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Abstract : 
     In this work ,we introdce new integral transformation  which  will call it by Albazy 
Altememe transform defined by the following integral∶  

𝐻𝐴[𝑓(𝑥)] =  
( )

!
 ∫ (𝑙𝑛 𝑥)  𝑓(𝑥) 𝑑𝑥 ; n∈ 𝑧  

Also , introducing the properties ,theorems and transformations of the constant functions 
,logarithm functions  and other functions . Studying how we can find the inverse of this 
transformation. 
1. Introduction: 

     In recent years, many integral transformations have appeared for the researcher Ali Hassan 
Mohammad, including the AL-tememe transformation [2], as well as the transformation of Al-
Zughair [3]  , the expansion of Al-Zughair [4], and the extension of Al-Zughair transformation 
[5], in addition the transformations of Batoor Al-Tememe ,Batoor Al-Zaghair, Kuffi Al-
Tememe, and Kuffi Al-Zughair[6]. 
In our research, we introduced a new transformation that we called Al-Bazy Al-Tememe 
transformation, which  formulated: 

𝐻𝐴[𝑓(𝑥)]= 
(  )

!
 ∫ (𝑙𝑛 𝑥)  𝑓(𝑥)𝑑𝑥 ; n ∈  𝑧  

All these conversions are used to solve different types of ordinary and partial differential 
equations, as well as integral equations . 
We can see the Gabriel Nagy  in [1] presented the integral transformation.  Let  𝑓  is defined  
function on interval (𝑎, 𝑏)then the integral transformation for 𝑓 whose symbol 𝐹(𝑝) 𝑖s 
defined as : 

𝐹(𝑝) = 𝑘(𝑝, 𝑥) 𝑓(𝑥)𝑑𝑥 

Where 𝑘 is a constant function  of two varibles, called the kernel  of the transformation, 
and  𝑎, 𝑏 are real numbers or ±∞  ,such that the above integral converges. 
2. Main Results. 

In this section we will introduce some of important definition and theorems about new 
transform for the function  𝑓(𝑥). In the above section we presented some of work the relation 

with my transform.  
Definition 2.1. 
Let 𝑓(𝑥) be a function, the Albazy Altememe transform for the function 𝑓(𝑥) ,is defined by 
the following 

𝐻𝐴[𝑓(𝑥)] =  
( )

!
 ∫ (𝑙𝑛 𝑥)  𝑓(𝑥)𝑑𝑥 ; 𝑛 ∈  𝑧  
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𝑤ℎ𝑒𝑟𝑒 −
( )

!
(𝑙𝑛 𝑥)  is kernel of Albazy Altememe transform  such that  this integral is 

converge. 
Proposition 2.2. 
Suppose that 𝑓(𝑥) 𝑎𝑛𝑑 𝑔(𝑥) are functions defined where  x ∈ (0,1], where  𝐵   , 𝐵    are  
constants, then  

𝐻𝐴[𝐵 𝐹(𝑥) ± 𝐵   𝑔(𝑥)] = 𝐵 𝐻𝐴 [𝑓(𝑥)] ± 𝐵  𝐻𝐴 [𝑔(𝑥)] 
Proof:  

 𝐻𝐴[𝐵 𝑓(𝑥) ± 𝐵  𝑔(𝑥)] =
(−1)

𝑛!
( 𝐵 (ln 𝑥) 𝑓(𝑥)𝑑𝑥 ± 𝐵 (ln 𝑥) 𝑔(𝑥)𝑑𝑥) 

=
(−1)

𝑛!
[  𝐵 (𝑙𝑛 𝑥)  𝑓(𝑥) 𝑑𝑥 ±  𝐵 (𝑙𝑛 𝑥)  𝑔(𝑥)𝑑𝑥 

           = 𝐵  
(−1)

𝑛!
 (𝑙𝑛 𝑥) 𝑓(𝑥) 𝑑𝑥 ± 𝐵

(−1)

𝑛!
 (𝑙𝑛 𝑥)   𝑔(𝑥)𝑑𝑥 

               = 𝐵 𝐻𝐴[𝑓(𝑥)] ± 𝐵 𝐻𝐴[𝑔(𝑥)]. 
 

