

THE MONOPHONIC HULL DOMINATION NUMBER OF A GRAPH

P. Anto Paulin Brinto

Department of Mathematics, Scott Christian College (Autonomous), Nagercoil - 629 003, India, Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012 antopaulin@gmail.com

Abstract

In this article, the monophonic hull domination number $\gamma_{mh}(G)$ of a graph G is introduced and the monophonic hull domination numbers of certain classes of graphs are determined. Connected graphs of order p with monophonic hull domination number 2, p, p - 1 are characterized. It is shown that for any two integers $a, b \ge 2$ with $2 \le a \le b$, there exists a connected graph G such that $\gamma_{mh}(G) = a$ and $\gamma_m(G) = b$, where $\gamma_m(G)$ is the monophonic domination number of a graph.

Keywords: monophonic hull number, domination number, monophonic hull domination number.

AMS Subject Classification: 05C38, 05C69.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to Harary [1,8]. A convexity on a finite set V is a family C of subsets of V, convex sets which is closed under intersection and which contains both V and the empty set. The pair (V, E) is called a convexity space. A finite graph convexity space is a pair (V, E), formed by a finite connected graph G = (V, E) and a convexity C on V such that (V, E) is a convexity space satisfying that every member of C induces a connected sub graph of G. Thus, classical convexity can be extended to graphs in a natural way. We know that a set X of R_n is convex if every segment joining two points of X is entirely contained in it. Similarly a vertex set W of a finite connected graph is said to be convex set of G if it contains all the vertices lying in a certain kind of path connecting vertices of W[2,7].

A chord of a path *P* is an edge joining two non adjacent vertices of *P*. A u - v path *P* is called monophonic path if it is a chordless path[9]. A longest *u*-*v* monophonic path is called an u - vdetour monophonic path. A u - v monophonic path with its length equal to $d_m(u, v)$ is known as a u - v monophonic. For any vertex *v* in a connected graph *G*, the monophonic eccentricity of *v* is $e_m(v) = \max \{d_m(u, v) : u \in V\}$. A vertex *u* of *G* such that $d_m(u, v) = e_m(v)$ is called a monophonic eccentric vertex of *v*. The monophonic radius and monophonic diameter of *G* are defined by $rad_m G = \min \{e_m(v) : v \in V\}$ and $diam_m G = \max \{e_m(v) : v \in V\}$, respectively. We denote $rad_m G$ by r_m and $diam_m G$ by d_m [15].

A vertex x is said to lie on a u - v monophonic path P if x is a vertex of P including the vertices u and v. For two vertices u and v, let J[u, v] denotes the set of all vertices which lie on u - v

monophonic path. For a set M of vertices[11], let J[M] =. The set M is monophonic convex or m-convex if J[M] = M. Clearly if $M = \{v\}$ or M = V, then M is m-convex. The mconvexity number, denoted by $C_m(G)$, is the cardinality of a maximum proper m-convex subset of V. The m-convex hull [M] the smallest m-convex set containing M. The monophonic convex hull of M can also be formed from the sequence $\{J^k[M]\}(k \ge 0)$, where $J^0[M] = M, J^1[M] =$ J[M] and $J^k[M] = J^{k-1}[M]$. Froms some term on, this sequence must be constant[14]. Let nbe the smallest number such that $J^n[M] = J^{n+1}[M]$. Then [M] is the m-convex hull. The minimum cardinality of a m- convex hull is the monophonic hull number $m_h(G)$. Since the intersection of two m-convex set is m-convex, the m-convex hull is well defined.

A subset $D \subseteq V(G)$ is called a *dominating set* if every vertex in $V \setminus D$ is adjacent to at least one vertex of D. The *domination number*, $\gamma(G)$, of a graph G denotes the minimum cardinality of such dominating sets of G. A minimum dominating set of a graph G is hence often called as a γ -set of G. The domination concept was studied in [8, 10-13]. The following theorems are used in the sequel.

Theorem 1.1[14]. For the complete graph $G = K_p (p \ge 2), m_h(G) = p$. **Theorem 1.2[8].** For the path, $G = P_p (p \ge 4), \gamma(G) = \left\lfloor \frac{p}{3} \right\rfloor$.

