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Abstract 
The current scenario of Software Development evolves from single programming language 
development framework (vis Java, C#, Php, Python, Java Scripts etc) to multi language micro 
services based architecture. For Software Products there are plethora of low level and high 
level programming languages. The challenge is to create a single software defect predictor 
model which is common to language as well as project. The Idea of conceptualizing this work 
emphasized that, Similar to natural language, every programming language also have 
linguistics characteristics like syntax, semantics, pragmatics and grammars. The technique of 
Natural Language Processing (NLP) is one of the oldest areas of machine learning research 
and is employed in significant fields such as machine translation, speech recognition, sentiment 
analysis, and various other text processing (Kumar & Singh, 2020). In this paper we have 
leveraged the concept of NLP in (Deep Learning Network) DLN to convert the Source code 
into sequence of lexer and parser classes based on the defined grammar, fixed length feature 
vectors classes are passed into embedded layer of Advance Long short-term memory (A-
LSTM) Network. This Network can learn the linguistic pattern in source code, then it is used 
to predict the defective modules in the projects regardless of programming language. The 
results outperformed as compare to hand crafted software matrices based DLN in identification 
of buggy modules in software projects. 
Key Words: Software Defect, Natural Language, LSTM, Software Metrics, Software Quality 
1. Introduction 
In practice Software Quality Assurance and Software Testing is considered as the last leg of 
Software Development Life cycle. This involved Software Quality Team to use lot of resources 
and time consuming processes, this may lead to missing targeted product launch deadline this 
results in lots of re-work by software developers. Sometime it becomes very cumbersome task 
and due to tight deadline of product launch, it may lead to launch of inferior version of software 
and to face product failure. Early detection of fault in software during combined practices of 
continuous integration and continuous delivery (CI/CD) pipeline helps the team to minimizes 
the cost of testing and improves the effectiveness of software development process.  
This approach is articulated on novel Deep learning LSTM-Bidirectional-Attention (A-LSTM) 
based model. This extracted the language neutral tokens from source code using ANother Tool 
for Language Recognition (ANTLR) (ANTLR, n.d.). It uses Language specific Lexer and Parser 
Grammar to generate the tokens. These sequence of tokens are preprocessed and normalized 
by unsupervised Learning Techniques to generate  fixed length Vectors (Pornprasit & 
Tantithamthavorn, 2021).  These Vector data is input to this Deep Learning Based Advance 
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LSTM (A-LSTM) Network to train. Its efficiency of classification  is evaluated using metrics 
accuracy, precision, recall, F1-score and Area Under the Curve (AUC)  (Singh, 2019). 
2. Related Work 
In Most of Research work, Machine Learning (ML) Techniques, (H. Wang et al., 2021) are 
widely used for Software Defect Prediction. The traditional ML Techniques is based on 
Manually Extracted Feature from source codes like MOOD, CK, Halstead, McCabe Metrics 
(Kumar & Singh, 2021). Which requires lots of historical data of previous version of the same 
product, to predict the defect in future product.  However, in practice newly created software 
product lacks historical data and has either little or no training data of itself to construct a 
model; directly using static code metrics based bug data sets from other projects to construct 
models could not achieve satisfactory prediction performance in most cases, since the metrics 
(features) distribution between different projects is not the same (H. Li et al., 2019). 
The traditional software metrics, which are hand crafted and designed manually based on the 
analysis of code complexity or process, are not able to extract such complicated information 
from source code. Some researchers resort to extract semantic features from source code like 
abstract syntax tree (AST) which have smaller feature distribution difference among different 
programming language and projects (Fan et al., 2018). This type of approach proves to be more 
efficient then transfer learning methods for cross project defect prediction approach.  
For example, (S. Wang et al., 2016) deployed DBN (deep belief network) (Hinton et al., 2006) 
to learn semantic features for SDP, based on token sequences extracted from source code. (J. 
Li et al., 2017) further applied CNN (convolution neural network) (Goodfellow et al., 2016) to 
learn semantic features from token sequences and build end-to-end WPDP models.  
3. Methodology 
In analyzing the defects of software prediction, the application of NLP technique is used to 
play an important role.  One of the applications of natural language processing that has been 
used here is the automatic summarizing of text using software.  
Similar to natural or formal language, the programming language also have linguistics 
characteristics like syntax, semantics, pragmatics and grammars. Like in the formal language 
like English, the Language Recognition Tools like ANTLR can be applied in source code to 
convert it into sequence of language neutral tokens. Like below:  
 