Theorem 2.3. 
Let f(x) be a function, the Albazy Altememe for some fundamental functions are given in 
below table: 

f(x) 𝐻𝐴[𝑓(𝑥)] =
( )

!
 ∫ (𝑙𝑛 𝑥)  𝑓(𝑥)𝑑𝑥; n ∈  𝑧   

1 1  

(ln 𝑥) −(n+1)  

(ln 𝑥)   
  

  

(ln 𝑥)  ( )

!
(n+a)! a ∈  𝑧  

(ln 𝑥)  
( )

!
(n−a)! a ∈  𝑧  

𝑠𝑖𝑛ℎ 𝑙𝑛 𝑙𝑛 𝑥 
−(𝑛 + 1)

2
+

1

2𝑛  
  

cosh ln ln 𝑥 
−(𝑛 + 1)

2
−

1

2𝑛  
  

sinha ln ln 𝑥 
( )

!
(n+a)! − 

( )

!
(n−a)! a ∈  𝑧  

cosha ln ln 𝑥 
( )

!
(𝑛 + 𝑎)! + 

( )

!
(n−a)! a ∈  𝑧  
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𝑥 
1

2
  

𝑥  
1

3
  

𝑥  
1

(𝑎 + 1)
 a ∈  𝑧  

𝑥  (𝑎)

(𝑎 + 1)
 

𝑎 ∈  𝑧  

𝑥  (𝑏)

(𝑎 + 𝑏)
 

a&𝑏 ∈ 𝑧  

 
Proofs: 

1. 𝐻𝐴(1) =  
(−1)

𝑛!
(𝑙𝑛 𝑥)  (1) 𝑑𝑥 

                  =   
(−1)

𝑛!
. 𝑛! (−1) = 1 

2. 𝐻𝐴((𝑙𝑛 𝑥) =  
(−1)

𝑛!
 (𝑙𝑛 𝑥)  (𝑙𝑛 𝑥) 𝑑𝑥 

                      =  
(−1)

𝑛!
 (𝑙𝑛 𝑥) 𝑑𝑥 

=
(−1)

𝑛!
[(𝑙𝑛 𝑥)  𝑥| − (n + 1) (𝑙𝑛 𝑥)  

1

𝑥
 𝑥𝑑𝑥] 

=
( )

!
 (−(𝑛 + 1) ∫ (𝑙𝑛 𝑥)  𝑑𝑥)= 

( )

!
 (−1)  (𝑛 + 1)! 

=−(−1)  (n + 1)=−(n + 1) 

3. 𝐻𝐴((𝑙𝑛 𝑥) ) =
( )

!
 ∫ (𝑙𝑛 𝑥) (𝑙𝑛 𝑥)   𝑑𝑥 

=
( )

!
∫ 𝑙𝑛 𝑥)   𝑑𝑥 

=
( )

!
 (−1) . (𝑛 − 1)! 

=(−1)  
( ) ( )!

!
 = 

( )!

( )!
= −  

4. 𝐻𝐴((𝑙𝑛 𝑥) ) =  
( )

!
∫ (𝑙𝑛 𝑥) (𝑙𝑛 𝑥)   𝑑𝑥 

= 
( )

!
 ∫ (𝑙𝑛 𝑥) 𝑑𝑥  
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= 
( )

!
[(𝑙𝑛 𝑥)  𝑥|  −  ∫ 𝑥 (𝑛 + 𝑎) (𝑙𝑛 𝑥)  𝑑𝑥 ] 

= 
( )

!
(n+a) ∫  (𝑙𝑛 𝑥)  𝑑𝑥  

=
( )

!
(n+a) [ (𝑙𝑛 𝑥)  𝑥|  − ∫ 𝑥 (𝑛 + 𝑎 − 1) (𝑙𝑛 𝑥)  𝑑𝑥 ] 

=
(−1)

𝑛!
(𝑛 + 𝑎)(𝑛 + 𝑎 − 1)  (𝑙𝑛 𝑥)  𝑑𝑥  

: 

: 

= 
( )

!
(n+a)! 

5. 𝐻𝐴((𝑙𝑛 𝑥) ) =  
( )

!
 ∫ (𝑙𝑛 𝑥) (𝑙𝑛 𝑥)   𝑑𝑥 

= 
( )

!
∫ (𝑙𝑛 𝑥) 𝑑𝑥  

= 
( )

!
[(𝑙𝑛 𝑥) 𝑥| -∫ 𝑥 (𝑛 − 𝑎) (𝑙𝑛 𝑥)  𝑑𝑥 ] 

=
(−1)

𝑛!
(𝑛 − 𝑎)  (𝑙𝑛 𝑥)  𝑑𝑥  

=
(−1)

𝑛!
(𝑛 − 𝑎) [ (𝑙𝑛 𝑥)  𝑥|  − 𝑥 (𝑛 − 𝑎 − 1) (𝑙𝑛 𝑥)  

1

𝑥
𝑑𝑥  

=
(−1)

𝑛!
(𝑛 − 𝑎)(𝑛 − 𝑎 − 1)  (𝑙𝑛 𝑥)  𝑑𝑥 ] 

: 
:  

= 
  ( )

!
(n−a)! 

