Suggestion 3.22

G, just be $£-$ S. Pso.BH-alga and ID be $£$-S. Pso.C.ID of G such that $£$ a fuzzy ideal of \mathcal{J} then \mathcal{J} is $£$-S. Pso.Im. Fu.ID of G.
Is directly from Suggestion(3.21)

Definition 3.23

A pseudo ideal of a pseudo BH -alga G is denominated a pseudo positive implicative fuzzy ideal of G, abbreviated by Pso.Po.Im. Fu.ID if:
i. $\mathcal{J}(0) \geq \mathcal{J}(\mathrm{x}) \quad \forall \mathrm{x} \in \mathrm{G}$;
ii. $\mathcal{J}(x \odot z) \geq \min \{\mathcal{J}((x \odot y) \# z), \mathcal{J}(y \# z)\}$ for all $x, y, z \in G$
iii. $\mathcal{J}(x \# z) \geq \min \{\mathcal{J}((x \# y) \odot z), \mathcal{J}(y \odot z)\}$ for all $x, y, z \in G$

Example 3.24

Meditation the a pseudo $\mathrm{BH}-\mathrm{alga} \mathrm{G}=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{t}\}$ using binary operations " \odot " and " \#
"are displayed in the following spreadsheets:

\odot	0	k	m	n	p	t
0	0	0	n	0	t	t
k	k	0	k	k	k	k
m	m	m	0	m	0	m
n	n	n	n	0	n	t
p	p	p	p	p	0	k
t	t	t	t	t	t	0

$\#$	0	k	m	n	p	t
0	0	n	0	t	0	t
k	k	0	k	p	k	p
m	m	m	0	m	0	k
n	n	k	n	0	n	t
p	p	p	p	p	0	k
t	t	t	t	t	t	0

Then ambiguoussubset \mathcal{J} it is described to as
$\mathcal{J}(\mathrm{x})=\left\{\begin{array}{ll}\Psi_{1} & \mathrm{x}=0, \mathrm{n}, \mathrm{t} \\ \Psi_{2} & \text { o. } \mathrm{w}\end{array} \quad\right.$ where $\Psi_{1}, \Psi_{2} \in[0,1]$ and $\Psi_{1}>\Psi_{2}$,
is a Pso.Po.Im. Fu.ID of G

Definition 3.25

£-S. Pso.ID of $£-\mathrm{S}$. Pso. $\mathrm{BH}-$ alga is denominated $£$-Smarandache pseudo positive
implicative fuzzy ideal of G, abbreviated by £-S. Pso. Po.Im. Fu.ID if :
i. $\mathcal{J}(x \odot z) \geq \min \{\mathcal{J}((x \odot y) \# z), \mathcal{J}(y \# z)\}$ for all $x, y \in £$ and $z \in G$
ii. $\mathcal{J}(\mathrm{x} \# \mathrm{z}) \geq \min \{\mathcal{J}((\mathrm{x} \# \mathrm{y}) \odot \mathrm{z}), \mathcal{J}(\mathrm{y} \odot \mathrm{z})\}$ for all $\mathrm{x}, \mathrm{y} \in £$ and, $\mathrm{z} \in \mathrm{G}$

Example 3.26

Meditation the $£$-S. Pso. $\mathrm{BH}-$-alga $G=\{0, k, m, n, p, t\}$ using binary operations " \odot " and " \# "are displayed in the following spreadsheets:

\odot	0	k	m	n	p	t
0	0	0	0	0	0	t
k	k	0	k	0	k	m
m	m	m	0	m	0	t
n	n	k	n	0	n	m
p	p	p	p	p	0	t
t	t	t	t	t	t	0

$\#$	0	k	m	n	p	t
0	0	0	0	0	0	m
k	k	0	k	0	k	k
m	m	m	0	m	0	n
n	n	k	n	0	n	n
p	p	p	p	p	0	t
t	t	t	t	t	t	0

and $£=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}\}$. The ambiguous subset \mathcal{J} it is described to as
$\mathcal{J}(\mathrm{x})=\left\{\begin{array}{ll}\Psi_{1} & \mathrm{x}=0, \mathrm{k}, \mathrm{n} \\ \Psi_{2} & \text { o. } \mathrm{W}\end{array} \quad\right.$ where $\Psi_{1}, \Psi_{2} \in[0,1]$ and $\Psi_{1}>\Psi_{2}$,
is $£$-S. Pso.Po.Im. Fu.ID of G. Since:

Theorem 3.27:

G, just be $£$-S.P.BH-algebra. Then \mathcal{J} is $£-S$. Pso. Po.Im. Fu.ID of G if and only if \mathcal{J}_{β} is £-S. Pso. Po.Im.ID of G, for all $\beta \in[0, \mathcal{J}(0)], \mathcal{J}(0)=\operatorname{Sup}\{\mathcal{J}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{X}\}$.