 
 
 
 
 
 
The characteristics of the process are identified to examine the functions of the software 
prediction. It influences the operations on the practices of social strategy in the field of human 
resources context.  
3.1 Lexer and Parser Classes 
Lexer and parser classes are fundamental components of a compiler or parser generator like 
ANTLR. They are responsible for analyzing the input source code and breaking it down into a 

packageDeclaration, annotation, importDeclaration, typeDeclaration, classOrInterfaceModifier, 
classDeclaration, enumDeclaration, interfaceDeclaration, annotationTypeDeclaration, modifier, 
classOrInterfaceModifier, variableModifier, typeParameters, typeType, typeList, classBody, typeBound, 
enumConstants, enumBodyDeclarations, interfaceBody, memberDeclaration, methodDeclaration, 
methodBody, typeTypeOrVoid, genericMethodDeclaration, genericConstructorDeclaration, 
constructorDeclaration, fieldDeclaration, constDeclaration etc 
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more structured representation that can be easily processed by the compiler or other language-
based applications. 
3.1.1 Lexer (also known as a tokenizer or scanner) 
The lexer is the first phase of the compilation process. Its primary function is to read the input 
source code character by character and convert it into a stream of tokens. Tokens are small 
units of the source code that represent the language's basic elements, such as keywords, 
identifiers, literals, operators, and punctuation. 
For example, in a programming language, the lexer would recognize and output tokens like 
"if," "else," "while" for keywords, variable names as identifiers, numeric literals, arithmetic 
operators, etc. 
The lexer's output is passed to the parser for further processing. It serves as a crucial first step 
in the compilation process by simplifying the source code into a sequence of tokens that can 
be more easily handled by the subsequent phases. 
3.1.2 Parser 
The parser takes the token stream generated by the lexer and constructs a hierarchical 
representation of the source code's syntactic structure. This hierarchical representation is 
typically represented as an Abstract Syntax Tree (AST) or a Parse Tree. 
The parser analyzes the grammar rules of the language to recognize the valid combinations of 
tokens that make up expressions, statements, and other language constructs. It ensures that the 
input source code conforms to the language's syntax rules. 
For instance, if the source code contains the expression "a = b + c", the parser will construct a 
tree representation showing that this is an assignment statement where the variable "a" is 
assigned the sum of "b" and "c". 
The AST or parse tree generated by the parser becomes the foundation for subsequent 
compilation phases like semantic analysis, optimization, and code generation. 
Lexer and parser classes are automatically generated by parser generators like ANTLR based 
on the grammar specifications provided by the developer. These classes implement the logic 
for recognizing tokens (in the case of the lexer) and building the parse tree or AST (in the case 
of the parser). By using these generated classes, developers can save significant effort and 
avoid writing the low-level parsing code from scratch. 
3.2 Tool for Language Recognition 
ANTLR can be utilized to build a source code-based software defect predictor by creating a 
custom parser that understands the structure of the source code. This parser can extract relevant 
features from the source code, which are then used as input to a machine learning model for 
predicting software defects. 
Here's a general outline of how ANTLR has been used for this purpose: 
3.2.1. Define the Grammar:  
This is a onetime step of defining a grammar for the programming language that has to be 
analyzed. ANTLR allows to create a grammar specification that describes the syntax and 
structure of the source code in that language. 
3.2. 2. Generate the Parser: 
Used ANTLR to generate lexer and parser classes based on the defined grammar. These classes 
will be able to read and process the source code files and create an Abstract Syntax Tree (AST) 
representation. 
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3.2. 3. Traverse the AST: 
Written custom code to traverse the AST generated by ANTLR. During the traversal, relevant 
features were extracted from the source code that can be used for defect prediction. These 
features might include metrics related to code complexity, size, nesting levels, and usage of 
certain programming constructs etc. 
3.2.4 Data Collection: 
Used the custom traversal code to extract features from a set of source code files that are labeled 
with defect information (defective or defect-free). Stored these features along with the 