6. 𝐻𝐴(𝑠𝑖𝑛ℎ 𝑙𝑛 𝑙𝑛 𝑥) =
( )

!
∫ (𝑙𝑛 𝑥) (𝑠𝑖𝑛ℎ 𝑙𝑛 𝑙𝑛 𝑥) 𝑑𝑥 

=
(−1)

𝑛!
( ln 𝑥)

(𝑙𝑛 𝑥) − (𝑙𝑛 𝑥)

2
𝑑𝑥 
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=
(−1)

2𝑛!
[  ( 𝑙𝑛 𝑥)  𝑑𝑥 −  ( 𝑙𝑛 𝑥)  𝑑𝑥] 

= 
 ( )  ( )!

!
 −  

( )  ( )!

!
=

( ) !

!
+

( )!

!
 

−(𝑛 + 1)𝑛!

2𝑛!
+

(𝑛 − 1)!

2𝑛(𝑛 − 1)! 
=

−(𝑛 + 1)

2
+ 

1

2𝑛
 

7.𝐻𝐴(𝑐𝑜𝑠ℎ 𝑙𝑛 𝑙𝑛 𝑥) =
( )

!
∫ (𝑙𝑛 𝑥)  𝑐𝑜𝑠ℎ 𝑙𝑛 𝑙𝑛 𝑥  𝑑𝑥 

=
( )

!
∫ (𝑙𝑛 𝑥)

( ) ( )
 𝑑𝑥 

= 
( )  

!
 [∫ (𝑙𝑛 𝑥)  𝑑𝑥 + ∫ (𝑙𝑛 𝑥)  𝑑𝑥]

  
 

  
 

= 
( )  

!
[(−1)   (𝑛 + 1)! + (−1)  (𝑛 − 1)!] 

=  
( )  ( )!

!
 + 

( )    ( )! 

!
 

= 
( ) !

!
−

( )!

( )!
=

( )
−  

8.𝐻𝐴(𝑠𝑖𝑛ℎ𝑎 𝑙𝑛 𝑙𝑛 𝑥) =
( )

!
∫ (𝑙𝑛 𝑥) (𝑠𝑖𝑛ℎ𝑎 𝑙𝑛 𝑙𝑛 𝑥) 𝑑𝑥 

=
(−1)

𝑛!
(𝑙𝑛 𝑥)  

(𝑙𝑛 𝑥) − (𝑙𝑛 𝑥)  

2
 𝑑𝑥 

= 
( )

!
∫ (𝑙𝑛 𝑥) 𝑑𝑥 − ∫ (𝑙𝑛 𝑥) 𝑑𝑥  

=
(−1)

2𝑛!
[ (−1) (𝑛 + 𝑎)! −(−1) (𝑛 − 𝑎)!] 

=  
( )

!
(𝑛 + 𝑎)!  −  

( )

!
(𝑛 − 𝑎)!= 

( )

!
(n + a)! −

( )

!
 (n − a)! 

 

9. 𝐻𝐴(𝑐𝑜𝑠ℎ𝑎 𝑙𝑛 𝑙𝑛 𝑥) =
( )

!
∫ (𝑙𝑛 𝑥) 𝑐𝑜𝑠ℎ𝑎 𝑙𝑛 𝑙𝑛 𝑥  𝑑𝑥  

= 
( )

!
∫ (𝑙𝑛 𝑥)  ( ) ( )  

 𝑑𝑥 

= 
 ( )

!
∫ (𝑙𝑛 𝑥) 𝑑𝑥 + ∫ (𝑙𝑛 𝑥) 𝑑𝑥  
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=
(−1)

2𝑛!
[ (−1) (𝑛 + 𝑎)! +(−1) (𝑛 − 𝑎)! ] 

=  
( )

!
(n+a)!+ 

( )

!
(n-a)! 

