

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3221

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.777159

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS
CONTAINERIZED DOMAIN BASED ON CPU UTILIZATION

Sushant . Jhingran*

Sharda University, Computer Science, Greater Noida, ,201305, India
E-mail: sushantjhingran@gmail.com

ORCID iD: https://orcid.org/ 0000-0002-6933-4282

Nitin . Rakesh
Sharda University, Computer Science, Greater Noida, ,201305, India

E-mail: nitin.rakesh@gmail.com
ORCID iD: https://orcid.org/0000-0002-1343-5244

Abstract: - Enterprise application development is rapidly moving towards a microservices-
based approach. Microservices development makes application deployment more reliable and
responsive based on their architecture and the way of deployment. Still, the performance of
microservices is different in all environments based on resources provided by the respective
cloud and services provided in the backend such as auto-scaling, load balancer, and multiple
monitoring parameters. So, it is strenuous to identify Scaling and monitoring of microservice-
based applications are quick as compared to monolithic applications [1]. In this paper, we
deployed microservice applications in cloud and containerized environments to analyze their
CPU utilization over multiple network input requests. Monolithic applications are tightly
coupled while microservices applications are loosely coupled which help the API gateway to
easily interact with each service module. With reference to monitoring parameters, CPU
utilization is 23 percent in cloud environment. Additionally, we deployed the equivalent
microservice in a containerized environment with extended resources to minimize CPU
utilization to 17 percent. Furthermore, we have shown the performance of the application with
“Network IN” and “Network Out” requests.
Keywords— Application Deployment; cloud; Docker; Micro service; virtualized;

1. Introduction

Application deployment contains various phases such as the development of applications based
on design patterns and the deployment of applications in the appropriate servers. Deployment
of microservices can be done in multiple environments. Application deployment can be done
in multiple hosting environments. Every hosting environment has different parameters to check
the performance and behavior of an application. Microservices are mostly used in service
industries because of their lightweight features. Microservices can be deployed on the cloud
and measure their performance on different metrics parameters. Cloud gives us a different type
of environment in terms of serverless computing. Serverless structures include EC2, ECR, and
Codestar other services like services of different platforms [2]. Microservices performance can
be measured on metrics provided by a serverless cloud environment.

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3222

In cloud computing, Serverless approach is used to deploy applications. Auto Scaling features
are provided by various cloud environments to avoid the temporary stopping of any application.
Serverless computing is also an approach to deploying microservice-based applications. An
environment can be created for the deployment of microservice-based applications on cloud-
like Elastic container registry and docker [3][4]. During the deployment an image created and
a receptive container will be initialized to execute the application. This combination makes our
application lightweight. Monitoring of any application requires some metrics like Network
utilization and CPU utilization. These parameters define the performance of any application.
Cloud Vendors provide different types of serverless approaches like S3(Simple storage
services), RDS (Relation Database services), and ECS (Elastic container services). In the cloud
domain, monitoring of applications can be done from different availability zones[5]. These
zones are provided by cloud vendors like us-east 1a. Multiple users can be created and they all
can access and monitor the data with cloud vendors. Traditionally applications are hosted on
servers provided by many providers [6]. To improve performance. Applications are used to
deploy in package format. These packages are created by developers in the format of Jar or
War files. Some of the developers have developed these files in which the combination of these
hosted servers contains various facilities. Applications are used to deploy on various hosting
environments like Linux and cloud-based hosting. Bundle files are deployed on a cloud-based
environment with docker and Kubernetes to provide application scalability [7]. Cloud
environment also provides elastic commuting and beanstalk services for deployment with
monitoring and notifications of services. Applications are used to deploy on various hosting
environments like Linux and cloud-based hosting. Bundle files are deployed on a cloud-based
environment with docker and Kubernetes to provide application scalability [7]. Cloud
environment also provides elastic commuting and beanstalk services for deployment with
monitoring and notifications of services.

