Data Acquisition and Processing

ISOMORPHISM ON SEMIPRIME (-1,1) RINGS

${ }^{1}$ P. Sarada Devi, ${ }^{2}$ C.Manjula, ${ }^{* 3}$ K. Hari Babu

Department of Mathematics, Geethanjali College of Engineering And Technology (Autonomous), Hyderabad,Telangana, India.

Email:_Sarada.chakireddy @ gmail.com

Department of Mathematics, AMC Engineering College, Bannerghatta road, Bangalore560083, India.

Email: man7ju@gmail.com
Department of Mathematics, Koneru Lakshmaiah Education Foundation, R.V.S
Nagar, Moinabad-Chilkur Rd, Near AP Police Academy, Aziznagar, Hyderabad, Telangana, 500075, India.

Email: mathematicshari@gmail.com
ABSTRACT: In this paper we show that a 2 -divisible ($-1,1$) ring satisfies the identities $(x,(y, x, y))=0,(x,(y, z), x)=0,(x,(y, z), w)=((y, z), w, x)=(w$, $x,(y, z)$). using these identities, we prove that a semiprime 2-divisible ($-1,1$) ring is isomorphic to a subdirect sum of a semiprime alternative and a semiprime commutative ring. Also, we prove that a prime 2 -divisible ($-1,1$) ring R is alternative or commutative.
KEY WORDS: Right alternative rings, $(-1,1)$ Rings, Semiprime rings, Isomorphism, semiprime ($-1,1$) ring, prime $(-1,1)$ rings.

INTRODUCTION

Block [1] defined the completely alternative elements. Thedy [2] studied rings with completely alternative commutators. He proved that the ring R is alternative or commutative by assuming the conditions $(x,(y, x, y))=0,(x,(y, z), x)=0,(x,(y, z), w)$ $=((y, z), w, x)=(w, x,(y, z))$ and 3-divisibility. Using these identities and isomorphism property we prove that a 2 -divisible prime $(-1,1)$ ring R is alternative or commutative.

Throughout this paper R will denote a $(-1,1)$ ring. A non associative ring R is defined to be $(-1,1)$ if the following two identities hold:

$$
\begin{aligned}
& (x, y, y)=0 \text {, i.e. }(x, y, z)+(x, z, y)=0 \\
& (x, y, z)+(y, z, x)+(z, x, y)=0 \\
& \forall x, y, z \text { in } R .
\end{aligned}
$$

PRELIMINARIES:

R is said to be prime if A and B are ideals of R and such that $A B=0$, then either $A=0($ or $) B=0 . R$ is said to be semiprime if for any ideals A of $R, A^{2}=0$ implies A $=0$. R is called k-divisible if $k x=0$ implies $x=0, x \in R$ and k is a natural number.

The commutative center U of R is the set of all elements u in R such that $(u, R)=$ 0 . An alternative ring R is a ring in which $(x x) y=x(x y)$ and $y(x x)=(y x) x$ for all x, y in R. These equations are known as the the left and right alternative laws respectively. The nucleus N of R is the set of all elements n in R such that $(n, R, R)=(R, R, n)=($ $R, n, R)=0$.

We know that in any ring the following identities
$(w x, y, z)-(w, x y, z)+(w, x, y z)=w(x, y, z)+(w, x, y) z$
$(x y, z)-x(y, z)-(x, z) y-(x, y, z)+(x, z, y)-(z, x, y)=0$.
Hold.

In a ($-1,1$) ring R we have the following identities $[2,3]$:
$(\mathrm{x},(\mathrm{y}, \mathrm{y}, \mathrm{x}))=0$
$(\mathrm{x},(\mathrm{y}, \mathrm{z}))+(\mathrm{y},(\mathrm{z}, \mathrm{x}))+(\mathrm{z},(\mathrm{x}, \mathrm{y}))=0$
$(w,(x, y, z))=0$
Using identities of $(-1,1)$ rings we prove the the following main results.

