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ABSTRACT 

Over the recent few years, satellite systems and image analysis mechanisms have 
evolved to a scope where commercial Earth-observation instruments come up with 
notably to aid the management of crucial natural and technical disasters. Upon 
comparison with today’s accessibility of satellite imagery to the circumstances about 
ten years ago, the quantity, promptness and obtain-ability of satellite imagery 
covering a definite calamity state of affairs has boosted in a significant manner. In 
this work, a novel Kalman Bucy Region Adjacent and Bivariate Correlated 
Classification (KBRA-BCC) method is proposed for image classification to perform 
an efficient disaster management event. The Kalman Bucy Region Adjacent and 
Bivariate Correlated Classification (KBRA-BCC) method is split into three sections. 
They are, image denoising, image segmentation and image classification for 
disastrous area identification. With the input image obtained from satellite image 
database, first, a Kalman–Bucy Image Denoising process is carried out to eliminate 
noisy pixels therefore improving the PSNR. With the processed image, second, Region 
Segmentation process is performed by employing Region Adjacency Gray Level Image 
Segmentation that splits the processed image into different segments with respect to 
two distinct features, color and intensity. Finally, with the segmented images, 
Bivariate Correlated Classification is employed to perform correlation between input 
and training image (i.e., disastrous image) that in turn classifies the segmented image 
into disastrous image or non-disastrous image. By employing Bivariate Correlated 
Classification assists in performing efficient disaster management with better 
accuracy and minimal time consumption. The subjective and objective evaluation, as 
well as the peak signal to noise ratio (PSNR) along with the segmentation time and 
classification accuracy, is compared, respectively, showing that the KBRA-BCC 
method can effectively enhance the disaster management with satellite images.  
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1. Introduction 

Over the past few years, satellite systems and image-analysis methods have developed 
to a magnitude where civil and commercial Earth-observation appliances can bestow 
efficiently to underpin the management of crucial technical and natural disasters, 
together with humanitarian calamity circumstances. On contrast to today’s 
accessibility of satellite imagery to the state of affairs about ten years ago, the 
frequently, promptness and obtainability of satellite imagery sheathing an explicit 
catastrophe condition has enhanced considerably. There are numerous reasons that 
have led to this fact. 

 A new framework was introduced in [1] for reducing both the quantification 
and uncertainty involved in participatory damage assessment. The entire damage state 
classification process was split into straightforward micro-tasks by means of 
questionnaire survey with the objective of reducing both the complexity and 
subjectivity. Moreover, an information-theoretic model was also introduced 
depending on the maximum posteriori probability estimation for accurate probabilistic 
description. However, image denoising was not carried out in efficient manner.  

 A Satellite Precipitation-based Extreme Event Detection (SPEED) method was 
introduced in [2] to support the parametric or index insurance instruments for 
minimizing the flood risk. Here, the financial tools were also employed to assist in 
fast payouts in aftermath of disastrous event. SPEED model also measured hazard 
parameters however the computational complexity was not reduced by SPEED model. 

 A new multi-hazard disaster methodology was introduced in [3] to combine the 
experiment–simulation–field data. The methodology aimed on three dimensions with 
multi-hazard coupling, and emergency management. The designed methodology 
included experiments, multi-hazard field investigation, scenario analysis and 
response. But, here image pre-processing was not performed in a significant manner 
via multi-hazard disaster methodology. An integrated methodology was introduced in 
[4] for mapping flood extent and depths depending on Synthetic Aperture Radar (SAR) 
images and digital elevation model (DEM). But, segmentation was not carried out in 
efficient manner by integrated methodology. 

2. Objective and Contributions  
Our study aims to accurately and precisely delineate disastrous and non-disastrous 
images from satellite imagery. We develop an end-to-end Kalman–Bucy Image 
Denoising model based on unmeasured states and the actual process outputs. With this 
processed resultant output images, Region Adjacency Gray Level Image Segmentation 
is performed to split the processed images according to two different characteristics 
color or intensity. Finally, classification of disastrous and non-disastrous images is 
made by utilizing Bivariate Canonical Correlation classification model. Following the 
research line of previous works Majority-Vote based model for citizen-driven post-
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disaster damage assessment [1] and Satellite Precipitation-based Extreme Event 
Detection (SPEED) [2], several modifications are introduced to such a method to 
further enhance its performance and applicability for robust disaster management. The 
key contributions of our paper are the following: 
 

 Kalman–Bucy Disaster Image Filtering-based preprocessing is studied where 
the processed images are obtained in a computationally efficient manner by means of 
Kalman–Bucy function.  
 

 To develop an algorithm called Region Adjacency Gray Level Image 
Segmentation using average intensity and root mean square deviation of pixel set for 
acquiring robust segmented images, therefore minimizing the segmentation time.  
 

