THE MONOPHONIC HULL DOMINATION NUMBER OF A GRAPH

P. Anto Paulin Brinto
Department of Mathematics, Scott Christian College (Autonomous), Nagercoil - 629 003, India, Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012 antopaulin@gmail.com

Abstract

In this article, the monophonic hull domination number $\gamma_{m h}(G)$ of a graph G is introduced and the monophonic hull domination numbers of certain classes of graphs are determined. Connected graphs of order p with monophonic hull domination number $2, p, p-1$ are characterized. It is shown that for any two integers $a, b \geq 2$ with $2 \leq a \leq b$, there exists a connected graph G such that $\gamma_{m h}(G)=a$ and $\gamma_{m}(G)=b$, where $\gamma_{m}(G)$ is the monophonic domination number of a graph.

Keywords: monophonic hull number, domination number, monophonic hull domination number.

AMS Subject Classification: 05C38, 05C69.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to Harary $[1,8]$. A convexity on a finite set V is a family C of subsets of V, convex sets which is closed under intersection and which contains both V and the empty set. The pair (V, E) is called a convexity space. A finite graph convexity space is a pair (V, E), formed by a finite connected graph $G=(V, E)$ and a convexity C on V such that (V, E) is a convexity space satisfying that every member of C induces a connected sub graph of G. Thus, classical convexity can be extended to graphs in a natural way. We know that a set X of R_{n} is convex if every segment joining two points of X is entirely contained in it. Similarly a vertex set W of a finite connected graph is said to be convex set of G if it contains all the vertices lying in a certain kind of path connecting vertices of $W[2,7]$.

A chord of a path P is an edge joining two non adjacent vertices of P. A $u-v$ path P is called monophonic path if it is a chordless path[9]. A longest $u-v$ monophonic path is called an $u-v$ detour monophonic path. A $u-v$ monophonic path with its length equal to $d_{m}(u, v)$ is known as a $u-v$ monophonic. For any vertex v in a connected graph G, the monophonic eccentricity of v is $e_{m}(v)=\max \left\{d_{m}(u, v): u \in V\right\}$. A vertex u of G such that $d_{m}(u, v)=e_{m}(v)$ is called a monophonic eccentric vertex of v. The monophonic radius and monophonic diameter of G are defined by $\operatorname{rad}_{m} G=\min \left\{e_{m}(v): \mathrm{v} \in V\right\}$ and $\operatorname{diam}_{m} G=\max \left\{e_{m}(v): v \in V\right\}$, respectively. We denote $\mathrm{rad}_{m} G$ by r_{m} and $\operatorname{diam}_{m} G$ by $d_{m}[15]$.

A vertex x is said to lie on a $u-v$ monophonic path P if x is a vertex of P including the vertices u and v. For two vertices u and v, let $J[u, v]$ denotes the set of all vertices which lie on $u-v$
monophonic path. For a set M of vertices[11], let $J[M]=$. The set M is monophonic convex or m-convex if $J[M]=M$. Clearly if $M=\{v\}$ or $M=V$, then M is m-convex. The m convexity number, denoted by $C_{m}(G)$, is the cardinality of a maximum proper m-convex subset of V. The m-convex hull $[M]$ the smallest m-convex set containing M. The monophonic convex hull of M can also be formed from the sequence $\left\{J^{k}[M]\right\}(k \geq 0)$, where $J^{0}[M]=M, J^{1}[M]=$ $J[M]$ and $J^{k}[M]=J^{k-1}[M]$. Froms some term on, this sequence must be constant[14]. Let n be the smallest number such that $J^{n}[M]=J^{n+1}[M]$. Then $[M]$ is the m-convex hull. The minimum cardinality of a m - convex hull is the monophonic hull number $m_{h}(G)$. Since the intersection of two m-convex set is m-convex, the m-convex hull is well defined.

A subset $D \subseteq V(G)$ is called a dominating set if every vertex in $V \backslash D$ is adjacent to at least one vertex of D. The domination number, $\gamma(G)$, of a graph G denotes the minimum cardinality of such dominating sets of G. A minimum dominating set of a graph G is hence often called as a γ-set of G. The domination concept was studied in [8, 10-13].The following theorems are used in the sequel.

Theorem 1.1[14]. For the complete graph $G=K_{p}(p \geq 2), m_{h}(G)=p$.
Theorem 1.2[8]. For the path, $G=P_{p}(p \geq 4), \gamma(G)=\left\lceil\frac{p}{3}\right\rceil$.