Main results:

Lemma 1: - Let R be a $(-1,1)$ ring. Then $(x,(y, x, y))=0$ and $(x,(y, z), x)=0$.
Proof:- From (5), we have $(x,(y, x, y))=0$
Consider the equation (5), $(\mathrm{y},(\mathrm{x}, \mathrm{x}, \mathrm{y})=0$.
By replacing y by $\mathrm{y}+(\mathrm{a}, \mathrm{b})$ in the above the equation then we obtain $((\mathrm{a}, \mathrm{b}),(\mathrm{x}, \mathrm{x}, \mathrm{y}))=-$ (y,(x,x,(a,b)))
Substituting $y=(R, R, R)$ an arbitary associator in (6) and apply (7) then we have $((R, R, R),(z, x))=0$

From (8) and (9), we get $(y,(x, x,(a, b)))=0$.
This implies that $(\mathrm{x}, \mathrm{x},(\mathrm{a}, \mathrm{b})) \in \mathrm{U}$.
Arguing as in the proof of theorem 6 in [4], we have $(x, x,(y, z))=0$.
By using right alternative, we obtain
$(x,(y, z), x)=0$.
This completes the proof of the Lemma

Lemma 2:- In a $(-1,1)$ ring R,
$(\mathrm{x},(\mathrm{y}, \mathrm{z}), \mathrm{w})=((\mathrm{y}, \mathrm{z}), \mathrm{w}, \mathrm{x})=(\mathrm{w}, \mathrm{x},(\mathrm{y}, \mathrm{z}))$.
Proof:- Substituting $(y, z)=v$ in (10) we have
$(\mathrm{x}, \mathrm{v}, \mathrm{x})=0$.
By linearizing ($\mathrm{x}, \mathrm{v}, \mathrm{x}$) $=0$ and using (1) we get,
$(\mathrm{x}, \mathrm{v}, \mathrm{y})=-(\mathrm{y}, \mathrm{v}, \mathrm{x})=(\mathrm{y}, \mathrm{x}, \mathrm{v})$
from this we have

$$
\begin{equation*}
(\mathrm{v}, \mathrm{y}, \mathrm{x})=(\mathrm{x}, \mathrm{v}, \mathrm{y}) . \tag{13}
\end{equation*}
$$

From (12) \& (13) we obtain
$(\mathrm{x}, \mathrm{v}, \mathrm{y})=(\mathrm{v}, \mathrm{y}, \mathrm{x})=(\mathrm{y}, \mathrm{x}, \mathrm{v})$
This completes the proof of Lemma.
To prove next lemmas we define the following subsets in a $(-1,1)$ ring R.
$V=\{v / v \in R,(x, v, x)=0$ and $(v, y, x)=(y, x, v)=(x, v, y)$ for all $x, y \in R\}$
and $\mathrm{W}=\{\mathrm{v} / \mathrm{v} \in \mathrm{V}, \mathrm{R} \mathrm{v}+\mathrm{v} \mathrm{R} \subset \mathrm{R}\}$. V is the alternative nucleus of R which consists of all completely alternative elements of R and a subgroup of R containing the nucleus of R.

If U is an ideal of R, then we denote U^{\perp} by the sum of all ideals S of R such that $S U=$ $\mathrm{US}=0$. Here U^{\perp} is the maximal ideal annihilating U from both sides.

Lemma 3:- Let U be an ideal of R contained in V .
Then $U^{\perp}=\{p / p \in R, p U=U p=0\}$.
Proof:- We have only to show that $\{p / p \in R, p U=U p=0\}$, is an ideal of R.
Let $\mathrm{p} \in \mathrm{R}$ such that $\mathrm{pU}=\mathrm{Up}=0$.
Then we have for $v \in U$ and $x \in R$
$(\mathrm{x}, \mathrm{p}, \mathrm{v})=-(\mathrm{x}, \mathrm{v}, \mathrm{p})=-(\mathrm{p}, \mathrm{x}, \mathrm{v})=(\mathrm{p}, \mathrm{v}, \mathrm{x})=0$
Hence $(x p) U=(p x) U=U(p x)=U(x p)=0$.
Lemma 4:- The alternative nucleus V is an alternative sub algebra of R such that $(x w, x, v)=(w, x, v) x$ and $(v, x, w x)=x(v, x, w)$ for $x \in R$ and $v, w \in V$.

Proof: - Let $x \in R$ and $v, w \in V$. Then from (3), (1) and definition of V we have
$(\mathrm{x}, \mathrm{vw}, \mathrm{x})=0$

From (11) and (1), we get $(x, x, v)=0$ and $(v, x, x)=0$.
From (3) and (1), we get

$$
\begin{aligned}
&(x, x, v w+w v)=(x, x v, w)+(x, x w, v) \\
&=-(x v, x, w)-(x w, x, v) \\
&=-(x, v x, w)+(x, v, x w)-(x, w x, v)+(x, w, x v) \\
&=(w, v x, x)+(v, w x, x)-(x, x w, v)-(x, x v, w) \\
&=-(x, x, v w+w v)
\end{aligned}
$$