 To implement an algorithm called Bivariate Canonical Correlated classification 
using cross covariance matrix of segmented images to manage the disaster in a precise 
manner, hence classifying the output images  into disastrous or non-disastrous image.  
 

Extensive simulation results demonstrate that the proposed Kalman Bucy Region 
Adjacent and Bivariate Correlated Classification (KBRA-BCC) achieves better 
disaster management in terms of execution time, classification accuracy and false 
positive rate in comparison with the other disaster management methods. 

2. Literature Survey / Related Work 
Abrupt changes in climate and population growth in urban areas are creating risk of 
both persons and infrastructure leading to disasters. However, there still remains a gap 
in comprehending the extension of hidden geospatial biases that in turn influences the 
risk. Therefore there necessitates methods and materials to circumvent the issues 
arising due to disaster. Potential concerns from data science and social perspective 
was discussed in [5]. In [6], disaster events concerning intensity were designed by 
means of numerical simulation. Moreover, an automatic method for damaged building 
detection was also designed.  
 
 Over the past three decades, a great level of evolution in terms of volume, 
quality and quantity of satellite observations has occurred. A review of prevailing 
Earth Observing (EO) systems frequently utilized for estimating earthquake and 
crustal deformation and their potential hazard were investigated in [7]. On the basis 
of the review of literature and examples of studies conducted in the domain of coastal, 
hydro-meteorological and geohazards, a review of space-based Earth observations 
were potentially discussed in [8] with their requirements for disaster risk management. 
However, early evaluation and drought detection can ensure guidance for efficient 
water resources management.  
 
 In [9] multilayer perceptron neural network (MLPNN) was employed for 
efficient forecasting of drought. Also a detailed investigation using time series data 
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collected from Northern Area and KPK (Pakistan) was also made. However, landslide 
even collection in inventories are still said to be laborious and cumbersome process 
globally owing to the inconsistency or absence of landslide reporting. A detailed 
report was provided in [10] for landslides.  
 
 Since 2000s, the frequency and scalability of natural hazards are said to be in 
the increasing trend generating immense losses and deaths globally. Several natural 
hazards not only create huge issues to the disaster prevention and mitigation 
potentiality of infrastructure but also generate severe demands for rescue and recovery 
response. However, still there remain numerous disaster management obstacles. 
 
 Automated landslide detection using machine learning techniques was 
proposed in [11]. Deep learning-based materials and methods can bestow state of the 
art accuracy for remote sensing, therefore improving remote sensing potentialities for 
disaster management applications. To this end, the article in [12] concentrated on the 
significant classification of aerial image for emergency monitoring applications. With 
this accuracy was said to be improved. In [13], disaster prevention and alleviation for 
infrastructure, their advancements, ultimatum involved and opportunities were 
discussed. Certain remote sensing techniques for disaster management involving 
coastal areas were designed in detailed in [14].  
 
 In a catastrophe circumstances, the prevailing materials and methods designed 
on the basis of the change detection for road damage are said to be laborious and 
cumbersome to attain owing to the discrepancy of several data sources, specifically 
involving rural areas where pre-disaster remote sensing imagery are impenetrable to 
acquire. In [15], novel method on the basis of the Tracking, Learning, and Detector 
(TLD) framework for damaged road region detection from high-resolution remote 
sensing image was proposed that in turn ensured greater amount of feasibility. Certain 
requirements for applying satellite remote sensing towards disaster management by 
utilizing holistic factors based on case studies in central Asia was investigated in [16]. 
 
 The usage of social media for information sharing has gained wide popularity. 
With these evolutions, the extent of data acquired increases daily in distinct types, 
namely, text, audio, video, and images. Despite these popularities, activities 
concerning Disaster Response (DR) are specifically depended on information obtained 
in a textual fashion, like, reports and email content, and hence the advantage of other 
media is frequently not gained. Deep Learning (DL) techniques also in the recent years 
and their application to DR have gained much advantage. 
 
 A systematic review of different numbers of articles concerning, current and 
future challenges, and their advantages utilizing DL for DR tasks was reviewed in 
[17]. Recent achievement and novel challenges for meteorological disaster 
management was reviewed in detail in [18]. Yet another extensive review of different 
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methods for evaluating disaster detection methods was investigated in [19]. The 
impact of the model frameworks on the landslide detection results were analyzed, and 
also the accuracy of deep belief networks (DBN) and convolutional neural network 
(CDN) models in addressing landslide problems were also compared. Here, the 
detection accuracy was improved with minimum error. 
 
 Motivated by the above materials and methods in this work, a Kalman Bucy 
Region Adjacent and Bivariate Correlated Classification (KBRA-BCC) method is 
proposed for disaster management.   

