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Abstract— Gene Regulatory Networks (GReNes) are involved in cell functions and analysis 
of pathways. GReNes are also useful for inferring the relationships for analyzing and inference 
there is need of development of good Gene Regulatory Networks (GReNes) approach or 
models. These models include estimation of molecular interactions, design of simulation 
systems, estimation of system irregularities via perturbation analysis, biomedical treatment 
estimation, drug design simulations, etc. Design of GReNes is a complex process, and involves 
modelling of operations like correlation estimation, activation function design, fuzzy cascade 
of signals, etc. In 
order to perform these operations various GReNes are proposed, which include single cell 
Graph Neural Networks (scGNN), boosting GReNes, ensemble trees based GReNes, reverse 
engineered Bayesian model based GReNes, and single-cell regulatory network inference and 
clustering (SCENIC). Each of these models has scalability issues, which limits their 
deployment capabilities to application specific systems. In order to remove this drawback, the 
underlying paper proposes an augmented GReNe that uses multiple activations via cascading 
simpler networks. Due to augmentation and multiple activations, accuracy of the proposed 
model is observed to be 8% better when compared with state-of-the art models when inferred 
from single cell transcripts. 
Keywords— Augmentation, cascade, Gene Regulatory Network, multiple activation, 
scalability 
 
Introduction 
Gene Regulatory Networks are used for a wide variety of biological applications, which include 
but are not limited to, simulation of medicine effects on target body, estimation of virus effects 
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on cells, testing of vaccinations, etc. This is possible due to Gene interactions, which allow for 
actuation of other Genes [1]. For instance, as observed in figure 1, Gene 1 (G1) consists of a 
mRNA sequence, which internally consists of a protein sequence (P1). This protein sequence 
P1 is also present in Gene 2 (G2), which is made up of mRNA 2 and protein sequence P2. Both 
P1 and P2 interact in order to form Gene 3, which is internally made up of mRNA 3 and protein 
P3. As a result of these interactions, it can be observed that any changes made to G1 directly 
affect activation of G2 & G3, similarly any changes made to G2 directly affect activation of 
G3.  
These interactions between different Genes allow for creation of Gene regulatory network, 
where a cascade activation effect is observed . Various architectures for Gene regulation are 
designed by researchers, which include single cell Graph Neural Networks (scGNN), boosting 
GReNes, ensemble trees based GReNes, reverse engineered Bayesian model based GReNes, 
and single-cell regulatory network inference and clustering (SCENIC). Each of these 
architectures model the process of Gene regulation in a different manner, for instance, the 
SCENIC model initially estimates co-expressions from Gene data, and forms different Gene 
Matrices. Each of these Matrices is given to a motif discovery framework, where common 
expressions are estimated. These common expressions are then used for grouping Genes with 
similar activations, thereby forming clusters. All these clusters are ranked according to cell 
scoring model, which forms a regulon activity matrix that indicates network activities in each 
cell. Finally, a hierarchical clustering model is designed that groups different network activities 
in order to segregate working of each Gene expression, and estimate their actuation strength in 
the network.  
 

 
Figure 1: A sample Gene Regulatory Network (GReNe) 