10.𝐻𝐴(𝑥) = 
( )

!
∫ (𝑙𝑛 𝑥) 𝑥 𝑑𝑥 

If  n=1 

= − [∫ (𝑙𝑛 𝑥) 𝑥 𝑑𝑥] 

= −[ (𝑙𝑛 𝑥) |  − 
 

 ∫ 𝑥 𝑑𝑥] = − [− ∫ 𝑥 𝑑𝑥] =  [  |  ] =    

=
1

2
 

If  n=2  

= 
! 

∫ (𝑙𝑛 𝑥)  𝑥 𝑑𝑥 

= 
 

 
 [(𝑙𝑛 𝑥)  |  −  ∫ 𝑥  2(𝑙𝑛 𝑥) 𝑑𝑥] =- 

 

 
 ∫  (𝑙𝑛 𝑥) 𝑥 𝑑𝑥 

=(  )( ) = [  ] =  

If  n=3 

=− 
!  

 ∫ (𝑙𝑛 𝑥) 𝑥  𝑑𝑥 

=− 
  
 [(𝑙𝑛 𝑥)  |  −  ∫ 𝑥  3(𝑙𝑛 𝑥)  𝑑𝑥] =(  ) ∫ (𝑙𝑛 𝑥)  𝑥 𝑑𝑥] =( 

 
 )    =    =  

So, 𝐻𝐴(𝑥) = [ ] =  

11.𝐻𝐴(𝑥 )  =
( )

!
∫ (𝑙𝑛 𝑥) 𝑥  𝑑𝑥 

If  n=1  

= − ∫ (𝑙𝑛 𝑥)
  

𝑥  𝑑𝑥 

= − [(𝑙𝑛 𝑥)  |  
  − ∫ 𝑥  𝑑𝑥] 

= − [− ∫ 𝑥    𝑑𝑥] =   [ 
  

| ]=  [ ] =  =       

If  n=2 

=  
 

!
 ∫ (𝑙𝑛 𝑥) 𝑥  𝑑𝑥=  

 
 [(𝑙𝑛 𝑥)  

 
 |  −

 
∫ (ln 𝑥) 𝑥   𝑑𝑥] =(−

 
) ∫ ( 𝑙𝑛 𝑥) 𝑥  

 
 𝑑𝑥 = 

( 
 
)   = [ ] =  

If  n=3  

= − 
1 

3!
  (𝑙𝑛 𝑥) 𝑥  𝑑𝑥 

= − 
 
 [( 𝑙𝑛 𝑥)   

 
 |  −

 
∫ 𝑥   3 (𝑙𝑛 𝑥)  

 
 𝑑𝑥 ] =( 

 
) ∫  (𝑙𝑛 𝑥) 𝑥   

  𝑑𝑥 ] = ( ) =

[ ]=  

So, 𝐻𝐴 (𝑥  ) = [ ] =   

12.𝐻𝐴( 𝑥 ) =  
( )

!
∫ (𝑙𝑛 𝑥) 𝑥  𝑑𝑥 ; a∈ 𝑧  
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If  n=1  

=− ∫ (𝑙𝑛 𝑥) 𝑥  𝑑𝑥 

=−[(𝑙𝑛 𝑥)  |   −
 
∫ 𝑥   

  
  𝑑𝑥] 

=  
 
∫ 𝑥  𝑑𝑥 = 

 
 ( 

 
 |    

   ) =  
( )

 

If  n=2 

= 
!
  ∫ (𝑙𝑛 𝑥)

  
 𝑥  𝑑𝑥 

= 
 
  [(𝑙𝑛 𝑥)   

 
 |    

   −  ∫ 𝑥  2(𝑙𝑛 𝑥)  𝑑𝑥] 

= (−  ) ∫  (𝑙𝑛 𝑥) 𝑥   𝑑𝑥  =  [ ] = 
( )

 

If  n=3 

= − 
 

!
 ∫ (𝑙𝑛 𝑥)

  
 𝑥  𝑑𝑥 

=   [ (𝑙𝑛 𝑥)  
 
 |    

   −   ∫ 𝑥 3(ln 𝑥)   𝑑𝑥 ] 

=(− 
 

 
 )( )  ∫ (𝑙𝑛 𝑥)  𝑥  

  
 𝑑𝑥 = (  ) [ ] =

( )
 

13.𝐻𝐴( 𝑥
 

) = 
( )

!
∫ (𝑙𝑛 𝑥)  𝑥

 