corresponding labels in dataset files for building the training and testing datasets. 
ANTLR simplifies the process of creating the custom parser for the programming language, 
allowing to focus on the specific aspects of defect prediction. By combining ANTLR's parsing 
capabilities with machine learning, effective software defect predictor has been created that 
can aid in identifying potential issues in the source code early in CI/CD pipeline. 
3.3 Dataset Collection and Pre-processing for a Cross-Language Software Defect 
Predictor 
The dataset used for training and evaluation in the Cross-Language Software Defect Predictor 
project was collected from various open-source repositories on platforms like GitHub, 
PROMISE-backup-master, Bitbucket, or GitLab. These repositories contain code written in 
different programming languages, including but not limited to Java, C++, Python, JavaScript, 
and C#. The dataset was curated to include projects with labeled information about defective 
and defect-free code examples. 
3.3.1 Dataset Pre-processing: 
The raw dataset obtained from the repositories underwent several pre-processing steps to 
prepare it for training and evaluation. The pre-processing steps include: 
3.3.1.1 Language Identification: 
Since the repositories contain code from multiple programming languages, an initial language 
identification step was performed to categorize each file into its respective programming 
language using language-specific heuristics or machine learning classifiers. 
3.3.1.2 Lexical Analysis 
The code files were tokenized using the language-specific lexer generated by ANTLR for each 
supported programming language. This process involved converting the source code into a 
stream of language-specific tokens, such as keywords, identifiers, literals, and operators. 
3.3.1.3 AST Generation: 
The token streams were then passed through the corresponding language-specific parser 
generated by ANTLR to construct Abstract Syntax Trees (ASTs) or parse trees representing 
the hierarchical structure of the code. 
3.3.1.4 Feature Extraction: 
From the generated ASTs, various language-independent features patterns were extracted 
automatically. These features may have included code complexity metrics (e.g., cyclomatic 
complexity), code size, control flow information, variable usage patterns, function call patterns, 
and many more. The goal was to create a uniform set of features that could be used for defect 
prediction across different programming languages. 
3.3.1.5 Labeling: 
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The code files were labeled with information about whether they contain defects or are defect-
free. The labels were obtained by analyzing issue tracking systems, bug databases, and code 
review comments associated with each code file in the repositories. 
3.3.1.6 Balance the Dataset: 
Ensured the dataset has a balanced representation of defective and defect-free instances for 
each programming language. Based on size of buggy or clean data, SMOTE and Resampling 
techniques were applied.  This step was crucial to avoid biases in the model's predictions. 
3.4 Model Architecture for software defect prediction 
The Long Short-Term Memory (LSTM) architecture is a type of recurrent neural network 
(RNN) that has proven to be effective in sequence modeling tasks, including natural language 
processing and time series analysis. The traditional RNNs can have difficulty learning and 
maintaining dependencies that span long time steps, which is a common issue in tasks involving 
sequences like natural language processing or time series analysis. LSTM was introduced to 
overcome this limitation and has become widely used in various applications. In the context of 
software defect prediction, LSTM can be applied to analyze the sequence of code tokens or 
features extracted from the source code and predict the presence of defects. 
The key idea behind LSTM is the incorporation of special memory cells, known as LSTM cells, 
which allow the network to selectively store and access information over long periods of time. 
These cells have three main components: an input gate, a forget gate, and an output gate. These 
gates regulate the flow of information inside the cell, enabling it to retain relevant information 
and discard unnecessary information over multiple time steps. 
3.4.1 LSTM Cell: 
Here's a detailed explanation of the components of an LSTM cell: 
3.4.1.1 Cell State (Ct): 
The cell state, denoted as Ct, is the memory component of the LSTM. It runs through the entire 
sequence and can pass information across time steps, allowing the network to maintain 
dependencies over long distances. It acts as a conveyor belt that carries information, updated 
through the forget gate, input gate, and output gate. 