 

3. Research Methodology 

With the swift evolution of Earth observation techniques disaster management 
conducted by disaster managers now possess potential tools and techniques for 
collecting and integrating data in a cost efficient fashion. In this work a novel method 
called, Kalman Bucy Region Adjacent and Bivariate Correlated Classification 
(KBRA-BCC) is proposed for image classification to perform an efficient disaster 
management event. Figure 1 shows the block diagram of KBRA-BCC method.  

 
 

Figure 1 Block diagram of Kalman Bucy Region Adjacent and Bivariate 
Correlated Classification 

  
As shown in the above figure, the KBRA-BCC method includes three processes, 
namely image denoising, image segmentation and image classification for disastrous 
area identification and management of the same. With the input images obtained from 
disaster image dataset, first image denoising is performed by means of Kalman–Bucy 
Image Denoising model. Second Region Segmentation process is performed based on 
two distinct features, color and intensity. Finally, Bivariate Correlated Classification 
model is utilized to perform correlation between input image and training image (i.e., 
disastrous image) with the objective of classifying segmented image into disastrous 
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image or non-disastrous image. With this efficient classification process is said to be 
achieved with better accuracy and minimal time consumption.  
 
3.1 Kalman–Bucy Image Denoising model  
 Change in climatic conditions and exponential growth in population causes 
enormous issues to the habitation and well-being of planet Earth. The protection of its 
valuable environment and the retaliation to disasters when they happen both naturally 
and artificially is now exorbitant precedence. Technological innovations are amongst 
the most efficient solutions, and the speed and ease of satellite disaster monitoring has 
had a considerable influence on the efficiency of disaster response. Also, the 
utilization of satellite disaster early warning not only enhances the minimization of 
risk but also plans in case of restoration efforts in the wake of emergency.  
 
 The accuracy and efficiency of machine learning algorithms depend on the 
dataset being used for simulation and its clarity. Also not all the dataset are free from 
noise. Hence, a preliminary preprocessing has to be performed to eliminate the 
presence of noise. In our work, Kalman–Bucy Image Denoising model is employed to 
eliminate the noise on a controlled trajectory for four different types of natural disaster 
images, i.e., cyclone, earthquake, flood and wildfire. Figure 2 shows the structure of 
Kalman–Bucy Image Denoising model.   

 
Figure 2 Structure of Kalman–Bucy Image Denoising model 

 
 As shown in the above figure, let us consider the linear continuous-time input 
disaster images ‘𝐼’ from the disaster images dataset ‘𝐷𝑆’ subjected to controlled 
process. However, with the pixels on the controlled trajectory interrupted by noise, 
the ratio between maximum probable power of an image and the probable power of 
image are also said to be corrupted by noise.   These noises are removed in our work 
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by means of Kalman–Bucy Image Denoising that is said to be written in the following 
state-space therefore enhancing the PSNR as given below.  
 
 𝑝ᇱ = 𝑋𝑝 + 𝑌𝐼 + 𝛼ଵ       (1)  
 𝑞 = 𝑍𝑝        (2) 
 𝑞ᇱ = 𝑞 + 𝛼ଶ        (3) 
From the above equations (1), (2) and (3) ‘𝐼’ represents the vector of disaster input 
images, ‘𝑝ᇱ’ denotes the vector of actual states of the disaster input images, with ‘𝑞’ 
specifying the vector of actual preprocessing and ‘𝑞ᇱ’ representing the vector of 
measured processed outputs and ‘𝛼ଵ’, ‘𝛼ଶ’ denoting the process noise and output noise 
respectively. Then, given the disaster input images, measured processed outputs, 
assumed process and output noise, the objective of designing Kalman–Bucy Image 
Denoising remains in obtaining the unmeasured states and the actual process outputs 
(i.e., noise eliminated processed disaster images). This is illustrated in figure 1 where 
the estimated states are ‘𝑝෤(𝑡)’, and estimated measured outputs are ‘𝑞෤(𝑡)’ respectively.  
Then, the Kalman–Bucy Disaster Image Filtering estimate at time instance ‘𝑡’ is ‘𝑑𝑞௧

ᇱ’ 
and the mean square filtering error ‘𝐸𝑟𝑟(𝑡)’ is mathematically formulated as given 
below.  
 