2. The monophonic hull domination number of a graph

Definition 2.1. Let G be a connected graph. A set of vertices M in G is called a monophonic hull dominating set of G if M is both a monophonic hull set of G and a dominating set of G. The monophonic hull domination number of G is defined as $\gamma_{m h}(G)=$ $\min \{|M|: M$ is a monophonic hull dominating set of $G\}$. The minimum cardinality of a monophonic hull dominating set M of G is called a $\gamma_{m h}$-set of G.

Example 2.2. For the graph G given in Figure 2.1, $M=\left\{v_{1}, v_{3}, v_{5}\right\}$ is a dominating set and $J^{2}[M]=V(G)$ so that M is a monophonic hull set. Therefore M is a monophonic hull dominating set of G and so $\gamma_{m h}(G) \leq 3$. It is easily seen that there is no $\gamma_{m h}-$ set of G with cardinality two. Hence $\gamma_{m h}(G)=3$.

G
Figure 2.1
Observation 2.3. Let G be a connected graph and v be a cut-vertex of G. Then every monophonic hull dominating set contains at least one element from each component of $G-v$.

Observation 2.4. No cut vertex of G belongs to any $\gamma_{m h}$-set of G.
Observation 2.5. If G is a connected graph of order n, then $2 \leq \max \left\{m_{h}(G), \gamma(G)\right\} \leq$ $\gamma_{m h}(G) \leq p$.

Observation 2.6. Let G be a connected graph. Then
$\gamma_{m h}(G) \geq m_{h}(G)$ and $\gamma_{m h}(G) \geq \gamma(G)$
(ii)

Every monophonic hull dominating set of G contains all the extreme vertices of G.

In the following we determine the monophonic hull domination number of some standard graphs.
Theorem 2.7. For the complete graph $G=K_{p}(p \geq 2), \gamma_{m h}\left(K_{p}\right)=p$.
Proof. Let $M=V(G)$ is the set of extreme vertex of G. Hence M is the unique monophonic hull dominating set of G. Thus $\gamma_{m h}(G)=p$.
Theorem.2.8. For the star $G=K_{1, p-1}, \gamma_{m h}(G)=p-1$.
Proof. Let $V(G)=\left\{v, v_{i} ; 1 \leq i \leq p-1\right\}$. Let $M=\left\{v_{1}, v_{2}, \ldots, v_{p-1}\right\}$ be the set of end edges of G. By Observation 2.6 (ii), S is a subset of every monophonic hull dominating set of G and so $\gamma_{m h}(G) \geq p-1$. Now S is a monophonic hull dominating set of G so that $\gamma_{m h}(G)=p-1$.

Theorem.2.9. For the double star $G, \gamma_{m h}(G)=p-2$.
Proof. Let $V(G)=\left\{u, v, u_{i}, v_{j} ; 1 \leq i \leq r, 1 \leq j \leq s\right\}$ and $E(G)=\left\{v, u u_{i}, v v_{j} ; 1 \leq i \leq\right.$ $r, 1 \leq j \leq s\}$, where $r+s=p-2$. Let $M=\left\{u_{1}, u_{2}, \ldots, u_{r}, v_{1}, v_{2} \ldots, v_{s}\right\}$ be the set of all end vertices of G. By Observation 2.6(ii), M is a subset of every monophonic hull dominating set of G and so $\gamma_{m h}(G) \geq r+s$. Now M is a monophonic hull dominating set of G so that $\gamma_{m h}(G)=r+s=p-2$.

Theorem.2.10. For the cycle $G=C_{p}(p \geq 6), \gamma_{m h}(G)=\left\lceil\frac{p}{3}\right\rceil$.
Proof. Let M be a minimum dominating set of G. Then $|M|=\left\lceil\frac{p}{3}\right\rceil$. Now M is a monophonic hull dominating set of G so that $\gamma_{m h}(G) \leq \gamma(G)$. By Observation 2.6(i), $\gamma(G) \leq \gamma_{m h}(G)$. Hence it follows that $\gamma_{m h}(G)=\gamma(G)=\left\lceil\frac{p}{3}\right\rceil$.
Theorem 2.11. For the wheel $G=W_{p}=K_{1}+C_{p-1} ;(p \geq 5), \quad \gamma_{m h}(G)=3$
Proof. Let C_{p-1} be $v_{1}, v_{2}, \ldots . v_{p-1}$ and $V\left(K_{1}\right)=v$. It is early observed that no two elements set of G is a monophonic hull dominating set of G and so $\gamma_{m h}(G) \geq 3$. Let $M=\left\{v_{1}, v_{2}, v\right\}$. Then M is a $\gamma_{m h^{-}}$set of G so that $\gamma_{m h}(G)=3$

