

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5055

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.777638

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Yashwant Kumar a, Dr. Vinay Singh b
aDepartment of computing and Information Technology, Usha Martin University, Ranchi,

Jharkhand
bAssociate Professor, Department of computing and Information T echnology, Usha Martin

University, Ranchi, Jharkhand
Abstract
The current scenario of Software Development evolves from single programming language
development framework (vis Java, C#, Php, Python, Java Scripts etc) to multi language micro
services based architecture. For Software Products there are plethora of low level and high
level programming languages. The challenge is to create a single software defect predictor
model which is common to language as well as project. The Idea of conceptualizing this work
emphasized that, Similar to natural language, every programming language also have
linguistics characteristics like syntax, semantics, pragmatics and grammars. The technique of
Natural Language Processing (NLP) is one of the oldest areas of machine learning research
and is employed in significant fields such as machine translation, speech recognition, sentiment
analysis, and various other text processing (Kumar & Singh, 2020). In this paper we have
leveraged the concept of NLP in (Deep Learning Network) DLN to convert the Source code
into sequence of lexer and parser classes based on the defined grammar, fixed length feature
vectors classes are passed into embedded layer of Advance Long short-term memory (A-
LSTM) Network. This Network can learn the linguistic pattern in source code, then it is used
to predict the defective modules in the projects regardless of programming language. The
results outperformed as compare to hand crafted software matrices based DLN in identification
of buggy modules in software projects.
Key Words: Software Defect, Natural Language, LSTM, Software Metrics, Software Quality
1. Introduction
In practice Software Quality Assurance and Software Testing is considered as the last leg of
Software Development Life cycle. This involved Software Quality Team to use lot of resources
and time consuming processes, this may lead to missing targeted product launch deadline this
results in lots of re-work by software developers. Sometime it becomes very cumbersome task
and due to tight deadline of product launch, it may lead to launch of inferior version of software
and to face product failure. Early detection of fault in software during combined practices of
continuous integration and continuous delivery (CI/CD) pipeline helps the team to minimizes
the cost of testing and improves the effectiveness of software development process.
This approach is articulated on novel Deep learning LSTM-Bidirectional-Attention (A-LSTM)
based model. This extracted the language neutral tokens from source code using ANother Tool
for Language Recognition (ANTLR) (ANTLR, n.d.). It uses Language specific Lexer and Parser
Grammar to generate the tokens. These sequence of tokens are preprocessed and normalized
by unsupervised Learning Techniques to generate fixed length Vectors (Pornprasit &
Tantithamthavorn, 2021). These Vector data is input to this Deep Learning Based Advance

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5056

LSTM (A-LSTM) Network to train. Its efficiency of classification is evaluated using metrics
accuracy, precision, recall, F1-score and Area Under the Curve (AUC) (Singh, 2019).
2. Related Work
In Most of Research work, Machine Learning (ML) Techniques, (H. Wang et al., 2021) are
widely used for Software Defect Prediction. The traditional ML Techniques is based on
Manually Extracted Feature from source codes like MOOD, CK, Halstead, McCabe Metrics
(Kumar & Singh, 2021). Which requires lots of historical data of previous version of the same
product, to predict the defect in future product. However, in practice newly created software
product lacks historical data and has either little or no training data of itself to construct a
model; directly using static code metrics based bug data sets from other projects to construct
models could not achieve satisfactory prediction performance in most cases, since the metrics
(features) distribution between different projects is not the same (H. Li et al., 2019).
The traditional software metrics, which are hand crafted and designed manually based on the
analysis of code complexity or process, are not able to extract such complicated information
from source code. Some researchers resort to extract semantic features from source code like
abstract syntax tree (AST) which have smaller feature distribution difference among different
programming language and projects (Fan et al., 2018). This type of approach proves to be more
efficient then transfer learning methods for cross project defect prediction approach.
For example, (S. Wang et al., 2016) deployed DBN (deep belief network) (Hinton et al., 2006)
to learn semantic features for SDP, based on token sequences extracted from source code. (J.
Li et al., 2017) further applied CNN (convolution neural network) (Goodfellow et al., 2016) to
learn semantic features from token sequences and build end-to-end WPDP models.
3. Methodology
In analyzing the defects of software prediction, the application of NLP technique is used to
play an important role. One of the applications of natural language processing that has been
used here is the automatic summarizing of text using software.
Similar to natural or formal language, the programming language also have linguistics
characteristics like syntax, semantics, pragmatics and grammars. Like in the formal language
like English, the Language Recognition Tools like ANTLR can be applied in source code to
convert it into sequence of language neutral tokens. Like below:

The characteristics of the process are identified to examine the functions of the software
prediction. It influences the operations on the practices of social strategy in the field of human
resources context.
3.1 Lexer and Parser Classes
Lexer and parser classes are fundamental components of a compiler or parser generator like
ANTLR. They are responsible for analyzing the input source code and breaking it down into a

packageDeclaration, annotation, importDeclaration, typeDeclaration, classOrInterfaceModifier,
classDeclaration, enumDeclaration, interfaceDeclaration, annotationTypeDeclaration, modifier,
classOrInterfaceModifier, variableModifier, typeParameters, typeType, typeList, classBody, typeBound,
enumConstants, enumBodyDeclarations, interfaceBody, memberDeclaration, methodDeclaration,
methodBody, typeTypeOrVoid, genericMethodDeclaration, genericConstructorDeclaration,
constructorDeclaration, fieldDeclaration, constDeclaration etc

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5057

more structured representation that can be easily processed by the compiler or other language-
based applications.
3.1.1 Lexer (also known as a tokenizer or scanner)
The lexer is the first phase of the compilation process. Its primary function is to read the input
source code character by character and convert it into a stream of tokens. Tokens are small
units of the source code that represent the language's basic elements, such as keywords,
identifiers, literals, operators, and punctuation.
For example, in a programming language, the lexer would recognize and output tokens like
"if," "else," "while" for keywords, variable names as identifiers, numeric literals, arithmetic
operators, etc.
The lexer's output is passed to the parser for further processing. It serves as a crucial first step
in the compilation process by simplifying the source code into a sequence of tokens that can
be more easily handled by the subsequent phases.
3.1.2 Parser
The parser takes the token stream generated by the lexer and constructs a hierarchical
representation of the source code's syntactic structure. This hierarchical representation is
typically represented as an Abstract Syntax Tree (AST) or a Parse Tree.
The parser analyzes the grammar rules of the language to recognize the valid combinations of
tokens that make up expressions, statements, and other language constructs. It ensures that the
input source code conforms to the language's syntax rules.
For instance, if the source code contains the expression "a = b + c", the parser will construct a
tree representation showing that this is an assignment statement where the variable "a" is
assigned the sum of "b" and "c".
The AST or parse tree generated by the parser becomes the foundation for subsequent
compilation phases like semantic analysis, optimization, and code generation.
Lexer and parser classes are automatically generated by parser generators like ANTLR based
on the grammar specifications provided by the developer. These classes implement the logic
for recognizing tokens (in the case of the lexer) and building the parse tree or AST (in the case
of the parser). By using these generated classes, developers can save significant effort and
avoid writing the low-level parsing code from scratch.
3.2 Tool for Language Recognition
ANTLR can be utilized to build a source code-based software defect predictor by creating a
custom parser that understands the structure of the source code. This parser can extract relevant
features from the source code, which are then used as input to a machine learning model for
predicting software defects.
Here's a general outline of how ANTLR has been used for this purpose:
3.2.1. Define the Grammar:
This is a onetime step of defining a grammar for the programming language that has to be
analyzed. ANTLR allows to create a grammar specification that describes the syntax and
structure of the source code in that language.
3.2. 2. Generate the Parser:
Used ANTLR to generate lexer and parser classes based on the defined grammar. These classes
will be able to read and process the source code files and create an Abstract Syntax Tree (AST)
representation.