 𝑃𝐼 = 𝑑𝑞௧
ᇱ = 𝑎(𝑡)𝑞௧

ᇱ𝑑𝑡 +
ா௥௥(௧)஺(௧)

஻మ(௧)
[𝑑𝑝௧

ᇱ − 𝐴(𝑡)𝑞௧
ᇱ𝑑𝑡]   (4) 

 𝐸𝑟𝑟(𝑡) = 2𝑎(𝑡)𝐸𝑟𝑟(𝑡) + 𝑏ଶ(𝑡) −
ா௥௥మ(௧)ା஺మ(௧)

஻మ(௧)
   (5) 

 From the above equations (4) and (5), Kalman–Bucy Disaster Image Filtering 
estimate results are obtained from ‘𝑑𝑞௧

ᇱ’ based on the deterministic functions ‘𝑎(𝑡)’, 
‘𝑏(𝑡)’, ‘𝐴(𝑡)’, ‘𝐵(𝑡)’ for the corresponding vector of measured processed outputs ‘𝑞௧

ᇱ’ 
and vector of actual states of the disaster input images ‘𝑑𝑝௧

ᇱ’ respectively. Followed 
by which the Kalman–Bucy Disaster Image Filtering error ‘𝐸𝑟𝑟(𝑡)’ is obtained by 
differentiating with respect to deterministic functions respectively. In this manner 
noise reduced processed Disaster Images are obtained. The pseudo code representation 
of Kalman–Bucy Disaster Image Filtering-based preprocessing is given below.  
Input: Disaster Images Dataset ‘𝐷𝑆’, Image ‘𝐼 = 𝐼ଵ, 𝐼ଶ, . . , 𝐼௡’ 
Output: Noise-reduced Processed disaster images  

1: Initialize time ‘𝑡’, process noise and output noise ‘𝛼ଵ = 0.01’, ‘𝛼ଶ = 0.02’ 
2: Begin 
3: For each Disaster Images Dataset ‘𝐷𝑆’ with Image ‘𝐼’ 
4: Obtain vector of actual states of the disaster input images as in equation (1) 
5: Obtain vector of actual preprocessing as in equation (2) 
6: Obtain the vector of measured processed outputs as in equation (3) 
7: Evaluate Kalman–Bucy Disaster Image Filtering estimate as in equation (4) 
8: Evaluate Kalman–Bucy Disaster Image Filtering estimate error as in equation (5) 
9: Return processed disaster output Image ‘𝑃𝐼’ 
10: End for  
11: End  
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Algorithm 1 Kalman–Bucy Image Denoising-based Preprocessing 
 
As given in the above algorithm with the objective of removing the noisy pixels from 
the input disaster images and also to improve the PSNR Kalman–Bucy Image 
Denoising model is used. In this algorithm with the disaster image dataset provided as 
input, actual states and measured processed outputs are obtained with which the 
Filtering estimate and Filtering estimate error are evaluated to produce noise-reduced 
processed disaster images. With the obtained noise-reduced processed disaster images 
segmentation are performed for further processing in the next section.  
 
3.2 Region Adjacency Gray Level Image Segmentation  
 As given in the above section, with the processed images obtained as input, 
Region Adjacency Gray Level Image Segmentation is performed to split the pre-
processed image (i.e., processed output) into distinct segments on the basis of the pixel 
in the specific region. Every pixel in a region is similar with respect to two different 
characteristics like color or intensity. In this work, a high-resolution Region 
Adjacency Gray Level Image Segmentation algorithm is proposed. Figure 3 shows the 
block diagram of Region Adjacency Gray Level Image Segmentation model. 

 
Figure 3 Block diagram of Region Adjacency Gray Level Image Segmentation 

model 
As shown in the above block diagram, the Region Adjacency Gray associates distinct 
pixels via an edge, and each pixel region is scanned as a vertex. The edges between 
pixels are colored subject to their weights be in tune with their similarities between 
regions. The regions engulfed with dark edges are said to possess indistinguishable 
pixel features. On the other hand, the regions engulfed with light-colored edges 
possess distinct pixel features. Each region ‘𝑅௜’ is distinguished by two criterions, i.e., 
‘𝐴𝑣𝑔’ the average intensity of set of pixel in the region and ‘𝑅𝑀𝑆𝐷’ refers to the root 
mean square deviation of set of pixel in the region respectively. The average and root 
mean square deviation are mathematically stated as given below.  
 

 𝐴𝑣𝑔 =
ଵ

௡
∑ 𝑃𝐼௜

௡
௜ୀଵ        (6) 

 𝑅𝑀𝑆𝐷 = ට
ଵ

௡
∑ (𝑃𝐼௜ − 𝐴𝑉𝐺)ଶ௡

௜ୀଵ      (7) 
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 Next, at each circumference ‘𝐶௜௝’ refers to a set of adjoining regions ‘൫𝑅௜, 𝑅௝൯’ 

and an intensity distance ‘𝐷𝑖𝑠ଶ൫𝑅௜, 𝑅௝൯’ as given below that is utilized in estimating 

the similarity between the intensity dispersal of two regions. 
 