2. The monophonic hull domination number of a graph

Definition 2.1. Let *G* be a connected graph. A set of vertices *M* in *G* is called a *monophonic hull dominating set* of *G* if *M* is both a monophonic hull set of *G* and a dominating set of *G*. The *monophonic hull domination number* of *G* is defined as $\gamma_{mh}(G) = \min\{|M|: M \text{ is a monophonic hull dominating set of } G\}$. The minimum cardinality of a monophonic hull dominating set *M* of *G* is called a γ_{mh} -set of *G*.

Example 2.2. For the graph G given in Figure 2.1, $M = \{v_1, v_3, v_5\}$ is a dominating set and $J^2[M] = V(G)$ so that M is a monophonic hull set. Therefore M is a monophonic hull dominating set of G and so $\gamma_{mh}(G) \leq 3$. It is easily seen that there is no γ_{mh} – set of G with cardinality two. Hence $\gamma_{mh}(G) = 3$.

Observation 2.3. Let G be a connected graph and v be a cut-vertex of G. Then every monophonic hull dominating set contains at least one element from each component of G - v.

Observation 2.4. No cut vertex of *G* belongs to any γ_{mh} –set of *G*.

Observation 2.5. If G is a connected graph of order n, then $2 \le \max\{m_h(G), \gamma(G)\} \le \gamma_{mh}(G) \le p$.

Observation 2.6. Let *G* be a connected graph. Then

(i) γ_{mh}(G) ≥ m_h(G) and γ_{mh}(G) ≥ γ(G)
(ii) Every monophonic hull dominating set of G contains all the extreme vertices of

G.

In the following we determine the monophonic hull domination number of some standard graphs.

Theorem 2.7. For the complete graph $G = K_p (p \ge 2)$, $\gamma_{mh}(K_p) = p$.

Proof. Let M = V(G) is the set of extreme vertex of G. Hence M is the unique monophonic hull dominating set of G. Thus $\gamma_{mh}(G) = p$.

Theorem.2.8. For the star $G = K_{1,p-1}$, $\gamma_{mh}(G) = p - 1$.

Proof. Let $V(G) = \{v, v_i; 1 \le i \le p - 1\}$. Let $M = \{v_1, v_2, ..., v_{p-1}\}$ be the set of end edges of *G*. By Observation 2.6 (ii), *S* is a subset of every monophonic hull dominating set of *G* and so $\gamma_{mh}(G) \ge p - 1$. Now *S* is a monophonic hull dominating set of *G* so that $\gamma_{mh}(G) = p - 1$.

Theorem.2.9. For the double star G, $\gamma_{mh}(G) = p - 2$.

Proof. Let $V(G) = \{u, v, u_i, v_j; 1 \le i \le r, 1 \le j \le s\}$ and $E(G) = \{v, uu_i, vv_j; 1 \le i \le r, 1 \le j \le s\}$, where r + s = p - 2. Let $M = \{u_1, u_2, \dots, u_r, v_1, v_2, \dots, v_s\}$ be the set of all end vertices of G. By Observation 2.6(ii), M is a subset of every monophonic hull dominating set of G and so $\gamma_{mh}(G) \ge r + s$. Now M is a monophonic hull dominating set of G so that $\gamma_{mh}(G) = r + s = p - 2$.

Theorem.2.10. For the cycle $G = C_p (p \ge 6)$, $\gamma_{mh}(G) = \left| \frac{p}{3} \right|$.

Proof. Let *M* be a minimum dominating set of *G*. Then $|M| = \left[\frac{p}{3}\right]$. Now *M* is a monophonic hull dominating set of *G* so that $\gamma_{mh}(G) \leq \gamma(G)$. By Observation 2.6(i), $\gamma(G) \leq \gamma_{mh}(G)$. Hence it follows that $\gamma_{mh}(G) = \gamma(G) = \left[\frac{p}{3}\right]$.