Corollary 2.12. For the complete bipartite graph $G=K_{m, n}(1 \leq m \leq n)$,

$$
\begin{align*}
& \gamma_{m h}(G)=2 \text { if } m=n=1 \tag{i}\\
& \gamma_{m h}(G)=n \text { if } m=1, n \geq 2 \\
& \gamma_{m h}(G)=2 \text { if } m=2, n \geq 2 \tag{11i}\\
& \gamma_{m h}(G)=3 \text { if } m, n \geq 2
\end{align*}
$$

Proof.
(i)This follows from Theorem 2.7.
(ii) This follows from Theorem 2.8 .
(iii) Let $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be the bipartition of G. Then $X=\left\{x_{1}, x_{2}\right\}$ is a monophonic hull dominating set of G so that $\gamma_{m h}(G)=2$
(iv) Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ be the bipartition of G. Then $\quad X=$ $\left\{x_{i}, x_{j}\right\} \quad(1 \leq i, j \leq r) \quad$ is a monophonic hull set of G. However S is not a monophonic hull dominating set of G. It is easily verified that no two elements subset of G is a monophonic hull dominating set of G and so $\gamma_{m h}(G) \geq 3$. Now $S_{1}=\left\{x_{i}, x_{j}, y_{k}\right\}(1 \leq i<j \leq m, 1 \leq k \leq$ n) is a monophonic hull dominating set of G so that $\gamma_{m h}(G)=3$.
3. Some results on the monophonic hull domination number of a graph

Theorem 3.1. Let G be a connected graph with k support vertices and l end vertices. Then $l \leq$ $\gamma_{m h}(G) \leq p-k$.

Proof. Let S be the set of all end vertices of G and M be the set of support vertices of G. Then $|S|=l$ and $|M|=k$. By Observation 3.6(ii), S is a subset of every monophonic hull dominating set of G and so $\gamma_{m h}(G) \geq l$. Also by Observation 2.4, $S^{\prime}=V(G)-M$ is a hull dominating set of G and so $\gamma_{m h}(G) \leq|V(G)-M|=p-k$. Thus $l \leq \gamma_{m h}(G) \leq$ $p-k$.

Figure 3.1

Remark 3. 2. The bounds in Theorem 3. 1 are sharp. For the star $G=K_{1, p-1}, \gamma_{m h}(G)=$ $p-1=l$. Also the bounds in Theorem 3. 1 are strict. For the graph G given in Figure 3.1, $l=2, k=2, p=7, \gamma_{m h}(G)=4$. Hence $l<\gamma_{m h}(G)<p-k$.

Theorem 3.3. Let G be a connected graph. Then $\gamma_{m h}(G) \leq n-\left\lceil\frac{2 d_{m}}{3}\right\rceil$, where d_{m} is the monophonic diameter of G.

Proof. Let $P: u=u_{0}, u_{1}, u_{2}, \ldots, u_{d_{m}}=v$ be the monophonic diameteral path of G. Then $M=V(G)-\left\{u_{1}, u_{2} \ldots, u_{d_{m-1}}\right\}$ is a monophonic hull set of G. Also M is a dominating set of $\left\langle M \cup\left\{u_{1}, u_{d_{m-1}}\right\}\right\rangle$. Let $P^{\prime}: u_{2}, u_{3}, \ldots, u_{d_{m-2}}$. Then $\left|V\left(P^{\prime}\right)\right|=p-3$. Let D be a γ-set of P^{\prime}. Then by Theorem 1.2, $|D|=\left\lceil\frac{d_{m-3}}{3}\right\rceil$. Let $M^{\prime}=M \cup D$. Then M^{\prime} is a monophonic hull dominating set of G. Therefore $\quad \gamma_{m h}(G) \leq\left|S M^{\prime}\right|=|S \cup D|=p-d_{m}+1+\left\lceil\frac{d_{m-3}}{3}\right\rceil=p-$ $d_{m}+1+\left\lceil\frac{d_{m}}{3}\right\rceil-1=p-d_{m}+\left\lceil\frac{d_{m}}{3}\right\rceil$. Thus $\gamma_{m h}(G) \leq p-\left\lceil\frac{2 d_{m}}{3}\right\rceil$.