2. LITERATURE REVIEW

The performance of any application depends upon the structure of its development. Earlier
applications were developed on a modular approach i.e. small modules were developed and
linked together. Modular approach makes code reusable, which can be used later. Web
applications are deployed on servers so they require very less space in memory. A web server
known as a deployment environment, on that application can be deployed easily. Applications
can be easily accessible with a browser from a remote machine. The actual application is
deployed on server from where response will be fetched of the specific requests made by a
user. Developers deploy their applications on a server instead of multiple machines and users
can access web portals on remote machines. Applications are usually installed in one server
and instantiated by multiple machines[8]. The earlier monolithic architecture was used to
develop applications [9]. Controllers are responsible to handle the request which comes from
the front end. The controller forwards respective requests to the service layer and after that, if
required then the service layer communicates with the Dao layer. All layers or modules access
a single database or we can say that all modules are inside a single container i.e. single code
base with multiple modules. All modules will be bundled in a single jar and after that jar file
can be deployed on a server for client access. A single instance of one application can be run

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3223

on multiple applications but it will become monolithic architecture and these instances cannot
communicate with each other. In a monolithic type of architecture components of an
application are tightly coupled into a single module-based call. The different parts of the
application, such as the user interface, business logic, and data storage, are all tightly integrated
together and built as a single unit. Microservices and monolithic architecture are two different
approaches to building and organizing software systems. Monolithic architecture is a
traditional approach, where all components of an application are combined into a single
codebase and deployed as a single unit. The application is tightly coupled, which means that
changes to one part of the system can affect the entire application. Microservices architecture
is a software design pattern in which an application is broken down into small, independent,
and loosely coupled services. Each service is responsible for a specific task and can be
developed, deployed, and scaled independently of the other services. The services
communicate with each other over a network, typically using lightweight protocols such as
HTTP or gRPC. Microservices architecture is easier to test as each service can be tested
separately, leading to a more efficient testing process, also it's more secure as security bugs in
one service do not affect the whole application. Scaling is a complex task in monolithic-based
applications, and an extension of the project becomes a stumbling block [10]. Adaptations of
change in API is very difficult for monolithic applications. Integration of different technologies
is troublesome in a monolithic application. Any error in any specific module can break down
the complete structure of the application. Network latency is comparatively good in monolithic
applications because of a single communication channel. Microservices are independent
modules that work simultaneously. Each microservice can communicate on a service layer with
the other with some lightweight protocols [11]. Decoupled modules call independent databases
according to service and all services can communicate with each other with REST or JSON.
All services are loosely coupled because of an independent code base. Services can be updated
independently without any scalability issue i.e. if anyone service X is updated for a time being
then other services run smoothly and once updating will be done X services up automatically
without reflecting the complete project. Even if different domain is used to develop any
microservice then they can easily communicate with each other.

Architecture of Micro services

The architecture of a microservices system generally consists of several different components
that work together to provide the overall functionality of the system. Some of the key
components of a microservices architecture include:

Services: These are the individual components of the system that perform specific tasks. Each
service is a self-contained unit of functionality that can be developed, deployed, and scaled
independently.

Service Registry: This is a central repository that keeps track of all the services in the system
and their location. Services use the service registry to discover other services and to register
themselves when they come online.

API Gateway: This is a component that acts as a single-entry point for all incoming requests to
the system. The API gateway is responsible for routing requests to the appropriate service,

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3224

handling authentication and authorization, and performing other tasks such as rate-limiting and
caching.

Message Bus: This is a messaging system that allows services to communicate with each other
asynchronously. Services use the message bus to send messages to one another, rather than
calling each other directly.

Load Balancer: This is a component that distributes incoming requests across multiple
instances of a service. The load balancer can help ensure that the system remains available and
responsive, even under heavy load.

Database: Microservices are designed to be loosely coupled, so each service has its own
database, each service is responsible for its own data, this means that the data stored in one
service is not directly accessible by other services.

Monitoring and Logging: Microservices architecture requires extensive monitoring and
logging in order to track the health and performance of individual services, as well as to
troubleshoot issues.

These components work together to provide a flexible, scalable, and resilient architecture that
is well suited for building large, complex systems. However, it should be noted that the specific
implementation of a microservices architecture can vary depending on the needs of the project
and the technologies being used.