Theorem 2.11. For the wheel $G = W_p = K_1 + C_{p-1}$; $(p \ge 5)$, $\gamma_{mh}(G) = 3$

Proof. Let C_{p-1} be v_1, v_2, \dots, v_{p-1} and $V(K_1) = v$. It is early observed that no two elements set of *G* is a monophonic hull dominating set of *G* and so $\gamma_{mh}(G) \ge 3$. Let $M = \{v_1, v_2, v\}$. Then *M* is a γ_{mh} - set of *G* so that $\gamma_{mh}(G) = 3$

Corollary 2.12. For the complete bipartite graph $G = K_{m,n}$ $(1 \le m \le n)$,

(i) $\gamma_{mh}(G) = 2$ if m = n = 1

(ii) $\gamma_{mh}(G) = n \text{ if } m = 1, n \ge 2$

(iii) $\gamma_{mh}(G) = 2 \text{ if } m = 2, n \ge 2$

(iv) $\gamma_{mh}(G) = 3 \text{ if } m, n \ge 2$

Proof.

(i)This follows from Theorem 2.7.

(ii) This follows from Theorem 2.8.

(iii) Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2, ..., y_n\}$ be the bipartition of G. Then $X = \{x_1, x_2\}$ is a monophonic hull dominating set of G so that $\gamma_{mh}(G) = 2$

(iv) Let $X = \{x_1, x_2, ..., x_r\}$ and $Y = \{y_1, y_2, ..., y_s\}$ be the bipartition of *G*. Then $X = \{x_i, x_j\}$ $(1 \le i, j \le r)$ is a monophonic hull set of *G*. However *S* is not a monophonic hull dominating set of *G*. It is easily verified that no two elements subset of *G* is a monophonic hull dominating set of *G* and so $\gamma_{mh}(G) \ge 3$. Now $S_1 = \{x_i, x_j, y_k\}$ $(1 \le i < j \le m, 1 \le k \le n)$ is a monophonic hull dominating set of *G* so that $\gamma_{mh}(G) = 3$.

3. Some results on the monophonic hull domination number of a graph

Theorem 3.1. Let G be a connected graph with k support vertices and l end vertices. Then $l \le \gamma_{mh}(G) \le p - k$.

Proof. Let *S* be the set of all end vertices of *G* and *M* be the set of support vertices of *G*. Then |S| = l and |M| = k. By Observation 3.6(ii), *S* is a subset of every monophonic hull dominating set of *G* and so $\gamma_{mh}(G) \ge l$. Also by Observation 2.4, S' = V(G) - M is a hull dominating set of *G* and so $\gamma_{mh}(G) \le |V(G) - M| = p - k$. Thus $l \le \gamma_{mh}(G) \le p - k$.

Remark 3. 2. The bounds in Theorem 3. 1 are sharp. For the star $G = K_{1,p-1}$, $\gamma_{mh}(G) = p - 1 = l$. Also the bounds in Theorem 3. 1 are strict. For the graph G given in Figure 3.1, l = 2, k = 2, p = 7, $\gamma_{mh}(G) = 4$. Hence $l < \gamma_{mh}(G) < p - k$.

Theorem 3.3. Let G be a connected graph. Then $\gamma_{mh}(G) \leq n - \left\lfloor \frac{2d_m}{3} \right\rfloor$, where d_m is the monophonic diameter of G.

Proof. Let $P: u = u_0, u_1, u_2, ..., u_{d_m} = v$ be the monophonic diameteral path of G. Then $M = V(G) - \{u_1, u_2, ..., u_{d_{m-1}}\}$ is a monophonic hull set of G. Also M is a dominating set of $\langle M \cup \{u_1, u_{d_{m-1}}\} \rangle$. Let $P': u_2, u_3, ..., u_{d_{m-2}}$. Then |V(P')| = p - 3. Let D be a γ -set of P'. Then by Theorem 1.2, $|D| = \left\lfloor \frac{d_{m-3}}{3} \right\rfloor$. Let $M' = M \cup D$. Then M' is a monophonic hull dominating set of G. Therefore $\gamma_{mh}(G) \leq |SM'| = |S \cup D| = p - d_m + 1 + \left\lfloor \frac{d_{m-3}}{3} \right\rfloor = p - d_m + 1 + \left\lfloor \frac{d_m}{3} \right\rfloor - 1 = p - d_m + \left\lfloor \frac{d_m}{3} \right\rfloor$.

Remark 3.4. The bound in Theorem 3.3 is strict. For the graph given in Figure 3.1, $\gamma_{mh}(G) = 4$ and $p - \left[\frac{2d_m}{3}\right] = 5$. Then $\gamma_{mh}(G) .$

Theorem 3.5. If G is a non complete connected graph such that it has a minimum cut set, then $\gamma_{mh}(G) \leq p - \kappa(G)$, $\kappa(G)$ is the vertex connectivity of G.

