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Abstract

Let G = (V, E) be an undirected connected graph. Let S be a minimum detour edge semi-
toll set (EST4,,-set) of G. A subset M C S is said to be a forcing subset of S if S is the unique
ESTgn-set containing M. The forcing ESTgy, number fggr, (S) of S in G is the minimum
cardinality of a forcing subset for S. The forcing detour edge semi-toll number fzgr, (G) of
G is the minimum cardinality of fggr, (S), where the minimum is taken over all ESTg;,-sets S
of G .1t proved that 0 < fgsr, (G) < EST4,(G) .Some general properties satisfied by this
concept are studied. The forcing detour edge semi- toll number of some standard graphs are
determined. Necessary and sufficient conditions for fzer, (G) tobe 0 or 1 are characterized. It
is shown that every pair of integers a and b with 0 < a < b, there exists a connected graph G
such that fger, (G) = a and ESTy,(G) = b. Also it is shown that for every pair of integers a
and b with 0 < a < b, there exists a connected graph G such that fzer, (G) =aand fu,(G) =
b.
Keywords: detour number, forcing detour number, tolled walk, detour edge semi-toll number,
forcing detour edge semi toll number.
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1. Introduction

By a graph ¢ = (V, E) ,we mean a finite undirected connected graph without loops or multiple
edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic
terminology, we refer to [2]. Two vertices u and v are said to be adjacent if uv is an edge of G.
Two edges of G are said to be adjacent if they have a common vertex. A walk is defined as a
finite length of alternating sequence of vertices and edges. The total number of edges covered
in a walk is called as length of the walk. It is a trail in which neither vertices nor edges are
repeated i.e. if we traverse a graph such that we do not repeat a vertex and nor we repeat an
edge. Any connected graph is called as an Euler Graph if and only if all its vertices are of even
degree. If there exists a walk in the connected graph that starts and ends at the same vertex and
visits every edge of the graph exactly once with or without repeating the vertices, then such a
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walk is called as an Euler circuit. If a connected graph contains an Euler trail but does not
contain an Euler circuit, then such a graph is called as a semi-Euler graph. The distance d (u, v)
between two vertices u and v in a connected graph G is the length of a shortest u-v path in G.
An u—v path of length d(u, v) is called an u—v geodesic. The detour distance D (u, v) between
two vertices u and v in a connected graph G from u to v is defined as the length of a longest u-
v path in G. An u-v path of length D (u, v) is called an u-v detour. A vertex x is said to lic on
an u-v detour P if x is a vertex of P including the vertices u and v. A detour set of G is a set
S € V (G) such that every vertex of G is contained in a detour joining some pair of vertices in
S. The closed detour Ip[u,v] consists of all the vertices lying on some u-v detour of G
including the vertices u and v. The detour number dn(G) of G is the minimum order of a detour
set and any detour set of order dn(G) is called minimum detour set of G or a dn-set ofG. These
concept were studied in [3-7].

A tolled walk T between u and v in G in a sequence at vertices of the form
T:u,w;,wy,...,v where k > 1 which enjoys the following three conditions.
° w;w;.1 € E(G), Vi

° uw; € E(G) ifand only if i = 1.

° vw; € E(G) ifand only if i =k.

T[u, v] = set of vertices lying in the u — v tolled walk including u and v.

A longest u-v tolled walk is called a u-v detour tolled walk Tp[u, v]. Set of all vertices
lying in u-v detour tolled walk including u and v. For § € V(G), the detour tolled closure of
GisTp[S]= U sTD [u,v]. A set S € V(G) is called a detour tolled set if T, [S] = V[G]. The

u,ve

minimum cardinality of a detour tolled set is called the detour tolled number of G and is denoted
by tdn(G)-

An u-v walk P is called an edge semi tolled walk if no edge of E[P] is repeated. A
longest u-v edge semi tolled walk is called a u-v detour edge semi tolled walk. For two vertices

u,v € V,ESTp[u, v] = set of all vertices lying in a u-v detour edge semi tolled walk. For m <
V,ESTp[M] = UM ESTp[u,v]. A set M SV is called a detour edge semi-toll set if
U, Ve

ESTp[M] = V[G]. The minimum cardinality of a detour edge semi-toll set is called the detour
edge semi-toll number of Gand is denoted by ESTy,(G). These concepts were studied in
[1,11].The forcing concepts in graph were studied in [8-10] . In this article, we introduced a
new concept called the forcing detour edge semi-toll number of a graph and some of its
properties. These concepts were applied in communication networks.

Theorem 1.1 [1,4] Each end vertex of a connected graph G belongs to every detour (detour
semi-toll) set of G.

Theorem 1.2 [4] Let G be a connected graph and W be the set of all detour vertices of G. Then
fan(G) < dn(G) — |W|.

Theorem 1.3 [4] For the star graph G = K, ,_;(n = 4), dn(G) =n—1and f3,(G) =0.
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2.The forcing detour edge semi-toll number of a graph

Definition 2.1. Let S be an EST,;,,-set of G. A subset M € S is said to be a forcing subset of S
if § is the unique EST,,-set containing M. The forcing ESTy, number fger, (S) of Sin G is
the minimum cardinality of a forcing subset for S. The forcing detour edge semi- toll
number fggr, (G) of G is the minimum cardinality of fgsr, (S), where the minimum is taken
over all EST,-sets S of G.