 𝑑𝑥 ; a∈ 𝑧  

If  n=1   

= − ∫ (
  

 𝑙𝑛 𝑥 ) 𝑥
 

 𝑑𝑥 

= − [  (𝑙𝑛 𝑥 ) 
 

   |   −    ∫ 𝑥  
 

 
 𝑑𝑥]=  ∫ 𝑥    𝑑𝑥  

=    [  | ] =   =
( )

   

If  n=2 

= 
!
 ∫ (ln 𝑥)

  
𝑥

 

 𝑑𝑥 

= 
 

 
 [(ln 𝑥)  

 
 |  

 −   ∫ 𝑥  2(ln 𝑥) 𝑑𝑥] =(− ) ∫ (𝑙𝑛 𝑥) 𝑥  𝑑𝑥 =  [ ] =

( )
 

  If  n=3 

= − 
 

! 
 ∫ (ln 𝑥)  𝑥

 

 𝑑𝑥 

=−  [ (ln 𝑥)   
 
 |  

 − ∫ (𝑥)
 

 3(ln 𝑥)   𝑑𝑥] 

=   ∫ (𝑙𝑛 𝑥) (𝑥)
  

 
   𝑑𝑥=   [ ] =

( )
  

In general 

𝐻𝐴( 𝑥
 

) = [ ]  ; a∈ 𝑧  

14. 𝐻𝐴( 𝑥  ) =  
( )

!
∫ (𝑙𝑛 𝑥)   𝑥   𝑑𝑥 

If n=1 
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=− ∫  (𝑙𝑛 𝑥)  𝑥   𝑑𝑥  = − [(𝑙𝑛 𝑥)  
 
|    

 − ∫ 𝑥    𝑑𝑥] =   ∫ 𝑥   𝑑𝑥 

=       
 

 

  |   =    
 
 = ( )    

If n=2 

𝐻𝐴(𝑥  ) =  
!
 ∫ (𝑙𝑛 𝑥)   𝑥     𝑑𝑥 

= 
 
[(𝑙𝑛 𝑥)

 
 | −

 
∫ 𝑥   2(ln 𝑥 )  𝑑𝑥 ] 

= −
 

 ∫ 𝑥   2(ln 𝑥 )  𝑑𝑥 =   [ ] = ( )  

If  n=3 

𝐻𝐴(𝑥  ) = −
!
∫ (ln 𝑥)  𝑥   

 
 𝑑𝑥 

=−   [(ln 𝑥)  
 
 | −  ∫ 𝑥  3( ln 𝑥)   𝑑𝑥] 

=  
 

∫ (𝑙𝑛 𝑥)  𝑥   𝑑𝑥 =  [ ]  = ( )  

 
In general 

𝐻𝐴(𝑥  ) = ( )  

Theorem 2.4.  
If 𝐻𝐴[𝑓(𝑥)]  =  𝑓(𝑛)  and  a is positive integer, then  

𝐻𝐴[(ln 𝑥)± 𝑓(𝑥)] =  𝑓(̅𝑛 ± 𝑎) 
Proof: 
 Since HA[f (X)]= f(n) , then  

HA[ln 𝑥)± 𝑓(𝑥)]= 
( )

!
∫ (𝑙𝑛 𝑥) ( ln 𝑥)±  𝑑𝑥 

= 
( )

!
∫ (ln 𝑥) ± 

 𝑓(𝑥)𝑑𝑥 =  𝑓(̅n±a) 

Examples 2.5. 

(1) 𝐻𝐴(𝑠𝑖𝑛ℎ 2 𝑙𝑛 𝑙𝑛 𝑥)  =
( )  ( )!

!
−

( )  ( )!

!
  

 = 
( )( ) !

!
−

( )!

( )( )!
=

( )( )
−

(
 

  So, 𝐻𝐴(ln 𝑥 𝑠𝑖𝑛ℎ 2 𝑙𝑛 𝑙𝑛 𝑥) = 
( )( )

−
( )

 

=
(𝑛 + 3)(𝑛 + 2)

2
−

1

2𝑛(𝑛 − 1)
 

 (2) 𝐻𝐴(𝑐𝑜𝑠ℎ 3 𝑙𝑛 𝑙𝑛 𝑥)= 
( ) ( )!

!
+

( ) ( )!

!
 

 = 
( )( )( ) !

!
+

( )!

( )( )( )!
 