 
Figure: Representation of Single Forward LSTM Single Cell Architecture  
3.4.1.2. Hidden State (ht): 
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The hidden state, denoted as ht, represents the output of the LSTM cell at a given time step t. 
It is a function of the cell state and the input at that time step. The hidden state captures relevant 
information that the LSTM has learned from the input sequence up to that point. 
3.4.1. 3. Input Gate (it): 
The input gate, denoted as it, determines how much of the new information should be added to 
the cell state. It takes the current input and the previous hidden state as inputs and outputs a 
value between 0 and 1 for each element of the cell state. This value controls which elements of 
the cell state should be updated. 
3.4.1.4 Forget Gate (ft): 
The forget gate, denoted as ft, decides which information should be discarded from the cell 
state. It takes the current input and the previous hidden state as inputs and outputs a value 
between 0 and 1 for each element of the cell state. This value determines how much of the 
previous cell state should be retained. 
3.4.1.5 Output Gate (ot): 
The output gate, denoted as ot, controls how much of the cell state should be exposed as the 
output of the LSTM cell. It takes the current input and the previous hidden state as inputs and 
outputs a value between 0 and 1 for each element of the cell state. This value determines which 
elements of the cell state should contribute to the hidden state output. 
3.4.2 Number of Layers: 
The number of layers in the LSTM architecture is a hyper parameter that defines how many 
LSTM cell layers are stacked on top of each other. Common choices for the number of layers 
range from 1 to 3. Deeper architectures with more layers can capture more complex patterns, 
but they also require more computational resources and may be prone to overfitting if not 
properly regularized. 
3.4.3 Hidden Units: 
The number of hidden units in an LSTM cell determines the dimensionality of the LSTM's 
internal representation. Higher numbers of hidden units can capture more intricate patterns in 
the data but can also increase the model's computational complexity. 
3.4.4 Activation Functions: 
Typically, the LSTM uses a combination of activation functions to control the information flow 
and transformations within the cell. The activation functions commonly used in LSTM are: 
3.4.4.1. Sigmoid Activation: Used for the input gate, forget gate, and output gate to control 
the flow of information. 
3.4.4.2. Hyperbolic Tangent (tanh) Activation: Used to compute the candidate value that 
could be added to the cell state. 
3.4.5 Other Relevant Hyper parameters: 
Apart from the architecture-related hyper parameters, there are several other hyper parameters 
that need to be tuned during the training process of an LSTM model for software defect 
prediction. These include: 
3.4.5.1. Learning Rate: The step size that determines how much the model weights are 
updated during backpropagation. 
3.4.5. 2. Batch Size: The number of samples used in each update step during training. 
3.4.5.3 Dropout Rate: A regularization technique to prevent overfitting by randomly setting a 
fraction of the LSTM units' outputs to zero during training. 
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3.4.5.4. Optimization Algorithm: The choice of optimization algorithm used to update the 
model weights, such as Adam, RMSprop, or stochastic gradient descent (SGD). 
3.4.5.5. Sequence Length: The length of input sequences provided to the LSTM model during 
training and prediction. 
3.4.6. Advance LSTM Layers 
3.4.6.1 Bidirectional LSTM Layer: 
Bidirectional LSTMs process the input sequence both forward and backward, allowing the 
model to capture dependencies in both directions 