Proof. Since *G* is non complete, it is clear that $1 \le \kappa(G) \le p - 2$. Let $U = \{u_1, u_2, ..., u_\kappa\}$ be a minimum cut set of *G*. Let $G_1, G_2, ..., G_r$ $(r \ge 2)$ be the components of G - U and let M = V(G) - U. Then every vertex $u_i(1 \le i \le \kappa)$ is adjacent to at least one vertex of G_j for every *j* $(1 \le j \le r)$. Then $J^K[M] = V(G)$; $k \ge 1$, and so *M* is a monophonic hull dominating set of *G*. Hence $\gamma_{mh}(G) \le p - \kappa(G)$.

Theorem 3.6. Let *G* be a connected non-complete graph and let $U = \{u_1, u_2, ..., u_\kappa\}$ be the minimum cut set of *G*. Then $\gamma_{mh}(G) \le p - \kappa(G) - r$, where *r* is the number of non complete components of G - U.

Proof. Let $U = \{u_1, u_2, ..., u_\kappa\}$ be the minimum cut set of G. Let $G_1, G_2, ..., G_r$ be the non complete components of G - U. Then $|V(G_i)| \ge 3$ $(1 \le i \le r)$. Hence there exist $x_i, y_i \in V(G_i)$ such that $d(x_i, y_i) \ge 2$ $(1 \le i \le r)$. Let z_i be the internal vertex of $x_i - y_i$ path. Then $M = V(G) - U - \{z_1, z_2, ..., z_r\}$ is a monophonic hull dominating set of G so that $\gamma_{mh}(G) \le p - \kappa(G) - r$.

Theorem 3.7. Let G be a connected non-complete graph. Then $\gamma_{mh}(G) \leq p - \delta(G)$.

Proof. Let *M* be a γ_{mh} - set of *G*. If $\delta(G) = 1$, then let *y* be an end edge of *G* such that $xy \in E(G)$. Then $V(G) - \{x\}$ is a monophonic hull dominating set of *G* so that $\gamma_{mh}(G) \leq p - \delta(G)$. So let $\delta(G) \geq 2$. Let *x* be a vertex of *G* such that deg $(x) = \delta(G)$. Let $N(x) = \{v_1, v_2, ..., v_{\delta(G)}\}$. If *x* is a cut vertex of *G*, then V(G) - N(x) is a monophonic hull dominating set of *G* so that $\gamma_{mh}(G) \leq p - \delta(G)$. So assume that *x* is not a cut vertex of *G*. If $\langle N(x) \rangle$ is complete, then *x* is an extreme vertex of *G*. Since *G* is non complete, there exists *y* such that *y* is not adjacent to *x* and *y* is adjacent to each v_i $(1 \leq i \leq \delta(G))$. Then V(G) - N(x) is a monophonic hull dominating set of *G* so that $\gamma_{mh}(G) \leq p - \delta(G)$. If $\langle N(x) \rangle$ is non-complete, then at least two $v'_i s$ are non-adjacent. Since $\delta(G) \geq 2$, v_1 is adjacent to a vertex *w* and v_2 is adjacent to a vertex *z* such that *y* and *z* are not adjacent. Then $V(G) - \{N(x) - \{v_1, v_2\} \} \cup \{y, z\}$ is a monophonic hull dominating set of *G* so that $\gamma_{mh}(G) \leq p - \delta(G)$.

In the following we characterize graphs for which the hull domination number is 2, p, p - 1. **Theorem 3.8.** Let *G* be a connected graph of order $p \ge 2$. Then $\gamma_{mh}(G) = 2$ if and only if there exist a monophonic hull dominating set $M = \{u, v\}$ of *G* such that $d_m(u, v) \le 3$.

Proof. Suppose $\gamma_{mh}(G) = 2$. Let $M = \{u, v\}$ be a monophonic hull dominating set of G. Suppose that $d_m(u, v) \ge 4$. Then the monophonic diametrical path contains at least three internal vertices. Therefore $\gamma_{mh}(G) \ge 3$, which is a contradiction. Therefore $d_m(u, v) \le 3$. The converse is clear.