Remark 3.4. The bound in Theorem 3.3 is strict. For the graph given in Figure 3.1, $\gamma_{m h}(G)=$ 4 and $p-\left\lceil\frac{2 d_{m}}{3}\right\rceil=5$. Then $\gamma_{m h}(G)<p-\left\lceil\frac{2 d_{m}}{3}\right\rceil$.
Theorem 3.5. If G is a non complete connected graph such that it has a minimum cut set, then $\gamma_{m h}(G) \leq p-\kappa(G), \kappa(G)$ is the vertex connectivity of G.

Proof. Since G is non complete, it is clear that $1 \leq \kappa(G) \leq p-2$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{\kappa}\right\}$ be a minimum cut set of G. Let $G_{1}, G_{2}, \ldots, G_{r}(r \geq 2)$ be the components of $G-U$ and let $M=V(G)-U$. Then every vertex $u_{i}(1 \leq i \leq \kappa)$ is adjacent to at least one vertex of G_{j} for every $j(1 \leq j \leq r)$. Then $J^{K}[M]=V(G) ; k \geq 1$, and so M is a monophonic hull dominating set of G. Hence $\quad \gamma_{m h}(G) \leq p-\kappa(G)$.

Theorem 3.6. Let G be a connected non-complete graph and let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be the minimum cut set of G. Then $\gamma_{m h}(G) \leq p-\kappa(G)-r$, where r is the number of non complete components of $G-U$.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be the minimum cut set of G. Let $G_{1}, G_{2}, \ldots G_{r}$ be the non complete components of $G-U$. Then $\left|V\left(G_{i}\right)\right| \geq 3(1 \leq i \leq r)$. Hence there exist $x_{i}, y_{i} \in$ $V\left(G_{i}\right)$ such that $d\left(x_{i}, y_{i}\right) \geq 2(1 \leq i \leq r)$. Let z_{i} be the internal vertex of $x_{i}-$ y_{i} path. Then $M=V(G)-U-\left\{z_{1}, z_{2}, \ldots, z_{r}\right\}$ is a monophonic hull dominating set of G so that $\gamma_{m h}(G) \leq p-\kappa(G)-r$.
Theorem 3.7. Let G be a connected non-complete graph. Then $\gamma_{m h}(G) \leq p-\delta(G)$.
Proof. Let M be a $\gamma_{m h^{-}}$set of G. If $\delta(G)=1$, then let y be an end edge of G such that $x y \in$ $E(G)$. Then $V(G)-\{x\}$ is a monophonic hull dominating set of G so that $\gamma_{m h}(G) \leq p-$ $\delta(G)$. So let $\delta(G) \geq 2$. Let x be a vertex of G such that $\operatorname{deg}(x)=\delta(G)$. Let $N(x)=$ $\left\{v_{1}, v_{2}, \ldots, v_{\delta(G)}\right\}$. If x is a cut vertex of G, then $V(G)-N(x)$ is a monophonic hull dominating set of G so that $\gamma_{m h}(G) \leq p-\delta(G)$. So assume that x is not a cut vertex of G. If $\langle N(x)\}\rangle$ is complete, then x is an extreme vertex of G. Since G is non complete, there exists y such that y is not adjacent to x and y is adjacent to each $v_{i}(1 \leq i \leq \delta(G))$. Then $V(G)-N(x)$ is a monophonic hull dominating set of G so that $\gamma_{m h}(G) \leq p-\delta(G)$. If $\langle N(x)\}\rangle$ is non-complete, then at least two $v_{i}^{\prime} s$ are non-adjacent. Since $\delta(G) \geq 2, v_{1}$ is adjacent to a vertex w and v_{2} is adjacent to a vertex z such that y and z are not adjacent. Then $V(G)-\left\{N(x)-\left\{v_{1}, v_{2}\right\}\right\} \cup\{y, z\}$ is a monophonic hull dominating set of G so that $\gamma_{m h}(G) \leq p-\delta(G)$.

In the following we characterize graphs for which the hull domination number is $2, p, p-1$.
Theorem 3.8. Let G be a connected graph of order $p \geq 2$. Then $\gamma_{m h}(G)=2$ if and only if there exist a monophonic hull dominating set $M=\{u, v\}$ of G such that $d_{m}(u, v) \leq 3$.
Proof. Suppose $\gamma_{m h}(G)=2$. Let $M=\{u, v\}$ be a monophonic hull dominating set of G. Suppose that $d_{m}(u, v) \geq 4$. Then the monophonic diametrical path contains at least three internal vertices. Therefore $\gamma_{m h}(G) \geq 3$, which is a contradiction. Therefore $d_{m}(u, v) \leq$ 3. The converse is clear.