Each of these GReNe models have their own advantages and limitations. A survey of these 
models along with their performance is observed from the next section, where it can be 
observed that these models have limited scalability when applied to inter-species genomes. In 
order to improve this scalability, section 3 proposes design of an ensemble GReNe that can 
adapt to different species types, and model GReNes with high efficiency. This is followed by 
comparative result analysis and performance evaluation of the proposed model with respect to 
various state-of-the-art techniques. Finally, this paper concludes with some interesting 
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observations about the proposed GReNe model, and recommends methods to improve its 
performance. 
Literature Survey 
Designing GReNe models is a multidisciplinary task, that requires effective and working 
knowledge about signal processing, gene bio medics, neural network interconnections, 
function activations, etc. Thus, GReNe models are highly complex and require large delays for 
design and deployment. This can be observed by the models proposed in [2, 3, 4], where 
GReNe design using concepts like minimum set of master regulatory genes, multiple Laplacian 
& augmented Lagrangian combination models, and dynamic expansion of unstable neurons is 
used. These models aim at incorporating various mathematic identities to model GReNes with 
high efficiency. Each of these models require processing of large-scale gene data in order to 
design their own gene networks for various applications like analysis of bladder cancer [5], and 
other applications. The efficiency of these models can be improved via incorporation of deep 
learning methods. Such a method can be observed from [6, 7], where Recurrent Neural 
Network is combined with Simulated Annealing& Auto encoders are used in order to 
reconstruct GReNe models. These models have better accuracy and lower error rate when 
compared with [2, 3, 4], due to which they are highly applicable for real time gene applications.  
Optimization models for reducing delay of network design can be observed from [8], where 
time delayed GReNes are designed without the need of SUM regulatory circuit. This reduces 
computational complexity of the model, thereby making it applicable for high speed and high-
performance applications like recognition of diabetic nephropathy [9], where fast activations 
are needed. Similar models can be observed from [10, 11, 12, 13], where gene trajectories, gene 
knock-out expression data, cluster assistive models, and reverse engineering models are used 
for improving the effectiveness of GReNe design & deployment. Application of these models 
for cancer cell detection can be observed from [14], where an efficiency of over 85% is 
observed for modelling chemo-resistant cancer cell networks. This efficiency can be improved 
by use of machine learning models for network design as discussed in [15, 16, 17, 18], where 
dependency analysis, temporal expression profiles, Bayesian inverse reinforcement learning 
and Bayesian data fusion models are used. These models aim at reducing error rate via 
iteratively tuning network performance for better accuracy. A survey of similar models can be 
observed from [19, 20, 21], where differential regulatory networks, causality inference 
methods, and limited memory networks are defined. Design practices from these methods can 
be applied to a wide variety of Gene Networks in order to reduce memory utilization, improve 
variance based processing and increase network causality.  
Some of the most efficient GReNe models utilize gene clustering in order to initially group 
gene data, and then apply processing on these groups for high efficiency. Such models can be 
observed from [22, 23, 24], where SCENIC, scGNN, and boosted tree ensemble GReNe are 
defined. All these models are used for high accuracy applications due to their optimized edge 
estimation & network design performance. These models can be further optimized via use of 
data perturbation [25], addition of stability models [26], use of gradient boosted trees [27], and 
reducing oscillations in mRNA outputs [28]. All these models assist in improving activation 
response for each of the GReNe nodes, thereby assisting in a better error performance. Soft 
computing models like random forests [29], differential evolution [30], shortlisted candidate 
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regulators [31], Boolean network with perturbations [32], and partially-observed Boolean 
dynamical system [33] are also proposed by researchers. From these designs it can be observed 
that machine learning and deep learning models have been extensively used by researchers for 
improving GReNe design. But their application for design of internal sub networks is limited, 
which is covered by the proposed model that combines machine learning with sub network 
design for improved GReNe performance as observed from the next section. 
Design of the augmented Gene Regulatory Network with multiple activations 
As observed from the literature review section, a high accuracy GReNe is a combination of 
various mRNA and protein activations. As a result of these activations, certain parts of the 
network are turned ON, while other parts are turned OFF. Such a network is highly useful in 
modelling complex classification and simulation scenarios. But due to use of a single 
architecture for modelling GReNes, their efficiency is limited by error performance of the 
underlying architecture. In order to remove this drawback, this section proposes design of an 
augmented Gene Regulatory Network that uses multiple activations. Efficiency of the designed 
network is estimated and improved using various performance parameters, which includes false 
positive rate (FPR), true positive rate (TPR), positive predicted values (PPV), and matching of 
top-k edges (MTKE). Each of these parameters are evaluated using the following equations, 

TPR =
TP

TP + FN
… (1) 

FPR =
FP

FP + TN
… (2) 

PPV =
TP

TP + FP
… (3) 

MTE୩ = ෍
หGT୉౟

== D୉౟
ห

k
… (4)

୩

୧ୀଵ

 

Where, GT୉౟
&D୉౟

are edges obtained via ground truth and designed algorithm, while 

TP,TN,FP,and FN are true positive, true negative, false positive, and false negative instances 
in the designed GReNe. These instances can be evaluated using the following equations, 

TP =
Nେେ

N୘

… (5) 

𝑇𝑁 =
𝑁஼ூ

𝑁்

… (6) 

𝐹𝑃 =
𝑁ூ஼

𝑁்

… (7) 

𝐹𝑁 =
𝑁ூூ

𝑁்

… (8) 

Where, Nେେ is Number of correct edges with correct activations,Nେ୍ is Number of correct edges 
with incorrect activations, N୍େ is Number of incorrect edges with correct activations, N୍୍ is 
Number of incorrect edges with incorrect activations andN୘ is total number of edges. In order 
to train the proposed network model, training sets of ground truth networks are input to it, and 
an iterative process is evaluated. This process is followed by incremental learning model for 
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improving efficiency of GReNe design, and updating its internal build structure. Both of these 
operations are described in separate sub-sections. 