Theorem 3.9. For a connected graph G of order $p \ge 3$ the following are equivalent. (i) G = G

р

Proof. Let as assume $G = K_p$. Then by Theorem 1.1, $m_h(G) = p$. Next assume $m_h(G) = p$. Then by Observation 2.6 (ii), $\gamma_{mh}(G) = p$. Next assume $\gamma_{mh}(G) = p$. Suppose that $G \neq K_p$. Then by Theorem 3.5, $\gamma_{mh}(G) \leq p - 1$, which is a contradiction. Therefore $G = K_p$.

Theorem 3.10. For a connected graph G of order $p \ge 3$, the following are equivalent.

(i)
$$G = K_1 + \bigcup m_i K_i$$
, where $\sum m_i \ge 2$.

(ii) $m_h(G) = p - 1$

(iii) $\gamma_{mh}(G) = p - 1$

Proof. Let us assume $G = K_1 + \bigcup m_j K_j$, where $\sum m_j \ge 2$. Then by Observations 2.4 and 2.6(ii), $m_h(G) = p - 1$. Next assume that $m_h(G) = p - 1$. Then by

Observation 2.6(i) $\gamma_{mh}(G) = p$ or p - 1. If $\gamma_{mh}(G) = p$, then by Theorem 3.9, $m_h(G) = p$, which is a contradiction. Therefore $\gamma_{mh}(G) = p - 1$. Next assume that $\gamma_{mh}(G) = p - 1$. Then by Theorem 3.5, $\kappa(G) = 1$. Therefore *G* contains only one cut vertex, say *v*. We show that each component of G - v is complete. Suppose that there exist a component G_1 of G - v such that G_1 is non complete. Then $|G_1| \ge 2$. Let *u* be the non extreme vertex of G_1 . Then $M = V(G) - \{u, v\}$ is a monophonic hull dominating set of *G* so that $\gamma_{mh}(G) \le p - 2$, which is a contradiction. Hence each component of G - v is complete. Therefore $G = K_1 + \bigcup m_j K_j$, where $\sum m_j \ge 2$. Conversely, Suppose that $G = K_1 + \bigcup m_j K_j$ where $\sum m_j \ge 2$. Then it is clear that $\gamma_{mh}(G) = p - 1$.

Theorem 3.11. If G is a graph of order p, then $\gamma_{mh}(G) + \gamma_{mh}(\overline{G}) \leq 2p$ and $\gamma_{hm}(G) + \gamma_h(\overline{G}) = 2p$ if and only if $G = K_p$ or $\overline{G} = K_p$.

Proof. By Observation 2.5, $\gamma_{mh}(G) + \gamma_{mh}(\overline{G}) \leq 2p$. Now, suppose $G = K_p$ or $\overline{G} = K_p$. Then by Theorem 2.7, $\gamma_{mh}(G) + \gamma_{mh}(\overline{G}) = 2p$. Conversely, suppose $\gamma_{mh}(G) + \gamma_{mh}(\overline{G}) = 2p$. Then $\gamma_{mh}(G) = p$ and $\gamma_{mh}(\overline{G}) = p$. It follows from Theorem 3.22, that the components of G and \overline{G} are complete graphs. This is possible only when $G = K_p$ or $\overline{G} = K_p$.

Theorem 3.12. If G is a connected graph of order p, then $\gamma_{mh}(G) + \gamma_{mh}(\overline{G}) = 2p - 1$ if and only if $p \ge 3$ and $G = K_{1,p-1}$ or $\overline{G} = K_{1,p-1}$.

Proof. Suppose $p \ge 3$ and $G = K_{1,p-1}$ or $\overline{G} = K_{1,p-1}$. Then by Theorem 3.8 that $\gamma_{mh}(G) + \gamma_{mh}(\overline{G}) = 2p - 1$. Conversely, suppose $\gamma_{mh}(G) + \gamma_{mh}(\overline{G}) = 2p - 1$. Then $\gamma_{mh}(G) = p$ or $\gamma_{mh}(\overline{G}) = p$. Without loss of generality, we assume that $\gamma_{mh}(\overline{G}) = p$. Then $\gamma_{mh}(G) = p - 1$. By Theorem 3.11, the components of \overline{G} are complete graphs. If \overline{G} is connected, then $\overline{G} = K_p$ and we get the contradiction. Therefore $\gamma_{mh}(G) = p$. If \overline{G} is not connected, then $p \ge 2$ and G is connected. By Theorem 3.11, we find that there exists a vertex v in G such that v is adjacent to every other vertex of G and G - v is the union of at least two complete graphs. Therefore $p \ge 3$. Since $\gamma_{mh}(\overline{G}) = p$, the components of G - v are isolated vertices. This shows that $G = K_{1,p-1}$.