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5058

3.2. 3. Traverse the AST:
Written custom code to traverse the AST generated by ANTLR. During the traversal, relevant
features were extracted from the source code that can be used for defect prediction. These
features might include metrics related to code complexity, size, nesting levels, and usage of
certain programming constructs etc.
3.2.4 Data Collection:
Used the custom traversal code to extract features from a set of source code files that are labeled
with defect information (defective or defect-free). Stored these features along with the
corresponding labels in dataset files for building the training and testing datasets.
ANTLR simplifies the process of creating the custom parser for the programming language,
allowing to focus on the specific aspects of defect prediction. By combining ANTLR's parsing
capabilities with machine learning, effective software defect predictor has been created that
can aid in identifying potential issues in the source code early in CI/CD pipeline.
3.3 Dataset Collection and Pre-processing for a Cross-Language Software Defect
Predictor
The dataset used for training and evaluation in the Cross-Language Software Defect Predictor
project was collected from various open-source repositories on platforms like GitHub,
PROMISE-backup-master, Bitbucket, or GitLab. These repositories contain code written in
different programming languages, including but not limited to Java, C++, Python, JavaScript,
and C#. The dataset was curated to include projects with labeled information about defective
and defect-free code examples.
3.3.1 Dataset Pre-processing:
The raw dataset obtained from the repositories underwent several pre-processing steps to
prepare it for training and evaluation. The pre-processing steps include:
3.3.1.1 Language Identification:
Since the repositories contain code from multiple programming languages, an initial language
identification step was performed to categorize each file into its respective programming
language using language-specific heuristics or machine learning classifiers.
3.3.1.2 Lexical Analysis
The code files were tokenized using the language-specific lexer generated by ANTLR for each
supported programming language. This process involved converting the source code into a
stream of language-specific tokens, such as keywords, identifiers, literals, and operators.
3.3.1.3 AST Generation:
The token streams were then passed through the corresponding language-specific parser
generated by ANTLR to construct Abstract Syntax Trees (ASTs) or parse trees representing
the hierarchical structure of the code.
3.3.1.4 Feature Extraction:
From the generated ASTs, various language-independent features patterns were extracted
automatically. These features may have included code complexity metrics (e.g., cyclomatic
complexity), code size, control flow information, variable usage patterns, function call patterns,
and many more. The goal was to create a uniform set of features that could be used for defect
prediction across different programming languages.
3.3.1.5 Labeling:

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5059

The code files were labeled with information about whether they contain defects or are defect-
free. The labels were obtained by analyzing issue tracking systems, bug databases, and code
review comments associated with each code file in the repositories.
3.3.1.6 Balance the Dataset:
Ensured the dataset has a balanced representation of defective and defect-free instances for
each programming language. Based on size of buggy or clean data, SMOTE and Resampling
techniques were applied. This step was crucial to avoid biases in the model's predictions.
3.4 Model Architecture for software defect prediction
The Long Short-Term Memory (LSTM) architecture is a type of recurrent neural network
(RNN) that has proven to be effective in sequence modeling tasks, including natural language
processing and time series analysis. The traditional RNNs can have difficulty learning and
maintaining dependencies that span long time steps, which is a common issue in tasks involving
sequences like natural language processing or time series analysis. LSTM was introduced to
overcome this limitation and has become widely used in various applications. In the context of
software defect prediction, LSTM can be applied to analyze the sequence of code tokens or
features extracted from the source code and predict the presence of defects.
The key idea behind LSTM is the incorporation of special memory cells, known as LSTM cells,
which allow the network to selectively store and access information over long periods of time.
These cells have three main components: an input gate, a forget gate, and an output gate. These
gates regulate the flow of information inside the cell, enabling it to retain relevant information
and discard unnecessary information over multiple time steps.
3.4.1 LSTM Cell:
Here's a detailed explanation of the components of an LSTM cell:
3.4.1.1 Cell State (Ct):
The cell state, denoted as Ct, is the memory component of the LSTM. It runs through the entire
sequence and can pass information across time steps, allowing the network to maintain
dependencies over long distances. It acts as a conveyor belt that carries information, updated
through the forget gate, input gate, and output gate.