 
Figure: Representation of Bi-LSTM 
 
 
3.4.6.2 Attention Layer: 
The attention layer applies the Attention mechanism to the output sequences of the LSTM 
layer. Attention mechanisms allow the model to focus on different parts of the input sequence 
during the decision-making process. The Attention layer helps the model assign different 
weights to different time steps (words) in the input sequence based on their importance for the 
task. 
3.4.6.3 Dense Output Layer: 
The output layer is a Dense layer with one unit and a sigmoid activation function. This layer is 
responsible for making the final binary classification prediction (e.g., defect presence or 
absence). The sigmoid activation function squashes the output between 0 and 1, making it 
suitable for binary classification problems. 
This model architecture is suitable for text classification tasks where the input is a sequence of 
words, and the goal is to predict a binary outcome (e.g., defect prediction). The use of 
Bidirectional LSTM with Attention allows the model to effectively learn from the sequence 
data and capture important patterns for the classification task. 
3.5 Rationale of Choosing LSTM 
Elaboration and Rationale for Choosing Attention-Based Bidirectional LSTM over other 
Prediction Models in Software Defect Prediction 
3.5.1. Handling Long-Term Dependencies: 
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The primary reason for choosing an LSTM-based model, particularly the Bidirectional LSTM, 
is its ability to handle long-term dependencies in sequential data. In software defect prediction, 
the presence of defects often depends on patterns that span multiple code lines or functions. 
Bidirectional LSTM enables the model to capture context from both past and future time steps, 
making it suitable for understanding complex relationships in source code. 
3.5.2. Attention Mechanism: 
The addition of an attention mechanism to the Bidirectional LSTM further enhances the 
model's performance. Attention mechanisms allow the model to focus on more relevant parts 
of the input sequence, giving higher importance to specific time steps and effectively ignoring 
noise or less important elements. This adaptability makes the model more robust to variations 
in code structure and improves its ability to detect defect-related patterns. 
3.5.3 Language Independence:  
Software defect prediction often deals with code written in various programming languages. 
The attention-based Bidirectional LSTM, with its token-level processing, can be language-
independent. By feeding the model with language-agnostic features extracted from code 
tokens, it can be applied to projects written in multiple programming languages without 
significant modification. 
3.5.4 Bidirectional Processing: 
In many defect prediction scenarios, the context of a code token can depend on both preceding 
and succeeding tokens. Bidirectional LSTM can capture dependencies in both directions, 
allowing the model to leverage information from the past and future in its decision-making 
process. This bidirectional processing is advantageous for detecting defect patterns that rely on 
context from both directions. 
3.5. 5. Sequence-to-Sequence Prediction: 
Attention-based Bidirectional LSTM can perform sequence-to-sequence prediction. In the 
context of software defect prediction, this means the model can take a variable-length sequence 
of code tokens as input and generate a corresponding sequence of predictions, indicating the 
presence or absence of defects at each code token. This fine-grained prediction capability 
allows the model to identify specific locations of potential defects in the source code. 
3.5. 6. Generalization: 
The attention-based Bidirectional LSTM model has the potential to generalize well to unseen 
projects and codebases. The attention mechanism enables the model to focus on relevant 
features and patterns, making it adaptable to new projects with varying code structures and 
styles. 
3.5. 7. Previous Success in NLP Tasks: 
Attention-based LSTMs have demonstrated remarkable success in natural language processing 
(NLP) tasks, such as machine translation and sentiment analysis. Given the similarity between 
code tokens and natural language words, the success of attention-based LSTMs in NLP tasks 
provides a strong rationale for their application in software defect prediction. 
3.5. 8. Better Feature Extraction: 
The attention mechanism helps the model to selectively attend to important features during the 
prediction process. This capability enhances the model's ability to extract salient information 
from the input sequences and focus on the most relevant parts of the code to make accurate 
predictions. 
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In summary, the rationale for choosing an attention-based Bidirectional LSTM for software 
defect prediction lies in its capability to handle long-term dependencies, language 
independence, bidirectional processing, sequence-to-sequence prediction, generalization 
ability, and the success of attention-based models in NLP tasks. This model offers a powerful 
approach for accurately detecting defects in source code, allowing for improved software 
quality and maintenance in diverse programming projects. 
4. Experimental Setup 
This approach is divided into various steps like Data Pre-processing, address class imbalance 
issues, LSTM model building, training, testing and validating the model. and finally analysis 
of results. 
4.1 Data Pre Processing 
4.1.1 Merge the Bug Data Set with Source Code Tokens 
Merged the File wise source code tokens and Corresponding Bug Flag from Bug Data Set to 
Create Final Data Set for Training and Test Purpose. The labeled data is gathered from well-
known GitHub Bug Data Set. which consist of Multiple language and versions, Package wise 
and file Wise Bug Data with Static Code Metrics.  Then gathered the Source Code of 
corresponding Versions from same GitHub like for example Promise Backups (PROMISE-
Backup/Bug-Data at Master · Feiwww/PROMISE-Backup, n.d.). The Bug Data and Source 
code of following Products and versions were analyzed. 