A) Iterative process for GReNe design 

In this sub-section an iterative process for design of a GReNe is described. This process uses 
sub network division, and parametric optimization for designing a highly accurate GReNe 
network using multiple sub networks. The process can be described as follows, 

 Input the following parameters, 
o Number of generations (𝑁ீ) 
o Number of networks (𝑁ே) 
o Maximum number of sub networks that can be formed (𝑁ௌேಾಲ೉

) 
o Gene learning rate (𝐺௅ோ) 
o Maximum number of algorithms available for gene network design (𝑁ீே஺ಾಲ೉

) 

o Ground truth networks for training (𝑁ீ்) 
 Output, 
o Ensemble of algorithms along with their activation positions for highly accurate network 

design 
 Design Process 
o For each generation in 1 to 𝑁ீ 
 For each network in 1 to 𝑁ே 
 If the network is marked as ‘not to be mutated’, then go to the next network. 
 Else, generate a new GReNe using the following process, 
 Generate a random number between 1 to 𝑁ௌேಾಲ೉

 = 𝑁௦௘௟ 

Nୱୣ୪ = RAND൫1, Nୗ୒౉౗౮
൯ … (9) 

 For each ground truth network in 1 to 𝑁ீ், split each network into 𝑁௦௘௟ equal parts 
 For each ground truth network, and each part in 1 to 𝑁௦௘௟, 
o Generate a random number between 1 to 𝑁ீே஺ಾಲ೉

, which will assist in designing the 

GReNe for this sub network, 

Nୋୖୣ୒୉ = RAND ቀ1, Nୋ୒ఽ౉ఽ౔
ቁ … (10) 

 Design the sub network using the GReNe at index Nୋୖୣ୒୉, and estimate its TPR, FPR, 
PPV and MTE୩ values from equation 1, 2, 3, and 4. 

 Repeat this process until the complete network is designed, and evaluate network 
correctness value (NCV) using the following equation, 

 NCV                                  =  
∑ TPR + PPV + MTE୩ − FPR

୒౩౛ౢ
୧ୀଵ

Nୱୣ୪
൘ … (11)  

o Find NCV for each generated network, and then evaluate network correctness 
threshold using the following equation, 

Nେ୘ = ෍ NCV୧ ∗
G୐ୖ

N୒

୒ొ

୧ୀଵ

… (12) 

 Upon estimation of NCV for each network, mark all networks as ‘to be mutated’, that 
satisfy equation 13, while mark all others as ‘not to be mutated’ 

NCV୧ < Nେ୘ … (13) 
o Repeat this process for all generations, and create a table, with the following structure 

as observed from table 1. 
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Table 1. Generated network table for GReNe design (GN is Generation Number) 

GN 𝑁௦௘௟ 𝑁ீோ௘ே௘ for each 𝑁௦௘௟ NCV 

o Select the network that has maximum value of NCV, and use the selected networks for 
designing underlying GReNe 

Once the GReNe is designed, and deployed in any underlying application; then an 
incremental learning model is activated. This model aims at iteratively scanning 
performance of the designed GReNe model, and incrementally improving its performance. 

B) Incremental learning model for improving GReNe performance 

In this sub-section an incremental learning model for improving efficiency of the proposed 
GReNe is defined. This process can be applied to any ensemble GReNe model for 
improving its overall accuracy, precision and matching of top-k edges values. The process 
can be described as follows, 

 Select a validation set (separate from training set), where inputs to each internal GReNe 
model, and its outputs are known. 

 For each entry in the validation set, perform the following steps, 
o Provide the validation value to internal GReNe network, and evaluate its NCV 
o Compare the NCV with its original value as observed from table 1. 
o If the NCV value is reducing, then mark this sub network as ‘to be changed’ 

 For all the sub networks, which are marked as ‘to be changed’, follow the given process in 
this step, and generate new sub networks with better performance metrics 

 Generate a random number between 1 to 𝑁ௌேಾಲ೉
 = 𝑁௦௘௟ 

 For each ground truth network in 1 to 𝑁ீ், split each network into 𝑁௦௘௟ equal parts 
 For each ground truth network, and each part in 1 to 𝑁௦௘௟, 
o Generate a random number between 1 to 𝑁ீே஺ಾಲ೉

, which will assist in designing the 

GReNe for this sub network 
o Design the sub network using the GReNe at index 𝑁ீோ௘ோ, and estimate its TPR, FPR, 

PPV and 𝑀𝑇𝐸௞ values from equation 1, 2, 3, and 4. 
 Repeat this process until the complete network is designed, and evaluate network 

correctness value (NCV) using equation 11. 
 Use this new sub network if it satisfies the following equation, 

𝑁𝐶𝑉௡௘௪ > 𝑁𝐶𝑉௢௟ௗ … (14) 

 Replace existing sub networks with this new configuration, and redeploy the modified 
GReNe model 

The incremental learning process is performed whenever a validation set is available, or a new 
ground truth training set is used in place of the existing training set. This process allows 
incremental improvement in the GReNe model performance, thereby improving its internal 
efficiency. This efficiency is estimated in terms of area under receiver operating characteristics 
(AUROC), TPR, PPV and 𝑀𝑇𝐸௞ values, under different datasets and can be observed from the 
next section.  

