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Abstract 
The Rayleigh damping model is an approximation to viscous damping. It allows modeling the 
energy dissipation in the material due to internal friction, assuming it is proportional to the 
strain or deformation rate. It is common to be in the need to determine the model coefficients 
from experimental or assumed data. We will explore the definition to determine the Rayleigh 
damping coefficients. For large degrees of freedom systems, it is difficult to guess the values 
of Rayleigh damping coefficients α and β. There are a number of general purposes available 
that have the provision of providing the value of α and β for calculation of Rayleigh damping 
matrix for dynamic analysis of systems with multi-degree of freedom. Since a designer may not 
be in a position to pre-assess the same at the beginning, has no option but to assume an 
unrealistic constant damping ratio for all modes. Based on the present technology it is very 
simple to develop a spreadsheet and arrive at a rational value of α and β which produces a 
damping ratio sequence increasing progressively with each of the subsequent modes and one 
can furnish input data for the dynamic analysis. The present report outlines a procedure that 
ensures a rational estimate of α and β even for a system with significant degrees of freedom. 
The results obtained have been as a real value for The Rayleigh damping model.  
Keywords: Rayleigh, damping coefficients, time-history analysis, calculation, response 
spectrum, FEM, directs method 

1. Introduction 
The formation mechanism of damping is complicated; that is, a damping matrix can be 
calculated by using a construction method but cannot be directly determined by identifying the 
material, size, and characteristics of structures [1]. Consequently, different damping matrix 
construction theories have been proposed [2–3]. For instance, a Rayleigh damping model is 
widely used because of its excellent advantages [4–5]. In this model, the damping matrix of a 
structure is a linear combination of mass and stiffness matrixes (1). As such, Rayleigh damping 
models can provide a clear physical meaning and present a convenient A Rayleigh damping 
matrix must be orthogonal to mode shapes (2). Consequently, decoupling dynamic equations 
of multiple degrees-of-freedom systems via mode superposition becomes convenient. Mode 
damping ratios can be directly used in single-degree-of-freedom systems (generated by 
decoupling) dynamic response calculation. Therefore, damping input shows enhanced 
accuracy and a reduced calculation scale. Rayleigh damping coefficients can be determined by 
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the orthogonally of a damping matrix for a modal shape (6). With appropriate Rayleigh 
damping coefficients, the results of a dynamic response analysis of a multi-degree-of-freedom 
system are the same as experimental data (7).  A damping model is also embedded in finite 
element software, and Rayleigh damping models are considered a basis for damping matrix 
construction commonly utilized in the seismic time history analysis of hydraulic structures. 
The damping force term F (t) is assumed to be proportional to the deformation rate(x) ̇, as seen 
in the general dynamic motion equation (1) for a significant degree of freedom system with 
inertial mass [M], damping coefficient [C] and spring stiffness [K]:  
                                                           [𝑀]𝑥̈ + [𝐶]𝑥̇ + [𝐾]𝑥 = 𝐹(𝑡)                                         (1) 
The damping matrix of a structure is the linear combination of the mass and stiffness matrixes 
of a Rayleigh damping model (2):                                                                          

 [𝐶] = 𝛼[𝐾] + 𝛽[𝑀]                                                  (2) 
 

Where 𝛼 is stiffness-proportional damping coefficient [seconds] and 𝛽 is mass-proportional 
damping [1/seconds]. Divided the equation of motion (1) by [M] (3) and rearranging in terms 
of the natural frequency of oscillation 𝜔௡and the damping ratio  𝜁  (4). 
We obtain: 

                                             𝑥̈ +
௖

௠
𝑥̇ +

௞

௠
𝑥 =

ி(௧)

௠
                                              (3) 

                                          𝑥̈ + 2𝜁𝜔௡𝑥̇ + 𝜔௡
ଶ𝑥 =

ி(௧)

௠
                                         (4) 

Where: 𝜔௡
ଶ and 𝜁 as in equation (5), (6)  

                                                             𝜔௡
ଶ =

௞

௠
                                                                      (5) 

                                                       𝜁 =
[஼]

௖೎ೝ೔೟೔೎
=

[஼]

ଶ[ெ]ఠ೙
                                                       (6) 

Where: 
𝜔௡ =natural frequency. 
𝜁=Damping ratio. 
𝐶௖ = critical damping coefficient. 
So the frequency equation can be writing as follow 

         𝐻(௪) =
ଵ

ଵିቀఠ
ఠ೙ൗ ቁ

మ
ାଶ఍(ఠ

ఠ೙ൗ )
                                                                       (7) 

Then we can substitute by Rayleigh damping [C] from equation (2) in equation (6) to get the 
value of 𝜁 as the following equation (8), (9) 