 𝐷𝑖𝑠ଶ൫𝑅௜, 𝑅௝൯ =
ቀ஻௢௨௡ௗೃ೔

ା஻௢௨௡ ೃೕ
ቁ൫஺௩௚೔,஺௩௚ೕ൯

మ

ቀ஻௢௨௡ௗೃ೔
∗ோெௌ஽೔

మቁାቀ஻௢௨௡ௗೃೕ
∗ோெௌ஽ೕ

మቁ
   (8) 

 
 From the above equation (8), ‘𝐵𝑜𝑢𝑛𝑑ோ೔

’ and ‘𝐵𝑜𝑢𝑛𝑑ோೕ
’ represents the boundary 

pixels that were eliminated forming gray scale pixels. With the obtained gray scale 
pixels, the average intensity is evaluated for regions with homogeneous gray levels, 
therefore differentiating between dark edges and light-colored edges. This is 
mathematically stated as given below. 
 

 𝑆𝐼 = ቊ
𝑖𝑓 𝐴𝑣𝑔 < 𝐷𝑖𝑠ଶ൫𝑅௜ , 𝑅௝൯, dark edges 

𝑖𝑓 𝐴𝑣𝑔 > 𝐷𝑖𝑠ଶ൫𝑅௜, 𝑅௝൯, 𝑙𝑖𝑔ℎ𝑡 − 𝑐𝑜𝑙𝑜𝑟𝑒𝑑 𝑒𝑑𝑔𝑒𝑠
  (9) 

 
 With the resultant above segmented images ‘𝑆𝐼’ based on region factors, 
efficient differentiation between dark edges and light-colored edges are made, 
therefore minimizing the segmentation time.  The pseudo code representation of 
Region Adjacency Gray Level Image Segmentation is given below.  
 

Input: Disaster Images Dataset ‘𝐷𝑆’, processed disaster output Image ‘𝑃𝐼’  
Output: Computationally efficient segmented images  

1: Initialize time ‘𝑡’ 
2: Begin 
3: For each processed disaster output Image ‘𝑃𝐼’ 
4: Evaluate average intensity of set of pixel in the region as in equation (6) 
5: Evaluate root mean square deviation of set of pixel in the region as in equation 
(7) 

6: For each set of adjoining regions ‘൫𝑅௜, 𝑅௝൯ 

7: Estimate intensity distance as in equation (8) 
8: End for  

9: If ‘𝐴𝑣𝑔 < 𝐷𝑖𝑠ଶ൫𝑅௜, 𝑅௝൯’ 

10: Then the images form dark edges 
11: End if  

12: If ‘𝐴𝑣𝑔 > 𝐷𝑖𝑠ଶ൫𝑅௜, 𝑅௝൯’ 

13: Then the images form light-colored edges 
14: End if  
15: Return segmented images ‘𝑆𝐼’ 
16: End for  
17: End  
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Algorithm 2 Region Adjacency Gray Level Image Segmentation algorithm 
  
As given in the above Region Adjacency Gray Level Image Segmentation algorithm 
with two distinct features like, color and intensity, Region Adjacency is first 
determined. Second, with the identified Region Adjacency for each processed disaster 
output Image ‘𝑃𝐼’ intensity distance is evaluated. Finally, comparison is made between 
the average intensity of set of pixel in the region and intensity dispersal of two regions 
with which the segmented images into dark edges and light-colored edges are obtained 
with minimum segmentation time.  
 
3.3 Bivariate canonical Correlated classification model  
 Finally, with the segmented images as input, in this section, a Bivariate 
Canonical Correlation classification model is designed for ensuring accurate disaster 
management. The Bivariate Canonical Correlation classification model is employed 
in our work to perform correlation between input image and training image (i.e., 
disastrous or non-disastrous image) for classifying the segmented image into 
disastrous or non-disastrous image. Figure 4 shows the structure of Bivariate 
Canonical Correlated classification model.  
 

 
 

Figure 4 Bivariate Canonical Correlated classification model 
As shown in the above figure, with four different types of disaster segmented images 
(i.e., cyclone, earthquake, flood and wildfire) as input (i.e., ‘𝑆𝐼ଵ௜ = 𝑐𝑦𝑐𝑙𝑜𝑛𝑒 𝑖𝑚𝑎𝑔𝑒𝑠’, 
‘𝑆𝐼ଶ௜ = 𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 𝑖𝑚𝑎𝑔𝑒𝑠’ ‘𝑆𝐼ଷ௜ = 𝑓𝑙𝑜𝑜𝑑 𝑖𝑚𝑎𝑔𝑒𝑠’ and ‘𝑆𝐼ସ௜ = 𝑤𝑖𝑙𝑑𝑓𝑖𝑟𝑒 𝑖𝑚𝑎𝑔𝑒𝑠’), the 
objective remains in identifying a linear projection of set ‘𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑆𝐼’ and 
‘𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝐶𝐼’ by maximizing linear correlation between two sets of new 
canonical variables ‘𝑈’ and ‘𝑉’. Here, ‘𝑖 = 1,2, … 𝑛’ and ‘𝑗 = 0 𝑜𝑟 1’. Given 
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two column vectors ‘𝑆𝐼 = {𝑆𝐼ଵ, 𝑆𝐼ଶ, … , 𝑆𝐼௡}ᇱ’ and ‘𝐶𝐼 =  {𝐶𝐼ଵ, 𝐶𝐼ଶ, … , 𝐶𝐼௠}ᇱ’ the Bivariate 
Canonical Correlated classification identifies vectors ‘𝑢 ∈  𝑅௡’ and ‘𝑣 ∈  𝑅௠’ such that 
the random variables ‘𝑢்𝑆𝐼’ and ‘𝑣்𝐶𝐼’ maximize the correlation as given below. First, 
the cross covariance matrix is mathematically stated as given below. 