Results and comparative analysis 
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In order to estimate performance of the proposed ensemble learning GReNe model, it was 
evaluated using the public Zenodo dataset (available at https://zenodo.org/record/3701939). 
This dataset consists of curated and synthetic datasets of mammalian cortical area development 
(mCAD), hematopoietic stem cell (HSC), ventral spinal cord (VSC), etc. A total network size 
of 5000 edges can be created using these datasets, and 50 different expressions per network 
can be developed. Therefore, a total combination of 250k GReNes can be made from this 
dataset. In this evaluation, total dataset of 250k GReNes is divided into training, testing and 
validation sets, in a ratio of 60:30:10, therefore 150k GReNes are used for training the model, 
while 75k are used for testing, and the remaining 25k are used for validation or incremental 
learning. For every 3k tested networks, 1k networks are used for validation, which assists in 
boosting performance of the generated networks. This performance can be observed from 
figure 2, where AUROC (AR) of different GReNe models can be seen under different testing 
set sizes. 

 

Figure 2: AUROC performance for different GReNes 

The AUROC values show an improvement of 10% when compared with [22], 7% when 
compared with [23] and 8% when compared with [24], thereby making it highly useful for 
applications that demand high accuracy. This performance is accompanied with high TPR 
performance, which can be observed from figure 3, where the same algorithms are compared 
under similar simulation conditions. 

 

Figure 3: TPR performance for different GReNes 

The TPR values show an improvement of 9% when compared with [22], 5% when compared 
with [23] and 12% when compared with [24], thereby making it highly useful for applications 
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that demand high performance. This performance is accompanied with high PPV performance, 
which can be observed from figure 4, where the same algorithms are compared under similar 
simulation conditions. 

 

Figure 4: PPV performance for different GReNes 

The PPV values show an improvement of 9% when compared with [22], 6% when compared 
with [23] and 10% when compared with [24], thereby making it highly useful for applications 
that demand high positive predictions. This prediction performance is accompanied with high 
𝑀𝑇𝐸௞ values, which can be observed from figure 5, where the same algorithms are compared 
under similar simulation conditions. 

 

 Figure 5: 𝑀𝑇𝐸௞ performance for different GReNes 

The 𝑀𝑇𝐸௞ values show an improvement of 6% when compared with [22], 9% when compared 
with [23] and 2% when compared with [24], thereby making it highly useful for applications 
that demand highly accurate edge outputs. These results indicate that the proposed model is 
highly efficient, and can be used for design of high accuracy, low error, and better edge 
performance GReNe models. Average performance of all these parameters is evaluated, and 
can be observed from table 2, where superiority of the proposed model can be seen. 

Table 2. Average performance of different models 

Model AR TPR PPV 𝑴𝑻𝑬𝒌 
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[22] 0.75 0.71 0.69 0.76 

[23] 0.76 0.74 0.72 0.75 

[24] 0.78 0.7 0.71 0.81 

Proposed 0.83 0.79 0.77 0.82 

From the average performance, it can be observed that the proposed model is nearly 8% better 
than [22], 6% better than [23], and 6% better than [24] when compared across multiple 
parameters. This makes the underlying GReNe design model highly efficient, and improves its 
scalability to a wider number of applications.  

CONCLUSION 

Design of a GReNe requires efficient modelling of internal activation units. These units allow 
the system model to activate and deactivate certain parts of the network, thereby assisting in 
improved network design. The proposed model breaks the GReNe into multiple sub networks, 
and aims at optimizing the TPR, PPV, and top-k edge selection performance of each sub 
network. A combination of these highly optimized sub networks is used to form the final 
GReNe, which showcases highly improved performance. This performance is estimated across 
75k different networks, via training the model on over 150k different networks in order to 
estimate its real time parameters like PPV, TPR, AUROC, and 𝑀𝑇𝐸௞. Moreover, due to 
incremental learning via the 25k validation networks, the proposed model is able to achieve 
10% better AUROC when compared with [22], 7% when compared with [23] and 8% when 
compared with [24], thus making the underlying network design suitable for high accuracy 
applications. Similar performance improvements were observed for other parameters, for 
instance, TPR values show an improvement of 9% when compared with [22], 5% when 
compared with [23] and 12% when compared with [24]; while, 𝑀𝑇𝐸௞ values show an 
improvement of 6% when compared with [22], 9% when compared with [23] and 2% when 
compared with [24]. An average improvement of nearly 8% when compared with [22], 6% 
better when compared with [23], and 6% better when compared with [24] can be observed. 
Due to such a high performance, this network is capable of deployment in applications that 
require high accuracy, low error rate, and high edge accuracy. In future, researchers can work 
on reducing the delay of network formation; which is very high due to splitting the network 
into sub networks, and then estimation & incremental performance improvement. Machine 
learning techniques can be used to reduce this delay, and optimize network performance for 
high-speed applications. 
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