Fig. 1. Architecture of microservices

Architecture of microservice contains multiple microservices which are being called by each
other with different ports. API gateway is a single end point who is responsible to communicate
between microservices and client, if API gateway will not present then client call each
microservice independently which behaves like different projects [12]. Client call single URL
of API gateway; rest module will be taken care by independent microservices to access all
backend services. Fault tolerance will be managed with hystrix library. This library can manage

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3225

in case of any service is down. This architecture follows a Eureka service discovery as a
microservice where other microservices can be register and discover once required. In micro
service, multiple functionalities can be communicated either with HTTP or JSON format. To
dockerize microservice application, docker image and containers are created to dockerize
application [13]. Microservice application can be deploy on Docker container once Docker file
is created. IDEs or initializer are used to create microservice based application. While creating
microservice only REST-API is required. Once Application will setup than configure all the
respective path and initiate docker console for deployment. Each microservice is owned and
maintained by a small, cross-functional team that is responsible for its development,
deployment, and operation. Microservices are designed to be loosely coupled, meaning that
they should be able to operate independently of one another and should not have strong
dependencies on each other. Microservices should be designed to be deployed automatically
and should be easy to deploy and scale in a continuous delivery environment. Microservices
should be designed to emit metrics, traces and logs so that engineers can have a better view of
the current state of the systems. To organize a microservices architecture is to use a service
registry, where each service registers itself when it starts up and deregisters itself when it shuts
down. Clients of the services can then use the service registry to discover the location of a
service at runtime. The service registry can also be used to store metadata about the services,
such as their current version, status, and health.

3. COMPARATIVE ANALYSIS OF THE VARIOUS HOSTING ENVIRONMENT

Microservice applications deployed in different environment such as cPanel, Virtual private
server and multiple cloud providers. Multiple parameters can be used to monitor application
performance. Monitoring parameters are used to analyses the behavior of application in
respective cloud domains. Below some parameters are shown with different environment.

Fig. 2. Process Flow chart

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3226

In Fig.2, Process of implementation flow is showing with multiple services are used in
application such as Product Service, Order Service, Notification Service, Inventory Service and
Notification Service. These services will be going to communicate with each other in
synchronous and asynchronous communication. Stateless services are also used which are not
going to communicate with any database. Product Service use lombok to reduce boilerplate
code. NoSql based service been setup to communicate between different databases.

a) Setup application in Docker Environment.

Docker is very less dependent on OS. Traffic can be dynamically handled with container to
improve the performance. Rest APIs are used to setup micro service application in Docker.
Web dependency added features of REST in microservices. Rest Controller can provide its
access to WWW. Maven architecture can create a JAR file. Docker containers are portable and
can run on any system that has Docker installed, making it easy to deploy any microservices
on a wide range of platforms. Docker can be used as part of a continuous delivery pipeline to
package and deploy microservices automatically, which can speed up release process.

Fig. 3. Shows creation of Jar archive file is created in target folder to setup application in
docker environment with maven install

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3227

Fig. 4. Creating Docker image of Micro service

Fig. 5. Shows installed Docker file

b) Setup application in Cloud Environment

Elastic container service provides us an environment to deploy microservice. It is a fully
managed container orchestration service. In ECS multiple Docker container can be run without
any additional configuration. Cloud provides multiple environments to deploy application that
can easily monitor and scaled. This application is set up with the following software which all
is open source.

Table 1. Shows Version Configuration of Microservices

Environment Name Version

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3228

Java 8+

Linux Kernel 5.10 AMI

Docker 21H2

Spring Boot 2.7.7(SNAPSHOT)

API REST

An Elastic computing cloud was set up with the following hardware and network to access
requests from the server.

Table 2: Shows Instance Configuration on cloud for microservice.

Storage 8 GB

RAM 8 GB

Private IP Yes

Public IP Yes

Protocols SSH and TCP(Anywhere)

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3229

Fig 6. Shows status of instance running on elastic computing cloud.