 Σௌூ,஼ூ = 𝐶𝑂𝑉(𝑆𝐼, 𝐶𝐼)       (10) 

 𝜌 = 𝐶𝑂𝑅𝑅(𝑢்𝑆𝐼, 𝑣்𝐶𝐼)      (11) 

 Then, the random variables  ‘𝑈 = 𝑢 ∈  𝑅௡’ and  ‘𝑉 = 𝑣 ∈  𝑅௠’ represents the 
initial canonical variable pair (i.e., ‘𝑆𝐼ଵ௜ = 𝑐𝑦𝑐𝑙𝑜𝑛𝑒 𝑖𝑚𝑎𝑔𝑒𝑠’) and so on.  When the 
correlation value ranges between ‘-1’ and ‘0’, the image is said to be non-disastrous 
image and on the other hand, if the correlation value ranges between ‘0’ and ‘1’, the 
image is said to be disastrous image. The pseudo code representation of Bivariate 
Canonical Correlated classification is given below.  

Input: Disaster Images Dataset ‘𝐷𝑆’, processed disaster output Image ‘𝑃𝐼’ 
Output: Accurate disaster management 

1: Initialize column vectors ‘𝑆𝐼 = {𝑆𝐼ଵ, 𝑆𝐼ଶ, … , 𝑆𝐼௡}ᇱ’ and ‘𝐶𝐼 =

 {𝐶𝐼ଵ, 𝐶𝐼ଶ, … , 𝐶𝐼௠}ᇱ’ 
2: Initialize variables ‘𝑈’ and ‘𝑉’ 
3: Begin 
4: For each segmented images ‘𝑆𝐼’ 
5: Evaluate cross covariance matrix as in equation (10) 
6: Evaluate Bivariate Canocial Correlated classification as in equation (11) 
7: If ‘𝜌 𝑟𝑎𝑛𝑔𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 1 𝑎𝑛𝑑 0’ 
8: Then the segmented image is non-disastrous image 
9: End if 
10: If ‘𝜌 𝑟𝑎𝑛𝑔𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1’ 
11: Then the segmented image is disastrous image 
12: End if 
13: End for  
14: End  

Algorithm 3 Bivariate Canonical Correlated classification 
 

 As given in the above Bivariate canonical Correlated classification algorithm, 
with the objective of improving the results of disaster management, analysis of 
canonical correlation is made between the segmented input images and the classified 
output images via cross covariance matrix. With the resultant cross covariance matrix 
values, Bivariate canonical Correlated classification is made to obtain the actual 
classified output. Finally, with the classified output, statistical evaluation is made to 
obtain the output as disastrous or non-disastrous image accurately.  
 
3. Experimental setup  
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 The proposed Kalman Bucy Region Adjacent and Bivariate Correlated 
Classification (KBRA-BCC) method is explored and tested with other significant 
methods, namely Majority-Vote based model for citizen-driven post-disaster damage 
assessment [1] and [Satellite Precipitation-based Extreme Event Detection (SPEED) 
[2]. A persuading characteristic for the assessment metric is their potentiality to 
differentiate between results of different building detection methods developed and 
simulation in MATLAB using the disaster images dataset, 
https://www.kaggle.com/mikolajbabula/disaster-images-dataset-cnn-model.  
 
 Experimental evaluation of Kalman Bucy Region Adjacent and Bivariate 
Correlated Classification (KBRA-BCC) method is carried out on the factors such as 
peak signal-to-noise ratio, segmentation time, and classification accuracy with respect 
to a number of satellite images. The efficiency of the disaster management method is 
determined by estimating the method numerous execution measures or by monitoring 
the performance by several performance metrics. For the proposed work the method 
is validated in terms of: 
 

 Peak signal-to-noise ratio 

 Segmentation time 

 Classification accuracy 

4 Results and Discussions 
4.1 Performance analysis of segmentation time 
Segmentation time refers to the time consumed in segmenting the processed images. 
This is mathematically stated as given below.  