                                         𝜁 =
ଵ

ଶఠ೙[ெ]
(𝛼[𝑘] + 𝛽[𝑚])                                                (8) 

                                                 𝜁 =
ଵ

ଶ
(𝛼𝜔௡ +

ఉ

ఠ೙
)                                                      (9) 

2. RAYLEIGH DAMPING 
To calculate Rayleigh damping coefficients, Chopra [1] suggested that “in dealing with 
practical problems, it is reasonable to select the modes of vibrations 𝑖 and 𝑗 with specific 
damping ratios to ensure that the damping ratios of all modes of vibration that contribute greatly 
to the dynamic response are reasonable.” Differences in the mass and stiffness of the upper and 
lower structures of a powerhouse remarkably create the dynamic characteristics of a 
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powerhouse structure. The first two vibration modes often involve the relatively soft upper 
structure of the powerhouse, whose mode participation mass is quite smaller than that of the 
whole power house. The damping of these buildings under seismic actions is mainly due to 
various interior frictions and deformations of components and the ones between them. 
Therefore, mode participation mass should be considered as a key factor affecting the 
calculation of damping. The modes that contribute greatly to dynamic responses are found on 
the basis of mode participation mass. In this study, the Rayleigh damping coefficient is 
calculated. In traditional methods, two reference vibration modes (𝑖- and 𝑗-order) are selected 
and their damping ratios 𝜁௜ and 𝜁௝ obtained through measurement or reliable test data estimation 

and their frequencies 𝜔௜and 𝜔௝are used to calculate 𝛼 and   𝛽: 

                                                ቄ
𝛼
𝛽ቅ =

ଶఠ೔ఠೕ

ఠೕ
మିఠ೔

మ ቆ

𝜔௝ −𝜔௜

−
ଵ

ఠೕ

ଵ

ఠ೔

ቇ ൜
𝜁௜

𝜁௝
ൠ                                    (10) 

This equation can be simplified as follows when 𝜁௜ = 𝜁௝ = 𝜁 

                                                          ቄ
𝛼
𝛽ቅ =

ଶ఍

ఠ೔ିఠೕ
൜
𝜁௜

𝜁௝
ൠ                                                      (11) 

Frequency can be easily and appropriately selected to determine Rayleigh damping coefficients 
when the degree of freedom of a structure is low. For complex structures and structures with a 
number of modes that contribute greatly to dynamic responses, difficulties in selecting two 
orders of reference frequencies to obtain reasonable Rayleigh damping coefficients 𝛼 and 𝛽 
are encountered. If damping coefficients are chosen inappropriately, a slight difference in 
damping may seriously distort the calculation of the seismic response of a given structure [6–
7]. Yang et al. [8] studied the application of a multi-mode-based computation method in single-
layer cylindrical latticed shells because the traditional two-mode Rayleigh damping method is 
unsuitable. Yang et al. [8] also suggested that the multi-mode-based computation method is 
preferable when many dominant modes are distributed loosely and found in a wide range of 
frequencies under some ground motions. Jehel et al.  [9] Comprehensively compared the initial 
structural stiffness and updated tangent stiffness of Rayleigh damping models to allow a 
practitioner to objectively choose the type of Rayleigh damping models that satisfy his needs 
and be provided with useful analytical tools for the design of these models with good control 
on their damping ratios during inelastic analysis. Erduran [10] evaluated the effects of a 
Rayleigh damping model based on the engineering demand parameters of two steel moment-
resisting frame buildings. Modes that greatly influence these responses are found on the basis 
of mode participation mass, and Rayleigh damping coefficients are obtained. Zhiqiang Song 
and Chenhui Su [11].Rayleigh damping models, which combine mass and stiffness 
proportional components, are anchored at reduced modal frequencies, which create reasonable 
damping forces and floor acceleration demands for both buildings but do not suppress higher-
mode effects.   From this equation (9) we can see that the Rayleigh model can reproduce three 
cases: 

3. Damping is Proportional to the Inertia 

In this case, the stiffness coefficient α=0 and thus: 

                                                    𝜁 =
ఉ

ଶఠ೙
                                                                          (12) 
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For a given constant value of β, it is seen that the damping is inversely proportional to the 
natural frequency, as shown in the illustration: 

 
Figure 1: Schematic of damping proportional to inertia 

Moreover, if one computes 𝛽 from the damping ratio 𝜁ଵ at a given natural frequency  𝜔ଵ, all 
the natural frequencies below it will be amplified and the frequencies above it will be 
attenuated. The effect is more dramatic the farther the frequencies are from the reference value. 
4. Damping is Proportional to the Stiffness 

In this case, the mass coefficient β=0 and thus: 

                                                                    𝜁 =
ଵ

ଶ
𝛼𝜔௡                                                       (13) 

It is seen that, contrary to the first case, here the damping is directly proportional to the natural 
frequency: 

 
Figure 2: Schematic of damping proportional to stiffness 

If one computes 𝛼 from the damping ratio 𝜁ଵ at a given natural frequency  𝜔ଵ, then the natural 
frequencies below will be attenuated and the frequencies above will be amplified. 
5. General case 
In the case of using the model with two parameters, the proportionality of damping against 
frequency is convex: 
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Figure 3: Schematic of the full damping model 

In this case one needs two damping ratios and two natural frequencies to create a pair of 
equations and solve for 𝛼 and  𝛽 (10). 