Fig. 7. Status of instance with public IP, private IP, Availability zone and state of instance.

In above Fig. 7, Setup of instance had shown. An elastic compute environment has been
launched and running to monitor the behavior of microservice in cloud environment. Inbound
rule is setup in security protocol to allow incoming network request from different network.
Based on incoming request, the behavior of microservice is analyzed. CPU Utilization shows
the behavior of application in multiple network input request.

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3230

Fig. 8. Shows logs based on given private IP in console provide by elastic computing cloud.

System logs are generated to monitor the performance over IP. and display the analytics which
can use further if required as shown in Fig. 8. Microservice is being analyzed in multiple
intervals via Cloud Watch monitoring such as 12 hours, 24 hours and 72 hours on scaling
parameters. Three parameters are using in this paper to monitor the performance.

1. CPU Utilization: The proportion of the instance's assigned EC2 compute units that are
currently in use This measure shows how much processing power is needed to run a particular
application on a chosen instance [14].

Unit: Percent

CLI Command to test utilization:

aws cloudwatch get-metric-statistics --namespace AWS/EC2 --metric-name CPUUtilization \

--dimensions Name=InstanceId,Value=i-013e5b33f06dda2d1 --statistics Maximum \

--start-time 2022-11-21T16:00:00 --end-time 2022-11-23T18:00:00 --period 360

 Above formula have been used to calculate CPU utilization in aws CLI.

2. Network in: -The total amount of data that the instance received across all network
interfaces. This measure shows how much network traffic is coming into a single instance[14].
Unit: Bytes
3. Network Out: -The total amount of bytes delivered across all network interfaces by the
instance. This measure shows how much network traffic leaves a single instance [14].

Unit: Bytes

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3231

(a) (b)

Fig. 9. Result CPU utilization in different interval based on application performance (a) shows
performance of application in 12 hours of interval (b) shows performance of application in 24
hours of interval.

(a) (b)

Fig. 10. Result CPU utilization in different interval based on application performance (a)
shows performance of application in 72 hours of interval (b) shows performance of application
for maximum time of interval.

Montoring of application had done with cloud watch, shows in Fig. 9 and Fig. 10. Analysis of
application had done in different time zone over different amount of request. To analyze load,
request came from external sources, which are added in Network-In simultaneously response
is generated in terms of Network-Out.

Table 3: Shows Configuration of Microservices on Docker Container.

Storage 10 GB

RAM 8 GB

Private IP Yes

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3232

Public IP Yes

Protocols SSH and TCP

Docker is a containerization platform that allows packaging an application and its dependencies
in a container, which can then be run on any machine with a Docker runtime [15]. This can be
especially useful when deploying microservices, as it allows packaging each service in its own
container and running them independently on a single machine or across a fleet of servers.
Docker helps to ensure that the environment in which a service is running remains consistent
regardless of where it is deployed. This makes application easier to develop and test, and also
makes it easier to deploy them to production, as can be sure that process will run in the same
way regardless of the underlying infrastructure [13]. Docker had also scaled microservices
horizontally by simply adding more containers into infrastructure. This can be done manually
or through the use of a container orchestration platform such as Kubernetes.

Fig.11. Shows deployment of microservices in Docker environment and display CPU
utilization.

4. Result and discussion

4.1 Performance of CPU in elastic cloud computing

In this section, Performance of microservices has been evaluated based on CPU utilization. In
elastic cloud computing environment, microservice application shows maximum CPU
utilization of 23.33% on 106734510 network input and 355398 network output. CPU
performance had calculated on multiple request which comes as Network In and response had
shown in Network Out. Based on these request performance of CPU is displayed in below
table.

Table 4: Shows performance of Micro services on AWS EC2

Duration CPU Utilization
(Percent)

 Network In
(Bytes)

 Network Out
(Bytes)

12 hours 8.7931034482757 193618 88.25

24 hours 8.7931034482757 193618 92871

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3233

72 hours 12.2950819672131 2506742 139993

Maximum

23.8333333333333 10673410 355398

Performance of application was analyzed on different time interval and test CPU utilization. In
second phase of implementation same microservices deployed on container and following
result were generated.