=
( )( )( )

 − 
( )( )

 

  So, 𝐻𝐴 (ln 𝑥) 𝑐𝑜𝑠ℎ 3 𝑙𝑛 𝑙𝑛 𝑥) =
( )( )( )

−
( )( )

=
( )( )

−

( )( )
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  (3) 𝐻𝐴( (𝑥) ) =  
( )

 

So, 𝐻𝐴(𝑥(ln 𝑥) ) = =   𝑖𝑓 𝑎 = 1 

 (4) 𝐻𝐴( 𝑥 ) =
( )

    𝑖𝑓 𝑎 = 2 

 So, 𝐻𝐴(𝑥 ( ln 𝑥) ) = =  

 (5) 𝐻𝐴( 𝑥  ) =
( )

( )
=  

  So, 𝐻𝐴(( ln 𝑥) 𝑥 ) = 
 
 =  = 

 
 

 (6) 𝐻𝐴( 𝑥  ) =   

  So,  ((ln 𝑥) 𝑥  ) =  
 
 = 

 
 

3. Inverse Transforms. 
In this section we will present the inverse transforms for Al-bazy Al-tememe transformation 

and introduce some of properties. 
Definition 3.1. 
Let 𝑓(𝑥) be a function where 𝑥 ∈ (0,1] and 𝐻𝐴 [𝑓(𝑥)] =  𝑓(𝑛) , 𝑓(𝑥) is said to be an 
inverse for Al-bazy Al-tememe transformation and written as: 

(HA)  [f(n)] = f(x) where (HA)  
returns the transformation  to the original function. 
Theorem 3.2. 
(𝐻𝐴)  has the linear property as it  is  for Albazy Altememe . 
i.e 
(𝐻𝐴)  [𝑎 𝑓 (n) ± 𝑎  𝑓 (n) … … … ±  𝑎 𝑓 (n)] 
= 𝑎 (𝐻𝐴)  [𝑓 (𝑛)] ± 𝑎 (𝐻𝐴)  [𝑓 (𝑛)] ±... … …±𝑎  (𝐻𝐴) [𝑓 (n)] 
= 𝑎 𝑓  (x) ± 𝑎  𝑓  (x) ± … … … ± 𝑎  𝑓  (x) 
Where  , 𝑎 , 𝑎 … 𝑎  are constants , the functions 𝑓 (x) 𝑓 (x) …  𝑓 (x)  
are defined when x∈ (0,1].  
1. (𝐻𝐴) (1)=1 
2.( 𝐻𝐴) ( −(𝑛 + 1)) =  ln 𝑥 

3. (𝐻𝐴) (−  ) = (ln 𝑥)  

4. (𝐻𝐴) (
( )

!
(n+a)!)= (ln 𝑥)  

5. (𝐻𝐴) (
( )

!
(n−a)!)= (ln 𝑥)   

6. ( 𝐻𝐴) (
( )

+
  
) = 𝑠𝑖𝑛ℎ 𝑙𝑛 𝑙𝑛 𝑥 

7. (𝐻𝐴) (
( ) 

−
 
)  = cosh ln ln 𝑥 

8. (𝐻𝐴) ( ( )

!
(n+a)!− 

( )

!
(n−a)!)= 𝑠𝑖𝑛ℎ𝑎 𝑙𝑛 𝑙𝑛 𝑥 

9.( 𝐻𝐴) (
( )

!
(n+a)!+ 

( )

!
(n−a)!)= cosha ln ln 𝑥 

10.( 𝐻𝐴) (
( )   ) = 𝑥  
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11. (𝐻𝐴) (
( )( )

( ) ( )
)= 𝑥  

12. (𝐻𝐴) (
( )

( )
) =  𝑥   

Examples : 

1. 𝐻𝐴  
( )

= 𝑥    

2. 𝐻𝐴
( )

= 𝑥  

3.  𝐻𝐴 ( 
( )

) = 𝑥  

4. 𝐻𝐴 ( 
( )

) = 𝑥  

5. 𝐻𝐴 ( 
( )

) = 𝑥  

6. 𝐻𝐴 ( 
( ) ( )!

( )( )…( )!
 ) =(ln 𝑥)  

7. 𝐻𝐴 (
( )

!
(n+3)!− 

( )

!
(n−3)!) = sinh 3 ln ln 𝑥  

8. 𝐻𝐴  
( )

= 𝑥  =𝑥  

9. 𝐻𝐴 ( 
( )  ( )( )…( ) ! 

!
  ) =(ln 𝑥)  

10. 𝐻𝐴 (
( )

!
(n+9)!+ 

( )

!
(n−9)!)= cosh 9 𝑙𝑛 𝑙𝑛 𝑥   
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