           𝑆𝑒𝑔௧௜௠௘ =  ∑ 𝐼௜ ∗ 𝑇𝑖𝑚𝑒 ൣ𝐷𝑖𝑠ଶ൫𝑅௜, 𝑅௝൯ +௡
௜ୀଵ

 differentiating between [dark and light − colored edges൧(12) 

 
 From the above equation (12), the segmentation time ‘𝑆𝑒𝑔௧௜௠௘’, refers to the 
time consumed in differentiating between dark and light colored edges 
‘differentiating between [dark and light − colored edges’, estimating similarity 

between intensity dispersal of two regions ‘𝐷𝑖𝑠ଶ൫𝑅௜ , 𝑅௝൯’ with respect to the images 

provided as input for simulation ‘𝐼௜’. It is measured in terms of milliseconds (ms). 
Table 1 given below lists the segmentation time for three different methods, KBRA-
BCC, Majority-Vote based model for citizen-driven post-disaster damage assessment 
[1] and SPEED [2].  
 
Table 1 Segmentation time measure of the proposed KBRA-BCC PS method and 

other state-of-the-art methods 

Number of 
images 

Segmentation time (ms) 

KBRA-BCC Majority-Vote 
based model for 
citizen-driven 

SPEED 
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post-disaster 
damage assessment 

50 27.5 30 40 

100 35.25 45.55 53.25 

150 48.15 65.35 78.15 

200 55.35 80.15 95.35 

250 58.25 95.35 105.25 

300 64.55 100.25 135.45 

350 68.35 125.55 155.35 

400 75.25 140.35 175.45 

450 80.55 155.25 190.25 

500 105.35 175.85 203.55 

 
Figure 5 Segmentation time versus number of images 

 
 Figure 5 given above illustrates the graphical representation of segmentation 
time with respect to 500 distinct numbers of disaster images split into four categories, 
cyclone, earthquake, flood and wildfire obtained from the input dataset. In the above 
figure, the horizontal axis refers to the number of sample images involved in 
simulation and on the hand the vertical axis represents the segmentation time measured 
in terms of milliseconds (ms). From the above figure, the segmentation time is found 
to be directly increasing to the samples involved in the simulation process. In other 
words, with the increase in the number of samples images results in an increase in the 
number of light colored and dark colored edges and therefore increase in estimating 
the similarity between the intensity dispersal of two regions for managing disaster 
process. As a result, there is an increase in the segmentation time also. However, 
simulations performed with 50 samples showed segmentation time of 27.5 ms using 
KBRA-BCC method, 30 ms using [1] and 40 ms using [2] respectively. From these 
results, the segmentation time using KBRA-BCC method was found to be lesser 
comparatively than the state-of-the-art methods. The reason behind the improvement 
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was due to the application of Region Adjacency Gray Level Image Segmentation 
model. By applying this model, initially, two distinct features like, color and intensity 
were determined by means of Region Adjacency function. Next, with the determined 
Region Adjacency for each processed Image intensity distance were estimated. 
Finally, the actual comparison process was made between average intensity and 
intensity dispersal of two regions. With this the segmentation time involved using 
KBRA-BCC method were found to be comparatively lesser by 32% compared to [1] 
and 46% compared to [2].  
 
4.2 Performance analysis of classification accuracy 

 Classification accuracy refers to the measure taken with which accurate 
classification is performed. In other words, classification accuracy refers to the 
accurate classification of disaster images made with which accurate disaster 
management is ensured. The accuracy is mathematically stated as given below.  
 

 𝐶𝐴 = ∑
ூ಴ಲ

ூ೔

௡
௜ୀଵ         (13)  

 From the above equation (13), classification accuracy ‘𝐶𝐴’ is estimated on the 
basis of the disaster image involved in the actual simulation process ‘𝐼௜’ and the images 
that are classified in an accurate fashion ‘𝐼஼஺’. It is measured in terms of percentage 
(%).Table 2 given below list the classification accuracy for three different methods, 
KBRA-BCC, Majority-Vote based model for citizen-driven post-disaster damage 
assessment [1] and SPEED [2].  
 
Table 2 Classification accuracy measure of the proposed KBRA-BCC PS method 

and other state-of-the-art methods 
 

Number of 
images 

Classification accuracy (%) 

KBRA-BCC Majority-Vote 
based model for 
citizen-driven 
post-disaster 

damage assessment 

SPEED 

50 92 90 88 

100 90.35 88.15 85.35 

150 87.45 86.25 83 

200 85.25 83.25 80.25 

250 83 80.45 75.35 

300 81.45 78.25 72 

350 78.35 75.15 70.15 

400 76.45 73 68.25 

450 75 70.45 65 
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500 73.15 68.25 63 

 