Theorem 3.13. For every pair k, p of integers such that $2 \le k \le p$, there exists a connected graph G of order p such that $\gamma_{mh}(G) = k$.

Proof. If k = p, then take $G = K_p$. By Theorem 2.7, $\gamma_{mh}(G) = p$.

Case *a*. Suppose 2 = k < p. Let $G = K_{2, p-2}$ be a complete bipartite graph. Let $U = \{x, y\}$ and $W = \{u_1, u_2, ..., u_{p-2}\}$ be a bipartition of *G*. Then $U = \{x, y\}$ is a monophonic hull dominating set of *G* so that $\gamma_{mh}(G) = 2$.

Case b. Suppose 2 < k < p. Let $H = K_{2,p-k-1}$ be a complete bipartite graph. Let

 $U = \{x, y\}, \quad W = \{u_1, u_2, \dots, u_{p-k-1}\}$ be a bipartition of *G*. Let $Z = \{v_1, v_2, \dots, v_{k-1}\}$ be the set of end-vertices of *G*. The graph *G* given in Figure 3.2 is obtained from *H* by joining each v_i $(1 \le i \le k-1)$ with the vertex *x*. By observation 2.6 (ii), *Z* is a subset of every monophonic hull dominating set of *G* and so $\gamma_{mh}(G) \ge k - 1$. It is clear that *Z* is not a monophonic hull dominating set of *G* and so $\gamma_{mh}(G) \ge k$. However $M = Z \cup \{y\}$ is a monophonic hull dominating set of *G* so that $\gamma_{mh}(G) = k$.

Conclusion

In this article, we'll look into the idea of a graph's monophonic hull domination number. We broaden this idea to include signal distance in graphs.

References

F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
G. Chartrand and Ping Zhang, Convex sets in graphs, *Congressess Numerantium* 136,(1999), 19-32.

[3] G. Chartrand and P. Zhang, The forcing hull number of a graph, J. Combin. Math. Comput., 36, (2001), 81-94.

[4] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, *Discrete Mathematics*, 293, (2005), 139 – 154

[5] M. G. Evertt, S. B. Seidman, The hull number of a graph, *Mathematics*, 57, (1985) 217-223.

[6] Esamel M. Paluga, Sergio R. Canoy, Jr., Monophonic numbers of the join and Composition of connected graphs, *Discrete Mathematics*, 307, (2007), 1146-1154

[7] M. Faber, R.E. Jamison, Convexity in graphs and hyper graphs, *SIAM Journal Algebraic Discrete Mathematics*, 7,(1986), 433-444.

[8] T. W. Haynes, , S. T. Hedetniemi, P. J. Slater, (1998), 'Domination in graphs', Advanced Topics, Marcel Dekker, New York.

[9] J. John and S. Panchali, The Upper Monophonic number of a graph, *International J. Math. Combin.* 4, (2010), 46-52.

[10] J.John and M.S. Malchijah Raj, 'The forcing nonsplit domination number

of a graph', Korean Journal of Mathematics, 29(1), (2021), 1-12.

[11] J.John, The forcing monophonic and the forcing geodetic numbers of a graph, *Indonesian Journal of Combinatorics*, 4(2), (2020), 114–125.

[12] J. John and V. Sujin Flower On the forcing domination and the forcing total domination numbers of a graph, *Graphs and Combinatorics*, 38, (2022), Article number: 142

[13] S. Kavitha, S. Robinson Chellathurai and J. John, On the forcing connected domination number of a graph, *Journal of Discrete Mathematical Sciences and Cryptography*, 20 (3), (2017), 611-624.

[14] Mitre C. Dourado, Fabio Protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, *Electronic Notes in Discrete Mathematics*, 30,(2008), 177-182.

[15] A. P. Santhakumaran and P. Titus, Monophonic Distance in Graphs, *Discrete Mathematics, Algorithms and Applications*, 3(2), (2011),159-169.