Example 2.2. For the graph G given in Figure 2.1, S;= {v;, V3, V12}, S2= {v1, V4, V1,} are the
only two minimum ESTyy,-sets of G such that fger, (S1) = fgsr,,(S2) = 1sothat frer, (G)=
1.

—@ Ulz

Vg V1o
G

Us
Figure 2.1

A graph G with fger, (G) =1

Definition: 2.3. A vertex v of a graph G is said to be edge semi-toll vertex ofG if v belongs to
every ESTy,-set ofG.

Observation 2.4. For every connected graphG, 0 < fgsr, (G) < ESTy,(G).

Observation 2.5. Let G be a connected graph and W be the set of all edge semi-toll vertices of
G. Thenfggsr, (G) < EST4n(G) - |W|.

Observation 2.6. Let G be a connected graph. Then
(a) fgst,, (G) = 0if and only if G has a unique ESTqy,-set.

(b) fesr,,(G) = 1ifand only if G has at least two ESTy,,-sets, one of which is a unique EST -
set containing one of its elements, and

(©)fesr4,(G) = EST4, (G) if and only if no ESTy,-set of G is the unique EST,-set containing
any of its proper subsets.

Observation 2.7. For the star graph G= K1 1, fgsr,,(G) = 0.

Observation 2.8. For the graph G= K, ,_; + e, fgsr,, (G) = 1.
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Proof. Let V(K ,,—1) = {x, v, vy, ..., v,_1} Where x is the cut vertex of K; ,_; and e = v, v,.
Then S, = {v,v3, V4, ..., Vn_1} and Sy = {v,, v3, ..., v, _1 } are the only two EST,,-sets of G
so that fESTdn(G) =1. | |

Theorem 2.9. For the complete graph G= K,(n = 3), fgsr,,(G) = 2.

Proof. Let S = {u, v} be set of two adjacent vertices of G. Then S is a ESTy,-set of G so that
EST4,(G) = 2. Since n = 3, ESTgy-set of G is not unique and so fger, (G) = 1. Since n =
3,u and v lie on two different ESTy,-sets of G and so fgsr, (G) = 2. Since this is true for all
ESTgn-sets S of G, it follows that fger, (G) = 2. [

Theorem 2.10. For the complete bipartite graph G= Ky, ,m = 2,1 = 2, fggr, (G) = 2.

Proof. Let S = {u, v} be set of two adjacent vertices of G. Then S is a ESTg,-set of G so that
EST4n(G) = 2. Since n = 3, EST4y,-set of G is not unique and so fgsr, (G) = 1. Since m =

2,n = 2,u and v lie on two different ESTyy,-sets of G and so fger, (G) = 2. Since this is true
for all ESTgy,-sets S of G, it follows that fger, (G) =2. =

Theorem 2.11. For the cycle graph G = Cp,n = 3, fggr, (G) = 2.

Proof. Let S = {u, v} be set of two adjacent vertices of G. Then S is a ESTy,-set of G so that
EST4n(G) = 2. Since n = 4, ESTgy,-set of G is not unique and so fger, (G) = 1.Since n =

3,u and v lie on two different ESTy,-sets of G and so fgsr, (G) = 2. Since this is true for all
ESTgn-sets S of G, it follows that fzsr, (G) = 2. [

Theorem 2.12. For the wheel graph G = K; + C,_1 (n = 4), fgsr,,(G) = 2.

Proof. Let S = {u, v} be set of two adjacent vertices of G. Then S is a ESTy,-set of G so that
EST4n(G) = 2. Since n = 4, ESTgy-set of G is not unique and so fggr, (G) = 1. Since n =

4, uand v lie on two different ESTgy,-setsof G and so fggr,, (G) = 2. Since this is true for all
ESTgn-sets S of G, it follows that fzgr, (G) = 2. ]

Theorem 2.13. For the non-trivial graph T tree, fgsr, (G) = 0.

Proof. Since the set of all end vertices of T is a ESTy,,-sets of G so that EST,,(G) = 2.

The result follows that fger, (G) = 0. [ ]

Theorem 2.14. For every pair of integers a and b with 0 < a < b, there exists a connected
graph G such that fzgr, (G) = a and ESTy,(G) = b.

Proof. For 1 <i < q, let H;: u;, v;, w; be a copy of the complete graph K3. Let J, be the graph
obtained from H;(1 <i<a) by adding new vertex x and introducing the edge
xu;(1 <i < a).Let G be the graph obtained from J, by adding new vertices z;, z,, ..., Zp_q
and introducing the edge xz;(1 < i < b — a). The graph G is shown in Figure 2.2.
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First we prove that EST4,(G) = b. LetQ; = {v;,w;},(1 <i<a)and
Z ={z4,2,, ..., Zp_q}. It is easily observed that every ESTy,-set of G contains each z;(1 < i <
b —a) and atleast one vertex from each and so EST;,(G) =>b—a+ a=b.Let S=ZU
{vi, V3, ...,v,}. Then S is a detour edge semi toll set of G so that EST,,(G) = b.