 
Figure 6 Classification accuracies versus number of image 

 
 Figure 6 given above shows the classification accuracy results obtained using 
the three methods, KBRA-BCC, Majority-Vote based model for citizen-driven post-
disaster damage assessment [1] and SPEED [2]. From the above figure increasing the 
classification accuracy causes a significant amount of noise and this is in turn results 
in the decrease in the classification accuracy. However, simulations performed with 
50 images found an improvement of 92% classification accuracy using KBRA-BCC, 
90% classification accuracy using [1] and 88% of classification accuracy using [2] 
respectively. The improvement in the classification accuracy using KBRA-BCC was 
owing to the incorporation of Bivariate canonical Correlated classification algorithm. 
By applying this algorithm, first, canonical correlation analysis were made between 
segmented input and classified output images using cross covariance matrix. Next, 
with the results, Bivariate canonical Correlated classification was performed therefore 
obtaining the actual output. With this correlation, classification of images into 
disastrous or non-disastrous image were made in an accurate manner therefore 
improvement observed using KBRA-BCC by 4% compared to [1] and 10% compared 
to [2]. 
 
4.3 Performance analysis of false positive rate 

 Finally, the significant parameter required for disaster management is the false 
positive rate. This is because of the reason that certain images being normal are 
considered as disaster and vice versa. Hence, this misclassification has to be detected. 
False positive rate is mathematically stated as given below.  

 𝐹𝑃𝑅 =  ∑
ூೈವ

ூ೔
∗ 100௡

௜ୀଵ       (14)   
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 From the above equation (14), the false positive rate ‘𝐹𝑃𝑅’ is measured based 
on the samples involved in the disaster management process ‘𝐼௜’ and the samples 
wrongly detected as disaster though not to be ‘𝐼ௐ஽’. It is measured in terms of 
percentage (%). Finally, table 3 given below provides the metric analysis of false 
positive rate analysis using KBRA-BCC, Majority-Vote based model for citizen-
driven post-disaster damage assessment [1] and SPEED [2] respectively. 
 
Table 3  False positive rate measure of the proposed KBRA-BCC PS method and 

other state-of-the-art methods 
 

Number of 
images 

False positive rate  

KBRA-BCC Majority-Vote 
based model for 
citizen-driven 
post-disaster 

damage assessment 

SPEED 

50 6 8 10 

100 6.35 8.85 11.23 

150 6.55 9.35 12.45 

200 7 9.85 13.35 

250 7.35 10.25 13.85 

300 7.85 10.55 14.25 

350 8.25 11 15 

400 9.15 11.35 15.35 

450 10.35 11.85 15.85 

500 11 13 16 

 

 
Figure 7  False positive rates versus number of image 
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 Figure 7 given above shows the graphical representation of false positive rate 
with respect to differing samples. From the above figure, x axis represents the samples 
ranging between 50 and 500 and y axis represent the false positive rate. Also, 
increasing the images causes an increase in the false positive rate also. This is due to 
the reason that with the increase in the images, disaster present in satellite images for 
detection and management increases and this in turn also results in a significant 
amount of falsification of disaster management also. However, simulations conducted 
with 50 samples observed the false positive rate of 6% when applied with KBRA-
BCC, 8% using [1] and 10% using [2] respectively. With this analysis, the false 
positive rate for KBRA-BCC method was found to be comparatively lesser than the 
state-of-the-art methods. The improvement was owing to the application of Kalman–
Bucy Image Denoising-based Preprocessing algorithm. By applying this algorithm, 
the noisy pixels were removed or eliminated from the input disaster images via 
Kalman–Bucy function. Next, by utilizing actual states and measured processed 
outputs with which Filtering estimate and Filtering estimate error were obtained 
therefore producing noise-reduced processed disaster images that in turn reduced the 
false positive rate using KBRA-BCC method by 24% compared to [1] and 42% 
compared to [2] respectively.  
 
5 Conclusion  

 In this paper, we proposed a novel Kalman Bucy Region Adjacent and Bivariate 
Correlated Classification (KBRA-BCC) method for building detection from satellite 
images. We developed the KBRA-BCC method by integrating Kalman Bucy Region 
Adjacent using similarity between the intensity dispersal of two regions and Bivariate 
Correlated Classification using canonical Correlated classification which first 
segments the processed satellite images and classifies image features more accurately. 
The reason behind the improvement was that first to remove the noise by preserving 
the geometrical features, preprocessing was performed by means of Kalman–Bucy 
Disaster Image Filtering-based model. Second with the processed images as input, 
Region Adjacency Gray Level Image Segmentation algorithm was applied that 
segmented the images into dark edges and light-colored edges in a significant manner 
using average intensity and root mean square deviation. Third, with the segmented 
images as input, Bivariate canonical Correlated classification algorithm was applied 
to differentiate between disastrous and non-disastrous images for disaster 
management. We used the Disaster Images Dataset for disaster management. The 
experimental result shows that the proposed disaster detection method achieved 
greater improvement in terms of both segmentation time and false positive rate with 
improved accuracy. 
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