 Table 5: Shows performance of Microservices on Docker Container

Duration CPU Utilization
(Percent)

Network In (KB) Network Out (Bytes)

12 hours 3.795467 184.734 113.825

24 hours 4.765785 201.872 174.379

72 hours 8.90236 1953.258 1453.776

Maximum 17.3578 9564.102 7535.472

 From Table 4 and Table 5, it can be verified that CPU utilization of application is less in
containerized environment. This container was setup on Docker with fixed memory, because
of lightweight nature of Docker, microservice shows very less utilization of CPU. Following
are the graphical representation of CPU utilization. based on above result flowing result were
generated.

(a) (b)

Fig. 12. Shows duration of CPU Utilization in different zone in elastic computing cloud (a)
Shows CPU utilization duration and sum of network out in bytes (b) shows count of CPU
utilization duration based on network count in bytes.

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3234

(a) (b)

Fig. 13. Shows duration of CPU Utilization with respect to Network In and CPU utilization in
docker domain (a) Shows CPU utilization duration based on network out in bytes (b) shows
count of CPU utilization duration based on network count in kilobytes

(a) (b)

Fig. 14. Shows sum of CPU Utilization in elastic computing cloud and docker environment (a)
Shows sum of CPU utilization in regular time interval in cloud environment (b) shows sum of
CPU utilization in regular time interval in containerized environment.

In above figures, performance of CPU utilization was observed in different time interval with
different request over Network-In and Network-Out in cloud and containerized environment
which can easily define that performance of application is better in containerized environment.
In Docker request came in network is 9564.102(KB) and out is 7535.472 with CPU utilization
is 17% while in cloud environment request came in network is 10673410 and out is 355398
with CPU utilization is 23% . All IP requests comes under network Input and accordingly
network output was generated. In this paper, we majorly focused on CPU Utilization and
network utilization at different time intervals to continuously monitor the performance of
applications.

5. Future Scope

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3235

In this paper, the performance analysis microservice was done with cloud and Docker
environments. In the cloud domain, Elastic computing environments were used while the same
implementation will also be done in Kubernetes and AWS Fargate services. Serverless
platforms can automatically scale microservices up or down based on demand, without the
need for manual intervention. Serverless platforms offer a high level of security, with built-in
measures such as network isolation and secure access controls. This can help to protect
microservices from potential threats and vulnerabilities. A pipeline can be created for
continuous integration and continuous deployment to scale up application in kubertnate and
fargate environment for better result.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

6. Reference

[1] Al-Doghman, F., Moustafa, N., Khalil, I., Tari, Z. and Zomaya, A., 2022. AI-enabled
Secure Microservices in Edge Computing: Opportunities and Challenges. IEEE Transactions
on Services Computing.

[2] S. N. Srirama, M. Adhikari, and S. Paul, “Application deployment using containers
with auto-scaling for microservices in cloud environment,” J. Netw. Comput. Appl., vol. 160,
no. February, p. 102629, 2020, doi: 10.1016/j.jnca.2020.102629.

[3] S. Chhabra and A. K. Singh, “A Probabilistic Model for Finding an Optimal Host
Framework and Load Distribution in Cloud Environment,” Procedia Comput. Sci., vol. 125,
pp. 683–690, 2018, doi: 10.1016/j.procs.2017.12.088.

[4] Kithulwatta, W.M.C.J.T., Jayasena, K.P.N., Kumara, B.T. and Rathnayaka, R.M.K.T.,
2022. Integration With Docker Container Technologies for Distributed and Microservices
Applications: A State-of-the-Art Review. International Journal of Systems and Service-
Oriented Engineering (IJSSOE), 12(1), pp.1-22.

[5] H. Xu and B. Li, “Dynamic Cloud Pricing for Revenue Maximization,” IEEE Trans.
Cloud Comput., vol. 1, no. 2, pp. 158–171, 2013, doi: 10.1109/TCC.2013.15.