Theorem 3.9. For a connected graph G of order $p \geq 3$ the following are equivalent.

(i)	$G=$
K_{p}	$m h(G)=$
(ii)	
p	$\gamma_{m h}(G)=$
(iii)	

Proof. Let as assume $G=K_{p}$. Then by Theorem 1.1, $m_{h}(G)=p$. Next assume $m_{h}(G)=p$. Then by Observation 2.6 (ii), $\gamma_{m h}(G)=p$. Next assume $\gamma_{m h}(G)=p$. Suppose that $G \neq K_{p}$. Then by Theorem 3.5, $\gamma_{m h}(G) \leq p-1$, which is a contradiction. Therefore $G=K_{p}$.

Theorem 3.10. For a connected graph G of order $p \geq 3$, the following are equivalent.
(i) $\quad G=K_{1}+\cup m_{j} K_{j}$, where $\sum m_{j} \geq 2$.
(ii) $\quad m_{h}(G)=p-1$
(iii) $\quad \gamma_{m h}(G)=p-1$

Proof. Let us assume $G=K_{1}+\cup m_{j} K_{j}$, where $\sum m_{j} \geq 2$. Then by Observations 2.4 and 2.6(ii), $\quad m_{h}(G)=p-1$. Next assume that $m_{h}(G)=p-1$. Then by

Observation 2.6(i) $\gamma_{m h}(G)=p$ or $p-1$. If $\gamma_{m h}(G)=p$, then by Theorem 3.9, $m_{h}(G)=$ p, which is a contradiction. Therefore $\quad \gamma_{m h}(G)=p-1$. Next assume that $\gamma_{m h}(G)=p-$ 1. Then by Theorem 3.5, $\kappa(G)=1$. Therefore G contains only one cut vertex, say v. We show that each component of $G-v$ is complete. Suppose that there exist a component G_{1} of $G-v$ such that G_{1} is non complete. Then $\left|G_{1}\right| \geq 2$. Let u be the non extreme vertex of G_{1}. Then $M=V(G)-\{u, v\}$ is a monophonic hull dominating set of G so that $\gamma_{m h}(G) \leq p-$ 2 , which is a contradiction. Hence each component of $G-v$ is complete. Therefore $G=$ $K_{1}+\cup m_{j} K_{j}$, where $\sum m_{j} \geq 2$. Conversely, Suppose that $G=K_{1}+\cup m_{j} K_{j}$ where $\sum m_{j} \geq$ 2.Then it is clear that $\gamma_{m h}(G)=p-1$.

Theorem 3.11. If G is a graph of order p, then $\gamma_{m h}(G)+\gamma_{m h}(\bar{G}) \leq 2 p$ and $\gamma_{h m}(G)+$ $\gamma_{h}(\bar{G})=2 p$ if and only if $G=K_{p}$ or $\bar{G}=K_{p}$.
Proof. By Observation 2.5, $\gamma_{m h}(G)+\gamma_{m h}(\bar{G}) \leq 2 p$. Now, suppose $G=K_{p}$ or $\bar{G}=K_{p}$. Then by Theorem 2.7, $\gamma_{m h}(G)+\gamma_{m h}(\bar{G})=2 p$. Conversely, suppose $\gamma_{m h}(G)+\gamma_{m h}(\bar{G})=2 p$. Then $\gamma_{m h}(G)=p$ and $\gamma_{m h}(\bar{G})=p$. It follows from Theorem 3.22, that the components of G and \bar{G} are complete graphs. This is possible only when $G=K_{p}$ or $\bar{G}=K_{p}$.
Theorem 3.12. If G is a connected graph of order p, then $\gamma_{m h}(G)+\gamma_{m h}(\bar{G})=2 p-1$ if and only if $p \geq 3$ and $G=K_{1, p-1}$ or $\bar{G}=K_{1, p-1}$.
Proof. Suppose $p \geq 3$ and $G=K_{1, p-1}$ or $\bar{G}=K_{1, p-1}$. Then by Theorem 3.8 that $\gamma_{m h}(G)+$ $\gamma_{m h}(\bar{G})=2 p-1$. Conversely, suppose $\gamma_{m h}(G)+\gamma_{m h}(\bar{G})=2 p-1$. Then $\gamma_{m h}(G)=p$ or $\gamma_{m h}(\bar{G})=p$. Without loss of generality, we assume that $\gamma_{m h}(\bar{G})=p$. Then $\gamma_{m h}(G)=p-$ 1.By Theorem 3.11, the components of \bar{G} are complete graphs. If \bar{G} is connected, then $\bar{G}=$ K_{p} and we get the contradiction. Therefore $\gamma_{m h}(G)=p$. If \bar{G} is not connected, then $p \geq$ 2 and G is connected. By Theorem 3.11, we find that there exists a vertex v in G such that v is adjacent to every other vertex of G and $G-v$ is the union of at least two complete graphs. Therefore $p \geq 3$. Since $\gamma_{m h}(\bar{G})=p$, the components of $G-v$ are isolated vertices. This shows that $G=K_{1, p-1}$.