Therefore $2(\mathrm{x}, \mathrm{x}, \mathrm{vw}+\mathrm{wv})=0$, since R is 2 - divisible we have $(\mathrm{x}, \mathrm{x}, \mathrm{vw}+\mathrm{wv})=0$.
From this we obtain $(x v, w, x)+(x w, v, x)=0$ and $(v x, w, x)+(w x, v, x)=0$.
Now first we see that (xw, x,v) - $(w, x, v) x$

$$
\begin{aligned}
& =(x w, x, v)-(w x, v, x)+(w, x v, x)-(w, x, v x) \\
& =-(x w+w x, v, x)-(x v+v x, w, x)=0
\end{aligned}
$$

Similarly we get (v,x,wx) - x(v,x,w)

$$
\begin{aligned}
& =(\mathrm{v}, \mathrm{x}, \mathrm{wx})-(\mathrm{xv}, \mathrm{x}, \mathrm{w})+(\mathrm{x}, \mathrm{vx}, \mathrm{w})-(\mathrm{x}, \mathrm{v}, \mathrm{xw}) \\
& =(\mathrm{xw}+\mathrm{wx}, \mathrm{v}, \mathrm{x})+(\mathrm{xv}+\mathrm{vx}, \mathrm{w}, \mathrm{x})=0 .
\end{aligned}
$$

It remains to show that $(v w, y, x)=(y, x, v w)=(x, v w, y)$ for $v, w \in V$.
Linerizing (14), we have $(x, v w, y)=-(y, v w, x)=(y, x, v w)$.
From this, we get $(v w, y, x)=(x, v w, y)$.
Hence $(\mathrm{vw}, \mathrm{y}, \mathrm{x})=(\mathrm{y}, \mathrm{x}, \mathrm{vw})=(\mathrm{x}, \mathrm{vw}, \mathrm{y})$.
Therefore V is a sub algebra and trivially V is alternative.
Lemma 5:- If R satisfies $(x w, x, y)=(w, x, y) x$ and $(y, x, w x)=x(y, x, w)$ for $x, y \in R, w \in W$, then $(y, y, x) \in U^{\perp}$ for any ideal of R contained in V.

Proof: $-w(y, y, x)=(w y, y, x)-\left(w, y^{2}, x\right)+(w, y, y x)-(w, y, y) x$

$$
\begin{aligned}
= & y(y, x, w)-\left(y^{2}, x, w\right)+(y, y x, w) \\
& =-(y, y, x) w \\
& =y(x, w, y)-\left(y^{2}, x, w\right)+(y x, w, y) \\
& =-(y, w y, x)+y(y, w, x)=0 .
\end{aligned}
$$

Hence $(y, y, x) \in U^{\perp}$ by Lemma 3 .

Lemma 6 :- If R is a 2-divisible $(-1,1)$ ring, then W is an ideal of R contained in V such that $(\mathrm{R}, \mathrm{V})+(\mathrm{R}, \mathrm{R}, \mathrm{V})+(\mathrm{R}, \mathrm{V}, \mathrm{R})+(\mathrm{V}, \mathrm{R}, \mathrm{R}) \subset \mathrm{W}$.

Proof:- Let $v \in V$ and $x, y \in R$. From (4), (2), we have

$$
(x y, v)+(v y, x)-v(y, x)-x(y, v)=(x, y, v)+(v, y, x)=0 .
$$

Since V is sub algebra by lemma 4 and $(R, R) \subset V$ we get $(R, V) \subset W$.
From (4), we have $(x, y, v)=(x y, v)-(x, v) y-x(y, v) \in V$.
Hence $(\mathrm{x}, \mathrm{y}, \mathrm{v})=(\mathrm{v}, \mathrm{x}, \mathrm{y}) \in \mathrm{V}$ and consequently W is an ideal of R .
Therefore $(x, y, v)=(x y, v)-(x, v) y-x(y, v) \in W$ implies

$$
\begin{gathered}
(\mathrm{x}, \mathrm{y}, \mathrm{v})=(\mathrm{y}, \mathrm{v}, \mathrm{x})=(\mathrm{v}, \mathrm{x}, \mathrm{y}) \in \mathrm{W} \quad \text { or } \\
(\mathrm{R}, \mathrm{R}, \mathrm{~V})+(\mathrm{R}, \mathrm{~V}, \mathrm{R})+(\mathrm{V}, \mathrm{R}, \mathrm{R}) \subset \mathrm{W} .
\end{gathered}
$$

This completes the proof of the lemma.