Proof:

Let $\beta \in[0, \mathcal{J}(0)]$.
To prove \mathcal{J}_{Ψ} is $\mathbf{£}$-S. Pso. Po.Im.ID of G. [Since \mathcal{J} is $\mathbf{£}$-S. Pso .Po.Im. Fu.ID of G]
Now, let $\mathcal{J}((x \odot y) \# z) \in \mathcal{J}{ }_{\Psi}$ and $\mathcal{J}(y \# z) \in \mathcal{J}_{\Psi}$
$\Rightarrow \mathcal{J}((\mathrm{x} \odot \mathrm{y}) \# \mathrm{z} \geq \Psi$ and $\mathcal{J}(\mathrm{y} \# \mathrm{z}) \geq \Psi$.
To prove $\mathrm{x} \in \mathcal{J}_{\Psi}$
We have
$\mathcal{J}(\mathrm{x} \odot \mathrm{z}) \geq \min \{\mathcal{J}((\mathrm{x} \odot \mathrm{y}) \# \mathrm{z}), \mathcal{J}(\mathrm{y} \# \mathrm{z})\}$ [By Definition£-S. Pso.Po.Im. Fu.ID]
Since $\mathcal{J}((\mathrm{x} \odot \mathrm{y}) \# \mathrm{z}) \geq \Psi$ and $\mathcal{J}(\mathrm{y} \# \mathrm{z}) \geq \Psi$
$\Rightarrow \min \{\mathcal{J}((x \odot y) \# z), \mathcal{J}(y \# z)\} \geq \Psi$
$\Rightarrow \mathcal{J}(\mathrm{x} \odot \mathrm{z}) \geq \Psi \Rightarrow \mathrm{x} \in \mathcal{J}_{\Psi}$
Similarly, $\mathcal{J}(\mathrm{x} \odot \mathrm{z}) \geq \Psi \Longrightarrow \mathrm{x} \odot \mathrm{z} \in \mathcal{J}_{\Psi} \Rightarrow \mathcal{J}_{\beta}$ is \mathbf{f}-S. Pso. Po.Im.ID of G .
Conversely, to prove \mathcal{J} is $\mathbf{£ - S}$. Pso. Po.Im. Fu.ID of G.
Since \mathcal{J}_{Ψ} is $\mathbf{£ - S . ~ P s o . ~ P o . I m . I D ~ o f ~ G . ~}$
Let $\beta=\operatorname{Sup}\{\mathcal{J}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{G}\}, \mathrm{x}, \mathrm{y} \in £$ and $\mathrm{z} \in \mathrm{G}$ and $((\mathrm{x} \odot \mathrm{y}) \neq \mathrm{z}),(\mathrm{y} \# \mathrm{z}) \in \mathcal{J}_{\Psi}$
$\Rightarrow \mathrm{x} \odot \mathrm{z} \in \mathcal{J}_{\Psi} \quad$ [By Definition $£-\mathbf{S}$. Pso.Po.Im.ID]
$\Rightarrow \mathcal{J}(\mathrm{x} \odot \mathrm{z}) \geq \Psi \Rightarrow \mathcal{J}(\mathrm{x} \odot \mathrm{z})=\Psi \quad[$ Since $\Psi=\operatorname{Sup}\{\mathcal{J}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{G}\}]$
Similarly, $\mathcal{J}((\mathrm{x} \odot \mathrm{y}) \# \mathrm{z})=\boldsymbol{\Psi}$ and $\mathcal{J}(\mathrm{y} \# \mathrm{z})=\Psi$
$\square \Psi=\min \{\mathcal{J}((\mathrm{x} \odot \mathrm{y}) \# \mathrm{z}), \mathcal{J}(\mathrm{y} \# \mathrm{z})\} \square \square \square$
$\square \mathcal{J}(\mathrm{x} \odot \mathrm{z}) \geq \min \{\mathcal{J}((\mathrm{x} \odot \mathrm{y}) \# \mathrm{z}), \mathcal{J}(\mathrm{y} \# \mathrm{z})\}$
Similarly, $\square \square \mathrm{x} \# \mathrm{z} \in \mathcal{J}_{\Psi} \quad$ [By Definition $£-\mathbf{S}$. Pso.Po. Im. ID]
$\Rightarrow \mathcal{J}(\mathrm{x} \# \mathrm{z}) \geq \Psi \Rightarrow \mathcal{J}(\mathrm{x} \# \mathrm{z})=\Psi \quad[$ Since $\beta=\operatorname{Sup}\{\mathcal{J}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{G}\}]$
and
$\Rightarrow \mathcal{J}((\mathrm{x} \# \mathrm{y}) \odot \mathrm{z})=\mathrm{q}$ and $\mathcal{J}(\mathrm{y} \odot \mathrm{z})=\mathrm{\Psi}$
$\Rightarrow \Psi=\min \{\mathcal{J}((\mathrm{x} \# \mathrm{y}) \odot \mathrm{z}), \mathcal{J}(\mathrm{y} \odot \mathrm{z})\}$
$\Rightarrow \mathcal{J}(\mathrm{x} \# \mathrm{z}) \geq \min \{\mathcal{J}((\mathrm{x} \# \mathrm{y}) \odot \mathrm{z}), \mathcal{J}(\mathrm{y} \odot \mathrm{z})\}$
$\Rightarrow \mathcal{J}$ is $£-$ S. Pso. Po.Im. Fu.ID of G■