Next we prove that fggr, (G) = a. By Observation 2.5, fgsr, (G) < ESTy(G) —|Z| = b —
(b —a) = a. Since Z is a subset of every ESTy,-set of G and every EST,;,-set of G contains
exactly one vertex from Q;(1 <i<a) every ESTy,-set S is of the form S=ZuU
{ci, ¢ cq} where ¢; € Qi(1 < i< a). We show that fger, (G) = a. On the contrary
suppose that fgg (G) < a. Then there exists a forcing subset T of S such that |T| < a. This
show that T N S = ¢, which is a contradiction. Therefore fzsr, (G) = a.

[ ]

Figure 2 2
A graph G with feer  (G) = a

Theorem 2.15. For every pair of integers a and b with 0 < a < b and b > 2, there exists a
connected graph G such that fger, (G) = 0, f4r(G) = aand dn(G) = b.

Proof. Fora = 0 and b = 2, let G = Ky ;. Then by Observation 2.7 fgsr, (G) = 0,

fan(G) = 0 and dn(G) = b.Fora = 1 and b > 2, Consider the Figure 2.3 It is easily verified
that, fger, (G) = 0, f4,(G) = 1 and dn(G) = b.So, let 2 < a <b. Let Piu;,v;(1 <i <
a) be a copy of path on two vertices. Let H,be the graph obtained from P;(1 <i < a) by
adding new vertex y and introducing the edges x; and y;(1 <i < a).Let H(a,b — a) be the
graph obtained from H, by adding new vertices Zzi,Z,,...,Zp—q and introducing the
edge yz;(1 <i < b —a). The graph G = H(a, b — a) is shown in Figure 2.4.

First we prove that fger, (G) = 0. Let Z = {24, 2y, ..., Zp_4} be the set of end vertices
of G. By Theorem 1.1, Z is a subset of every detour edge semi toll set of G. Now Z is the unique
detour edge semi toll set of G so that fzer, (G) = 0.
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Next we prove that dn(G)= b. Let H;{x;,y;}(1 <i<b-—a)andZ ={z,,
Zy, ., Zp_q}- It is easily observed that every dn-set of G contains each z;(1 <i < b — a) and
at least one vertex from each H;(1 <i<a) and so dn(G) > b—a+a=b.LetS=ZU
{y1,¥2, -, ¥a}. Then S is a detour set of G so that dn(G) = b.

Next we prove that f;,(G) = a.By Theorem 1.2, f;,,(G) < dn(G) — |Z| =b— (b —a) = a.
Since Z is a subset of every dn-set of G and every dn-set of G contains exactly one vertex from
H;(1 <i < a) every dn-set S is of the form S = Z U {cq, ¢y, ..., cg} where ¢; € Hi(1 <i <
a). We show that f;,(G) = a. On the contrary suppose that f;,(G) < a. Then there exists a
forcing subset T of S such that |T| < a. This show that T NS = ¢, which is a contradiction.
Thereforef;,(G) = a. ]

7 * %o Ya
2 Zp—a
G
Figure 2.3 Fi 24
A graph G with fger, (G) =0, 1gure 2.
fan(G) = 1and dn(G) = b A graph G with fger,, (G) =0,

fan(G) = aand dn(G) = b

Theorem 2.16. For every pair of positive integers a and b with 0 < a < b, there exists a
connected graph G such that fggr, (G) = aand f4,(G) = b.

Proof. Let G be the graph obtained from J,and H,_, by identifying x of J, and y of Hj_,.The
graph G is shown in Figure 2.5.

First we prove that fggr, (G) = a. Let Q; = {v;, w;}(1 <1i < a). Then every ESTgy,-set of G
contains at least one vertex from each Q;(1 <i <b) and so ESTy;,(G) = a.Let S =
{vi,V2,...,v,}. Then S is a ESTy,-set of G and so EST,,(G) = a. Since no proper subset of S
is a forcing subset of S, fgs , (G) = a. Since this is true for all S, fgsr, (G) = a.

Next we prove that f;,(G) = b. Let H; = {x;,y;}(1 <i <b). Now every dn-set of G
contains exactly one vertex from each Q;(1 <i < a) and exactly one vertex from each
Hi(1 <i<b—-a)andsodn(G)=b—a+a=b.LetM =5 U {xq4,x5, ...,

Xp_a}- Then M is a dn-set of G so that dn(G) = b. Since no proper subset of M is a forcing
subset of M, f3,(M) = b. Since this is true for all dn-set M of G, f;,(G) = b.
|
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Figure 2.5
A graph G with fger, (G) = a and

fan(G) = b

3. Conclusion

In this article, we define forcing detour edge semi-toll number of a graph and determine forcing
detour edge semi-toll number of a graph for some standard graphs. Finally we present some
realisation results.In subsequent research we relate these parameters to other distance
parameters.
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