 ant: 1.3, 1.4, 1.5, 1.6.0, 1.7.0 

 camel: 1.0, 1.2, 1.4, 1.6 

 ivy: 1.0, 1.1, 1.2 

 jedit: 3.2, 4.0, 4.1, 4.2, 4.3 

 log4j: 1.0, 1.1, 1.2 

 lucene: 2.0, 2.2, 2.4 

 poi: 1.5, 2.0, 2.5, 3.0 

 synapse: 1.0, 1.1, 1.2 

 velocity: 1.4, 1.5, 1.6 

 xalan: 2.4, 2.5, 2.6, 2.7 

 xerces: 1.1, 1.2, 1.3, 1.4.4 

4.1.2 Final Structure of the pre-processed data: 
The two data sets (source code token datasets created as mention in section 3 and corresponding 
labeled datasets) are joined using custom code and created the final data set, which columns 
are Project Name and version like Jakarta15, Module Name of the Source Code file with 
complete package identifier, Source code converted into language independent tokens and the 
bug status, here 0 means no bug and 1 means source code have bug as shown in table 4. 
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Project Name 
Language Independent Source code 
Tokens 

bu
g 

jakarta1
5 

org.apache.tools.ant.taskdefs.Exec
uteOn 

... 

....qualifiedName,block,typeDeclarati
on, 0 

…. …. …. … 
 
Table 1: Tokens and Source Code Mapping merged with Bug Status for Training the 
model. 
4.1.3. Removal of Class Imbalance: 
In the next phase the system removes unwanted tokens and separator symbols from Tokens to 
neutralize the tokens. The ratio of bug to non-bug showed the class imbalance problems. The 
class imbalance problems may lead to biased output. So to remove class imbalance issue 
Random Sampling Techniques or SMOTE is used. 
 
 
4.1.4. Convert Source Code into Language Independent Tokens vector 
System represented the tokens as sequence of words of fixed vocabulary size of 2000 and split 
it. Then it converted the text to sequence using Tokenizer. Finally, these tokens are converted 
into two dimensional Vectors. For Example, it looks like below. 
array([[   0,    0,    0, ...,    1,    1,  279], 
       [   0,    0,    0, ...,    1,    1,   42], 
       [   0,    0,    0, ...,    0,    2,   16], 
       ..., 
       [   0,    0,    0, ...,  278,   12,   91], 
       [   0,    0,    0, ...,    1,    1, 1272], 
       [   0,    0,    0, ...,  278,   12,   92]]) 
 
4.1.5 Convert feature vector into Dense Feature Vector 
The most basic pre-processing in LSTM model is to convert words into an embedding Vectors 
using Word2Vec or GloVe. Since here Word2Vec or GloVe model is not used, this model has 
added its own embedding’s layers by defining input dimension that means the tokenizer will 
consider only the top most frequent unique words in the dataset, output dimension means the 
dimension of the dense word embeddings and sequence length to which all input sequences 
will be padded or truncated. It ensures that all sequences have the same length for feeding into 
the LSTM model. 
Figure-1 Represents the bird eye view of data flow in A-LSTM Framework.  
As discussed in Section 3, the detail approach is depicted in Figure 2.  
This approach used ANTLR Lexer and Parser Grammar Files to extract tokens from Source 
code.  
The Source code is converted into token using ANTLR Tool. 
In the real experimental setup, the above process is applied to all the source code files taken 
from Bug Repository. 
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The above feature vector is put in A-LSTM layer of model for training and testing the model. 
 