Suggestion 3.28

G, just be $£$-S.Pso.BH-alga and \mathcal{J} be a Pso.Po.Im. Fu.ID. then \mathcal{J} is $£-$ S. Pso.Po.Im. Fu.ID of G .

Proof:

It is clear . [since $£ \subseteq G]$.

Remark 3.29

The converse of Suggestion (3.28) cannot be true in generally

Example 3.30

Meditation the $£$-S.Pso. $\mathrm{BH}-$-alga $\mathrm{G}=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{t}\}$ using binary operations " \odot " and " \#"are displayed in the following spreadsheets:

\odot	0	k	m	n	p	t
0	0	0	0	0	0	t
k	k	0	k	0	k	t
m	m	m	0	m	0	t
n	n	k	n	0	n	t
p	p	n	p	p	0	t
t	t	t	t	t	t	0

$\#$	0	k	m	n	p	t
0	0	0	0	0	0	k
k	k	0	k	0	k	t
m	m	m	0	m	0	m
n	n	k	n	0	n	t
p	p	k	p	p	0	n
t	t	t	t	t	t	0

and $£=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}\}$. The ambiguoussubset \mathcal{J} it is described to as
$\mathcal{J}(\mathrm{x})=\left\{\begin{array}{ll}\Psi_{1} & \mathrm{x}=0, \mathrm{k}, \mathrm{n} \\ \Psi_{2} & \text { o. } \mathrm{w}\end{array} \quad\right.$ where $\Psi_{1}, \Psi_{2} \in[0,1]$ and $\Psi_{1}>\Psi_{2}$,
is $£$-S. Pso.Po.Im. Fu.ID of G, but it is not a Pso.Po.Im. Fu.ID of G.Since:

$$
\begin{aligned}
\mathcal{J}(\mathrm{p} \odot 0)=\mathcal{J}(\mathrm{p})=\Psi_{2} & \nsupseteq \min \{\mathcal{J}((\mathrm{p} \odot \mathrm{k}) \nexists 0), \mathcal{J}(\mathrm{k} \# 0)\} \\
& =\min \{\mathcal{J}(\mathrm{n} \# 0), \mathcal{J}(\mathrm{k})\} \\
& =\min \{\mathcal{J}(\mathrm{n}), \mathcal{J}(\mathrm{k})\}=\Psi_{1}
\end{aligned}
$$

Remark 3.31

 example.
Example 3.32
Meditation the $£-\mathrm{S} . \mathrm{Pso} . \mathrm{BH}-$ alga $\mathrm{G}=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{p}\}$ using binary operations " \odot "and " \#"are displayed in the following spreadsheets:

\odot	0	k	m	n	p
0	0	0	0	0	p
k	k	0	k	k	0
m	m	m	0	0	0
n	n	0	n	0	m
p	p	k	p	k	0

$\#$	0	k	m	n	p
0	0	0	0	0	p
k	k	0	0	n	m
m	m	k	0	k	n
n	n	m	n	0	k
p	p	p	k	n	0

and $£=\{0, \mathrm{k}, \mathrm{m}\}$. The ambiguoussubset \mathcal{J} it is described to as
$\mathcal{J}(\mathrm{x})=\left\{\begin{array}{ll}\Psi_{1} & \mathrm{x}=0, \mathrm{~m} \\ \Psi_{2} & \text { o. } \mathrm{w}\end{array} \quad\right.$ where $\Psi_{1}, \Psi_{2} \in[0,1]$ and $\Psi_{1}>\Psi_{2}$,
is $£$-S.Pso. Fu.ID of G, but it is not $£$-S.Pso.Po.Im. Fu.ID of G.Since:
$\mathcal{J}(\mathrm{k} \odot \mathrm{m})=\mathcal{J}(\mathrm{a})=\Psi_{2} \nsupseteq \min \{\mathcal{J}((\mathrm{k} \odot 0) \# \mathrm{~m}), \mathcal{J}(0 \# \mathrm{~m})\}$

$$
\begin{aligned}
& =\min \{\mathcal{J}(\mathrm{k} \# \mathrm{~m}), \mathcal{J}(0)\} \\
& =\min \{\mathcal{J}(0), \mathcal{J}(0)\}=\Psi_{1}
\end{aligned}
$$

Suggestion 3.33

G, just be $£$-S.Pso.BH-alga and ID be $£-$-S. Pso.Po.Im. Fu.ID of G such that $£ \odot \mathcal{J}$ ambiguous ideal of \mathcal{J} and $£ \nexists \mathcal{J}$ ambiguous ideal of \mathcal{J} then \mathcal{J} is $£-S$.Pso.Im. Fu.ID of G.

Proof:

Let \mathcal{J} be $£$-S.Pso.Po.Im. Fu.ID of $\mathrm{G} \Rightarrow \mathcal{J}$ be $£$-S.Pso. Fu.ID of G
Now, let $x, y \in £$ and $z \in G$ such that
$\mathcal{J}(\mathrm{x} \odot \mathrm{z}) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}(\mathrm{z})\}$
Since $y, x \in £$ and $\mathcal{J}(y \odot x) \in £$,
So $\mathcal{J}((y \odot x) \# z) \in \mathcal{J} \quad[$ since $£ \# \mathcal{J}$ ambiguous ideal of $\mathcal{J}]$
$\mathcal{J}(\mathrm{x} \odot \mathrm{z}) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}((\mathrm{y} \odot \mathrm{x}) \# \mathrm{z})\}$
[since \mathcal{J} is a£-S.Pso.Po.Im. Fu.ID of G]
$\mathcal{J}(\mathrm{x}) \geq \min \{\mathcal{J}((\mathrm{x} \odot(\mathrm{y} \odot \mathrm{x})) \# \mathrm{z}), \mathcal{J}((\mathrm{y} \odot \mathrm{x}) \# \mathrm{z})\}$ [since \mathcal{J} is $£$-S.Pso.ID of G]
Similarly, $\mathcal{J}(x) \geq \min \{\mathcal{J}((x \#(y \# x)) \odot z), \mathcal{J}((y \# x) \odot z)\}$
Hence, \mathcal{J} is $£$-S. Pso.Im. Fu.ID of G.

Remark 3.34

£-S. Pso.Im. Fu.ID of £-S. Pso.BH-alga maybe not to be £-S. Pso.Po.Im. Fu.ID as in the following example.

Example 3.35

Meditation the $£$-S.Pso. $\mathrm{BH}-\mathrm{alga} \mathrm{G}=\{0, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{t}\}$ using binary operations " \odot " and " \#"are displayed in the following spreadsheets:

\odot	0	k	m	n	p	t
0	0	0	0	0	0	t
k	k	0	0	0	k	k
m	m	p	0	0	n	m
n	n	m	n	0	n	m
p	p	p	p	p	0	p
t	t	t	t	t	t	0