                                          ቄ
𝛼
𝛽ቅ =

ଶఠ೔ఠ೔

ఠೕ
మିఠ೔

మ ቆ

𝜔௝ −𝜔௜

−
ଵ

ఠೕ

ଵ

ఠ೔

ቇ ൜
𝜁௜

𝜁௝
ൠ                             (14) 

The model gives some flexibility on where to place the natural frequencies, but in general, 
frequencies too far away from the ones used in the computation will be amplified. In the 
particular case of using equal damping ratios for the two frequencies, it is important to note 
that the damping ratio will not be constant inside the range defined by the sample points, but 
the inner frequencies will be attenuated. That is, the inner frequencies will have a lower 
damping ratio. 
6. Computing the Rayleigh Damping Coefficients 

In the most common case, a transient response curve from the system is obtained and the 
damping ratio 𝜁ଵ is determined for the lowest natural frequency 𝜔ଵ by measuring the 
(logarithmic) attenuation of successive peaks: 

 
Figure 4: Determination of the damping ratio from the logarithmic decay 

                                                      𝜁 =
ఋ

ඥఋమା(ଶగ)మ
                                                                (15) 

 

                                                      𝛿 = ln
௫బ

௫భ
                                                                         (16) 

                                                    𝑓 =
ଵ

்
=

ଵ

௧భି௧బ
                                                                  (17) 

 
It is then most common to assume the case of damping proportional to the stiffness, that is, β=0, 
and the α stiffness coefficient is computed from: 

                                                     𝛼 =
ଶ఍భ

ఠభ
=

఍భ

గ௙భ
                                                                 (18) 
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If the knowledge on the system indicates the case of damping decreasing with the frequency, 
then one can assume the case of damping proportional to the inertia, where α=0 and determine 
the mass coefficient β:  
                                                   𝛽 = 2𝜁ଵ𝜔ଵ = 4𝜋𝜁ଵ𝑓ଵ                                                    (19) 
If there is not such test data or knowledge of the system or if one wish to apply an approximate 
damping ratio over a range of frequencies, and then we can use the general case and build a 
system of two equations: 

                                                    𝜁ଵ =
ଵ

ଶ
ቀ𝛼𝜔ଵ +

ఉ

ఠభ
ቁ                                                        (20) 

                                                   𝜁ଶ =
ଵ

ଶ
ቀ𝛼𝜔ଶ +

ఉ

ఠమ
ቁ                                                         (21) 

: 

: 

                                                 𝜁௜ =
ଵ

ଶ
ቀ𝛼𝜔௜ +

ఉ

ఠ೔
ቁ                                                             (22) 

Then solve for the unknown coefficients, keeping in mind the considerations given above for 
the general case and the influence of the model on natural frequencies inside and outside the 
range of interest. That is, perhaps one wants to achieve a mean damping ratio over the range, 
then compensate the attenuation by modifying the input damping ratios, or by performing some 
least-squares approximation from more than two frequency points. 

 

Figure 5:  Variation of damping ratio with natural frequency of a system 

One need not measure 𝜁௜, where i depending on the degree of freedom. What is relevant here 
is a first few modes for which there is a significant mass participation. Beyond this, results are 
of no practical consequence. For instance, for a steel frame of  12  degree-of-freedom if it is 
found that 100% mass participation occurs in the first 4 modes (assume), instead of starting 
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with 5% constant damping for all modes, one can start with a minimum 2% damping in the 
first mode and define at 4th mode, ζ= 5% and this is the zone of relevance. 
7. Half-power point method:- 
Experimentally, we can got the damping ratio by half by half power method if the magnitude 

of frequency response at resonance is   𝐻௥௘௦ =
ଵ

ଶ఍
 𝑎𝑡 ቀ

ఠ

ఠ೙
ቁ = 1 , substituting by value of  𝐻(௪)   

at resonance in equation (7) and take square of both sides  

                                    (
ଵ

ଶ఍
)ଶ =

ଵ

[ଵିቀఠ
ఠ೙ൗ ቁ

మ
]మା[ଶ఍(ఠ

ఠ೙ൗ )]మ
                                    (23) 