Theorem 3.13. For every pair k, p of integers such that $2 \leq k \leq p$, there exists a connected graph G of order p such that $\gamma_{m h}(G)=k$.

Proof. If $k=p$, then take $G=K_{p}$. By Theorem 2.7, $\gamma_{m h}(G)=p$.
Case a. Suppose $2=k<p$. Let $G=K_{2, p-2}$ be a complete bipartite graph. Let $U=$ $\{x, y\}$ and $W=\left\{u_{1}, u_{2}, \ldots, u_{p-2}\right\}$ be a bipartition of G. Then $U=\{x, y\}$ is a monophonic hull dominating set of G so that $\gamma_{m h}(G)=2$.
Case b. Suppose $2<k<p$. Let $H=K_{2, p-k-1}$ be a complete bipartite graph. Let
$U=\{x, y\}, \quad W=\left\{u_{1}, u_{2}, \ldots, u_{p-k-1}\right\}$ be a bipartition of G. Let $Z=\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ be the set of end-vertices of G. The graph G given in Figure 3.2 is obtained from H by joining each $v_{i}(1 \leq i \leq k-1)$ with the vertex x. By observation 2.6 (ii), Z is a subset
of every monophonic hull dominating set of G and so $\gamma_{m h}(G) \geq k-1$. It is clear that Z is not a monophonic hull dominating set of G and so $\gamma_{m h}(G) \geq k$. However $M=Z \cup$ $\{y\}$ is a monophonic hull dominating set of G so that $\gamma_{m h}(G)=k$.

Figure 3.2

Conclusion

In this article, we'll look into the idea of a graph's monophonic hull domination number. We broaden this idea to include signal distance in graphs.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[2] G. Chartrand and Ping Zhang, Convex sets in graphs, Congressess Numerantium 136,(1999), 19-32.
[3] G. Chartrand and P. Zhang, The forcing hull number of a graph, J. Combin. Math. Comput.,36,(2001), 81-94.
[4] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics, 293, (2005), 139-154
[5] M. G. Evertt, S. B. Seidman, The hull number of a graph, Mathematics, 57, (1985) 217223.
[6] Esamel M. Paluga, Sergio R. Canoy, Jr., Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics, 307, (2007), 1146-1154
[7] M. Faber, R.E. Jamison, Convexity in graphs and hyper graphs, SIAM Journal Algebraic Discrete Mathematics, 7,(1986), 433-444.
[8] T. W. Haynes, , S. T. Hedetniemi, P. J. Slater, (1998), 'Domination in graphs’, Advanced Topics, Marcel Dekker, New York.
[9] J. John and S. Panchali, The Upper Monophonic number of a graph, International J. Math. Combin. 4, (2010), 46-52.
[10] J.John and M.S. Malchijah Raj, 'The forcing nonsplit domination number of a graph', Korean Journal of Mathematics, 29(1), (2021), 1-12.
[11] J.John, The forcing monophonic and the forcing geodetic numbers of a graph,
Indonesian Journal of Combinatorics, 4(2), (2020), 114-125.
[12] J. John and V. Sujin Flower On the forcing domination and the forcing total domination numbers of a graph, Graphs and Combinatorics, 38, (2022), Article number: 142
[13] S. Kavitha, S. Robinson Chellathurai and J. John, On the forcing connected domination number of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 20 (3), (2017), 611-624.
[14] Mitre C. Dourado, Fabio Protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, Electronic Notes in Discrete Mathematics, 30,(2008), 177-182.
[15] A. P. Santhakumaran and P. Titus, Monophonic Distance in Graphs, Discrete Mathematics, Algorithms and Applications, 3(2), (2011),159-169.