 

 
 
 
 
Figure 2: A-LSTM based approach. 
4.2. hardware and software environment used for training and testing the LSTM model. 
The model depicted in Figure -2 is created using the open source library Tensor Flow, Keras 
and using Python programming language.  The brief final structure of DL model with various 
layer details are described in Table-4 below: 
Model Name Attention-Bi LSTM Sequential 

Sl No. Layer (type)       

1. Embedding 256000 

2. spatial dropout 1D 0 

3. Attention 328 

4. Bidirectional LSTM 509600 

5. Dense 394 

Total params 766,322  

Trainable params 766,322  

Non-trainable params 0  

 
Table 4: A-LSTM Model Summary. 
The Final Dataset is Split into Training and Test Set in the ratio of 85:15, feed into A-LSTM 
Network. The Network is trained initially with training data and epoch of 3 and batch size of 
32. With transfer learning principles model is re-trained with new data set from other 
languages. Transfer learning involves taking a pre-trained model on one task and fine-tuning it 

The word embedding generated from source code is given a input into 
the Model.  

Output is either  
 0: Bug,  or  1-no Bug 
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on another related task. By doing this, model can leverage the knowledge and representations 
learned by the pre-trained model, which helps in improving the performance on the new task. 
Initially trained the base model with a small amount of data to reduce training time. This step 
is often referred to as pre-training. Then saved the pre-trained model and continued training it 
with new data to further refine its representations for a specific task. This is known as fine-
tuning or transfer learning. 
By repeating this process iteratively improve the performance of the model as it was trained 
with more and more data. Keep in mind that the performance gains may not be as significant 
with each iteration, but it can still be an effective way to make use of limited resources (such 
as not having a CUDA-based machine) and achieve better results. 
The Complete data flow is described in below figure-2.  

 
Figure 2: Complete Framework of A-LSTM based approach. 
5. The Result of Experiment. 
The Model is compiled with specifying the loss function, optimizer, and evaluation metrics to 
be used during training. The parameters are as follows: 
   1. The loss function used for binary classification problems, which is binary cross-entropy. 
   2. Optimizer: The optimization algorithm used during training, which is the Adam optimizer. 
   3. Evaluation Metrics: A list of metrics to evaluate the model's performance during 
evaluation. In this case, it included accuracy, F1 Score and the Area Under the ROC Curve 
(AUC) as evaluation metrics. 
The results of three type of LSTM Model is given in Table-5 below. 
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Model Type Loss Score F1 Score Area Under the 
Curve (AUC) 

Single Forward 
LSTM 

4.02% .60 .72 

Bi-LSTM 3.90 .81 .76 

A-LSTM .028 .90 .99 

 
Here we can see that our accuracy and losses of the model in the data has changed drastically 
where we are receiving the accuracy around 76% for 12 epochs using a Bi-LSTM model. After 
using the attention in the model we increased the accuracy to 99% and also the loss has 
decreased to 0.028. 
 
Table 5: Evaluation Results of A-LSTM Model. 
6. Discussion 
Building a cross-language defect predictor can be more challenging than language-specific 
ones due to differences in language syntax, semantics, and programming paradigms. Some 
challenges are: 
6.1 Feature extraction:  
Designing language-independent features that capture defects across various languages 
effectively. 
6.2 Imbalanced datasets:  
Ensuring a balanced representation of defects and defect-free examples for each language in 
the cross-language dataset. 
6.3 Language-specific quirks:  
Some languages may have specific constructs or patterns that are unique to them, making it 
harder to capture defects universally. 
6.3 Language coverage:  
Supporting a wide variety of programming languages might require significant effort to 
implement their lexers and parsers. 
Despite these challenges, building a cross-language defect predictor was highly valuable, as it 
allowed to apply defect prediction techniques consistently across projects written in different 
programming languages, promoting code quality and maintenance across diverse codebases. 
5. Conclusion and Future Work 
In this paper, we propose a novel language independent approach via Embedding and A-
LSTM-based neural network. Final empirical results on real open source projects demonstrate 
the effectiveness of our proposed approach. In the future, we want to extend our research in 
several ways. First we want to investigate the generalization of our empirical studies by 
considering datasets from more open source projects and commercial projects. Second we want 
to consider more reasonable input for our approach, combining program analysis techniques. 
Then we want to consider or propose more Advance DLN models and embedding methods to 
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improve the performance of our approach. Finally, we want to apply our approach to the real 
software quality assurance process of enterprises. 
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