 Or:-                              (
ఠ

ఠ೙
)ସ − 2(1 − 2𝜁ଶ) ቀ

ఠ

ఠ೙
ቁ

ଶ

+ (1 − 8𝜁ଶ) = 0                   (24)  

Solving equation (24) for  (
ఠ

ఠ೙
)ଶ    so 

                                 (
ఠ

ఠ೙
)ଶ = (1 − 2𝜁ଶ) ± 2𝜁ඥ1 − 𝜁ଶ                                    (25) 

Assume 𝜁 ≤ 1 so we can rewrite equation (25) as follow: 

                               (
ఠ

ఠ೙
)ଶ = 1 ± 2𝜁                                                                                  (26) 

Let  𝜔ଵ, 𝜔ଶ is the roots of equation (26) and 𝜔ଶ > 𝜔ଵ then the equation become  

                                4𝜁 =
ఠమ

మିఠభ
మ

ఠ೙
మ ≅ 2(

ఠమିఠభ

ఠ೙
)                                                   (27) 

The damping ratio can be written by rearranged equation (27) as follow  

                                𝜁 =
ఠమିఠభ

ଶఠ೙
=

௙మି௙భ

ଶ௙೙
                                                             (28) 

 
Figure 6:  Half-power bandwidth method  

The two algebraic equation can be solved to determine the coefficient 𝛼, 𝛽 if both mods are 
assumed to have the same damping ratio 𝜁 then the  

                                                       𝛼 = 𝜁
ଶఠభఠమ

ఠభାఠమ
                                                                     (29) 

                                                      𝛽 = 𝜁
ଶ

ఠభାఠమ
                                                                      (30) 

And from the bandwidth method and equation (28)  

                                                     𝜁 =
୼ఠ

ଶఠమ
                                                                              (31) 

Where:-       Δ𝜔 = 𝜔ଵ + 𝜔ଶ   
And substituting from equation (31) into equation (29), (30) to get the value damping constants 
(𝛼, 𝛽) if we assume 𝜔௡ at the middle distance in between 𝜔ଶ, 𝜔ଵ from the figure (6)  

                                           𝜔௡ =
ఠమିఠభ

ଶ
+ 𝜔ଵ =  

ఠమାఠభ

ଶ
                                   (31) 

So                                       𝜁 =  
ఠమିఠభ

ఠమାఠభ
                                                                         (32) 
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Substituting from equation (32) into equation (29), (30)  

                                                   𝛼 =
ଶఠభఠమ(

(ఠభାఠమ)(

ఠమିఠభ)

ఠమାఠభ)
                                                       (33)                                                                   

                                            𝛽 =
ଶ

(ఠభାఠమ)
 
(ఠమିఠభ)

(ఠమାఠభ)
                                              (34) 

Now, 
Substituting from equation (34), (35) into equation (2)   

                          [𝐶] =  
ଶఠభఠమ(

(ఠభାఠమ)(

ఠమିఠభ)

ఠమାఠభ)
[𝑀] + 

ଶ

(ఠభାఠమ)
 
(ఠమିఠభ)

(ఠమାఠభ)
 [𝐾]                 (36)   

Where:  
 [𝐶]  the damping coefficient for structure.  Or   

                        [𝐶] =  
ଶ(

(ఠభାఠమ)(

ఠమିఠభ)

ఠమାఠభ)
ൣ𝜔ଵ𝜔ଶ[𝑀] + [𝐾]൧                                 (37) 

So from equation (37) we can get the value of [C] Instead of frequency values and matrix [M], 
[K] as above .the suitable value of   𝛼 and   𝛽 from equation (33) and equation (34). The results 
of this study obtained (𝛼ଵ&𝛽) are the proportional damping constants that have suitable value 
for our case is 0.0687 and 2.89e-4 respectively. 
8. Conclusion  
A number of general purpose available Finite Element Analysis package have the provision of 
providing the value of α and β for calculation of Rayleigh damping matrix for dynamic analysis 
of systems with multi-degree of freedom. Since a designer is not in a position to pre-assess the 
same at the beginning, he has no option but to assume a constant damping ratio for all modes, 
which is unrealistic. Based on the present technique it is very simple to develop a spreadsheet 
and arrive at a rational value of α and β developing a damping ratio sequence which increases 
progressively with each of the subsequent modes and can furnish an input data for the dynamic 
analysis. The value furnished by this method gives a more realistic picture for the behavior of 
the structure under dynamic loading than the presumptive damping ratio constant for all modes. 
The results of this study obtained (𝛼ଵ&𝛽) are the proportional damping constants that have 
suitable value for our case is 0.0687 and 2.89e-4 respectively. 
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