$\#$	0	k	m	n	p	t
0	0	0	0	0	0	t
k	k	0	0	0	k	k
m	m	p	0	m	0	m
n	n	m	n	0	n	m
p	p	p	p	p	0	p
t	t	t	t	t	t	0

and $£=\{0, \mathrm{~m}, \mathrm{n}\}$. The ambiguoussubset \mathcal{J} it is described to as
$\mathcal{J}(\mathrm{x})=\left\{\begin{array}{ll}\Psi_{1} & \mathrm{x}=0, \mathrm{n} \\ \Psi_{2} & \text { o. } \mathrm{w}\end{array} \quad\right.$ where $\beta_{1}, \beta_{2} \in[0,1]$ and $\Psi_{1}>\Psi_{2}$, is $£$-S. Pso.Im. Fu.ID
of G, but it is not $£$-S. Pso.Po.Im. Fu.ID of G.Since:

$$
\begin{aligned}
\mathcal{J}(\mathrm{m} \odot 0)=\mathcal{J}(\mathrm{m})= & \Psi_{2} \neq \min \{\mathcal{J}((\mathrm{m} \odot \mathrm{n}) \# 0), \mathcal{J}(\mathrm{n} \# 0)\} \\
& =\min \{\mathcal{J}(0 \# 0), \mathcal{J}(\mathrm{n})\}=\min \{\mathcal{J}(0), \mathcal{J}(\mathrm{n})\}=\Psi_{1} \\
\mathcal{J}(\mathrm{~m} \# 0)=\mathcal{J}(\mathrm{b})= & \Psi_{2} \neq \min \{\mathcal{J}((\mathrm{m} \# \mathrm{n}) \odot 0), \mathcal{J}(\mathrm{n} * 0)\} \\
& =\min \{\mathcal{J}(0 \odot 0), \mathcal{J}(\mathrm{n})\}=\min \{\mathcal{J}(0), \mathcal{J}(\mathrm{n})\}=\Psi_{1}
\end{aligned}
$$

4. Conclusion

Discussion and Conclusion

The concepts of Smarandache pseudo ideal and Smarandache pseudo pseudo BH-alga are studied in this essay in both common and ambiguous terms. The results are also reviewed in terms of how they relate to one another.

5. REFERENCES

[1]H. H. Abbass and F.M. Atshan ," On Some Types of Smarandache Pseudo Fuzzy ideal of a Pseudo BH -algebra, Kufa University, Msc. thesis, 2020.
[2]H. H. Abbass and H. A. Dahham, On completely closed ideal with respect to an element of a BH -algebra, J. Kerbala university10,pp.302-312,(2012).
[3] H. H. Abbass and A. H. Nouri, " some types of Pseudo ideals of a Pseudo BH -algebra " Applied Mathematical Sciences, Vol.11, No. 43, PP. 2113-2120, 2017.
[4] H.H.Abbass and Sh.J.Mohammed,On £-S marandche Compleletely Closed Ideal with Respect to An Element of a Smarandache BH -algebra, Journal of Kerbala University11 Scientific. (2013).
[5]H. H. Abbass and A. A. Mutasher", A Fuzzy Pseudo Enlarged ideal of a Pseudo BH algebra, Jour of Adv Research in Dynamical \& Control

Systems, Vol.10, No. 10, 2018.
[6] H. H. Abbass and A.A.Jabbar, " On a Pseudo Smarandache Ideals of a Pseudo BH algebra", nternational Journal of Engineering Technology,

Vol.7, No. 4.36, PP. 1199-1202, 2018.
[7] [14]H. H. Abbass and A. A.Jabbar," £-Smarandache Pseudo BH-algebra, Kufa University, Msc. thesis, 2018.
[8] H. H. Abbass and H. M. A. Saeed, The fuzzy closed BH - Algebra with respect to an element, Journal of College of Education for Pure Sciences-Thi £ar Uninersity 4,pp. 92 100, (2014).
[9] D. Dubois and H.Prade,"Fuzzy Sets and Systems",Academic Press, INC.San Diego NewYork Boston London Sydney Tokyo Toronto, Vol. 144, 1980.
[10]Y. IMAI and K. ISEKI, On axiom system of propositional calculi XIV, Proc. Japan Acad 42, pp. 19-20, (1966).
[11] K. Iseki, "An algebra related with a propositional calculus",Proc Japan Academy,42, pp.26-29,(1966).
[12]Y.B.JUN, Smarandache BCI-algebras, Scientiae, Mathematicae Japonicae Online, pp.271-276, (2005).
[13] Y. B. Jun and S. S. Ahn," On pseudo BH -algebras", Honam Mathematical J, Vol. 37, No.2, PP. 207 -219, 2015.
[14] M.Kaviyarasu and K.Indhira,Review on BCI/BCK-Algebras and development,InternationalJournal of Pure and Applied Mathematics 117, pp.377383,(2017).
[15] L. A. Zadeh, Fuzzy Sets", Information and control, Vol. 8, PP. 338- 353, 1965.