Corollary:- In a $(-1,1)$ ring $\mathrm{R},(\mathrm{x}, \mathrm{y})^{2} \in \mathrm{~W}$ for $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Proof:- Since $(x, y) \in V$ we have modulo W that $(x, y)^{2} \equiv(x, y(x, y))$.
From (4), we obtain that $y(x, y)=(y x, y)-(y, x, y)$. From $(x,(y, x, y))=0$, commuting this equation with x we get $(x, y)^{2} \equiv(x,(y x, y))$.

Hence $(x, y)^{2} \in W$ by Lemma 6 .

Theorem 1:- A semiprime 2-divisible $(-1,1)$ ring R is isomorphic to a sub-direct sum of a semiprime alternative and a semiprime commutative ring.

Proof:- From $\left(\mathrm{W}^{\perp \perp} \cap \mathrm{W}^{\perp}\right)^{2} \subset \mathrm{~W}^{\perp \perp} \mathrm{W}^{\perp}=0$ we get $\mathrm{W}^{\perp \perp} \cap \mathrm{W}^{\perp}=0$.
Hence the canonical homomorphism $R \rightarrow R / W^{\perp \perp} \oplus R / W^{\perp}$ is an isomorphism.
By lemma $5 \mathrm{R} / \mathrm{W}^{\perp}$ is an alternative ring. From the lemma 6 and corollary we have that the ideal T generated by (x, y) and W satisfies $\mathrm{T}^{2} \subset \mathrm{~W}$. The ideal $\mathrm{T} \cap \mathrm{W}^{\perp}$ squares to zero. Hence $\mathrm{T} \cap \mathrm{W}^{\perp}=0$ and consequently $\mathrm{T} \mathrm{W}^{\perp}+\mathrm{W}^{\perp} \mathrm{T}=0$ or $\mathrm{T} \subset \mathrm{W}^{\perp \perp}$. This proves that $(x, y) \in W^{\perp \perp}$ and $\mathrm{R} / \mathrm{W}^{\perp \perp}$ is commutative. It remains to show that $\mathrm{R} / \mathrm{W}^{\perp \perp}$ and $\mathrm{R} / \mathrm{W}^{\perp}$ are semiprime rings.

Let I be an ideal of R such that $\mathrm{I}^{2} \subset \mathrm{~W}^{\perp \perp}$. Then $\left(\mathrm{I} \cap \mathrm{W}^{\perp}\right)^{2} \subset \mathrm{~W}^{\perp \perp} \cap \mathrm{W}^{\perp}=0$ shows that I $\cap \mathrm{W}^{\perp}=0$. Hence, $\mathrm{I} \mathrm{W}^{\perp}+\mathrm{W}^{\perp} \mathrm{I} \subset \mathrm{I} \cap \mathrm{W}^{\perp}=0$ or $\mathrm{I} \subset \mathrm{W}^{\perp \perp}$. This shows that $\mathrm{R} / \mathrm{W}^{\perp \perp}$ is semiprime. Similarly, we get that $\mathrm{R} / \mathrm{W}^{\perp}$ is semiprime.

Theorem 2: - A prime 2-divisible ($-1,1$) ring R is alternative or commutative.
Proof: - A ring R is called prime if the product of any two non-zero ideals of R is nonzero. Clearly a prime ring is semiprime.

Let R be a subring of the direct sum of an alternative ring A and a commutative ring C . Any alternator i.e., element of type ($\mathrm{y}, \mathrm{y}, \mathrm{x}$) or ($\mathrm{x}, \mathrm{y}, \mathrm{y}$) lies in C and any commutator (x, y) lies in A.

Therefore, the ideal I of R generated by all alternators of R and the ideal J of R generated by all commutators of R satisfy $I J=0$. If R is prime then either $I=0$ and R is alternative or $J=0$ and R is commutative. Hence from theorem 1 we have that a prime $(-1,1)$ ring R is alternative or commutative.

REFERENCES:

1) Block, R.E." A unification of the theories of Jordan and alternative algebra". Tran.Amer.Math.Soc.64(1948),552-593.
2)Thedy, A." On rings with completely alternative commutators'", Amer.J. Math.93(1971),42-51.
3)Hentzel, I.R. ''The characterization of (-1,1) rings" Algebra 30 (1974), No.3, 442-450.
2) Hentzel, I.R. and Smith, H.F. "Semiprime locally $(-1,1)$ rings with minimal condition", Algebras Groups Geom 2 (1985), 26-52.
3) Thedy, A"On rings with commutators in the nucleus", Math. Z. 119 (1971), 213-218.
4) Kleinfeld, E"On rings with alternators in the commutative center", Port. Math. 50 (1993), 297-304.