[6] P. Jain, Y. Munjal, J. Gera, and P. Gupta, “Performance Analysis of Various Server
Hosting Techniques,” Procedia Comput. Sci., vol. 173, no. 2019, pp. 70–77, 2020, doi:
10.1016/j.procs.2020.06.010.

[7] Telang, T., 2023. Containerizing Microservices Using Kubernetes. In Beginning Cloud
Native Development with MicroProfile, Jakarta EE, and Kubernetes (pp. 213-230). Apress,
Berkeley, CA.1.

[8] Bao, L., Wu, C., Bu, X., Ren, N. and Shen, M., 2019. Performance modeling and
workflow scheduling of microservice-based applications in clouds. IEEE Transactions on
Parallel and Distributed Systems, 30(9), pp.2114-2129.

[9] Saman, B., 2017. Monitoring and analysis of microservices performance. Journal of
Computer Science and Control Systems, 10(1), p.19..

PERFORMANCE ANALYSIS OF MICROSERVICES BEHAVIOR IN CLOUD VS CONTAINERIZED DOMAIN
BASED ON CPU UTILIZATION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 3236

[10] Coulson, N.C., Sotiriadis, S. and Bessis, N., 2020. Adaptive microservice scaling for
elastic applications. IEEE Internet of Things Journal, 7(5), pp.4195-4202..

[11] Cerny, T., Donahoo, M.J. and Trnka, M., 2018. Contextual understanding of
microservice architecture: current and future directions. ACM SIGAPP Applied Computing
Review, 17(4), pp.29-45.

[12] Montesi, F. and Weber, J., 2016. Circuit breakers, discovery, and API gateways in
microservices. arXiv preprint arXiv:1609.05830.

[13] Wan, X., Guan, X., Wang, T., Bai, G. and Choi, B.Y., 2018. Application deployment
using Microservice and Docker containers: Framework and optimization. Journal of Network
and Computer Applications, 119, pp.97-109.

[14] https://docs.aws.amazon.com/AWSEC2/latest
UserGuide/viewing_metrics_with_cloudwatch.html

[15] Manu, A.R., Patel, J.K., Akhtar, S., Agrawal, V.K. and Murthy, K.B.S., 2016, March.
A study, analysis and deep dive on cloud PAAS security in terms of Docker container security.
In 2016 international conference on circuit, power and computing technologies (ICCPCT) (pp.
1-13). IEEE.

[16] Jaramillo, D., Nguyen, D.V. and Smart, R., 2016, March. Leveraging microservices
architecture by using Docker technology. In SoutheastCon 2016 (pp. 1-5). IEEE..

[17] Stubbs, J., Moreira, W. and Dooley, R., 2015, June. Distributed systems of microservices
using docker and serfnode. In 2015 7th International Workshop on Science Gateways (pp. 34-
39). IEEE.

[18] Alam, M., Rufino, J., Ferreira, J., Ahmed, S.H., Shah, N. and Chen, Y., 2018.
Orchestration of microservices for iot using docker and edge computing. IEEE
Communications Magazine, 56(9), pp.118-123.

[19] Singh, S. and Singh, N., 2016, July. Containers & Docker: Emerging roles & future of
Cloud technology. In 2016 2nd international conference on applied and theoretical computing
and communication technology (iCATccT) (pp. 804-807). IEEE.

[20] Baresi, L., Quattrocchi, G. and Tamburri, D.A., 2022. Microservice Architecture
Practices and Experience: a Focused Look on Docker Configuration Files. arXiv preprint
arXiv:2212.03107.

[21] Al-Debagy, O. and Martinek, P., 2018, November. A comparative review of
microservices and monolithic architectures. In 2018 IEEE 18th International Symposium on
Computational Intelligence and Informatics (CINTI) (pp. 000149-000154). IEEE.

[22] Jhingran, S. and Rakesh, N., 2021, July. Performance factor impacting behavior of
microservices in various hosting domains. In 2021 Fourth International Conference on
Computational Intelligence and Communication Technologies (CCICT) (pp. 160-164). IEEE.