Figure: Representation of Single Forward LSTM Single Cell Architecture
3.4.1.2. Hidden State (ht):

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5060

The hidden state, denoted as ht, represents the output of the LSTM cell at a given time step t.
It is a function of the cell state and the input at that time step. The hidden state captures relevant
information that the LSTM has learned from the input sequence up to that point.
3.4.1. 3. Input Gate (it):
The input gate, denoted as it, determines how much of the new information should be added to
the cell state. It takes the current input and the previous hidden state as inputs and outputs a
value between 0 and 1 for each element of the cell state. This value controls which elements of
the cell state should be updated.
3.4.1.4 Forget Gate (ft):
The forget gate, denoted as ft, decides which information should be discarded from the cell
state. It takes the current input and the previous hidden state as inputs and outputs a value
between 0 and 1 for each element of the cell state. This value determines how much of the
previous cell state should be retained.
3.4.1.5 Output Gate (ot):
The output gate, denoted as ot, controls how much of the cell state should be exposed as the
output of the LSTM cell. It takes the current input and the previous hidden state as inputs and
outputs a value between 0 and 1 for each element of the cell state. This value determines which
elements of the cell state should contribute to the hidden state output.
3.4.2 Number of Layers:
The number of layers in the LSTM architecture is a hyper parameter that defines how many
LSTM cell layers are stacked on top of each other. Common choices for the number of layers
range from 1 to 3. Deeper architectures with more layers can capture more complex patterns,
but they also require more computational resources and may be prone to overfitting if not
properly regularized.
3.4.3 Hidden Units:
The number of hidden units in an LSTM cell determines the dimensionality of the LSTM's
internal representation. Higher numbers of hidden units can capture more intricate patterns in
the data but can also increase the model's computational complexity.
3.4.4 Activation Functions:
Typically, the LSTM uses a combination of activation functions to control the information flow
and transformations within the cell. The activation functions commonly used in LSTM are:
3.4.4.1. Sigmoid Activation: Used for the input gate, forget gate, and output gate to control
the flow of information.
3.4.4.2. Hyperbolic Tangent (tanh) Activation: Used to compute the candidate value that
could be added to the cell state.
3.4.5 Other Relevant Hyper parameters:
Apart from the architecture-related hyper parameters, there are several other hyper parameters
that need to be tuned during the training process of an LSTM model for software defect
prediction. These include:
3.4.5.1. Learning Rate: The step size that determines how much the model weights are
updated during backpropagation.
3.4.5. 2. Batch Size: The number of samples used in each update step during training.
3.4.5.3 Dropout Rate: A regularization technique to prevent overfitting by randomly setting a
fraction of the LSTM units' outputs to zero during training.

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5061

3.4.5.4. Optimization Algorithm: The choice of optimization algorithm used to update the
model weights, such as Adam, RMSprop, or stochastic gradient descent (SGD).
3.4.5.5. Sequence Length: The length of input sequences provided to the LSTM model during
training and prediction.
3.4.6. Advance LSTM Layers
3.4.6.1 Bidirectional LSTM Layer:
Bidirectional LSTMs process the input sequence both forward and backward, allowing the
model to capture dependencies in both directions

Figure: Representation of Bi-LSTM

3.4.6.2 Attention Layer:
The attention layer applies the Attention mechanism to the output sequences of the LSTM
layer. Attention mechanisms allow the model to focus on different parts of the input sequence
during the decision-making process. The Attention layer helps the model assign different
weights to different time steps (words) in the input sequence based on their importance for the
task.
3.4.6.3 Dense Output Layer:
The output layer is a Dense layer with one unit and a sigmoid activation function. This layer is
responsible for making the final binary classification prediction (e.g., defect presence or
absence). The sigmoid activation function squashes the output between 0 and 1, making it
suitable for binary classification problems.
This model architecture is suitable for text classification tasks where the input is a sequence of
words, and the goal is to predict a binary outcome (e.g., defect prediction). The use of
Bidirectional LSTM with Attention allows the model to effectively learn from the sequence
data and capture important patterns for the classification task.
3.5 Rationale of Choosing LSTM
Elaboration and Rationale for Choosing Attention-Based Bidirectional LSTM over other
Prediction Models in Software Defect Prediction
3.5.1. Handling Long-Term Dependencies:

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5062

The primary reason for choosing an LSTM-based model, particularly the Bidirectional LSTM,
is its ability to handle long-term dependencies in sequential data. In software defect prediction,
the presence of defects often depends on patterns that span multiple code lines or functions.
Bidirectional LSTM enables the model to capture context from both past and future time steps,
making it suitable for understanding complex relationships in source code.
3.5.2. Attention Mechanism:
The addition of an attention mechanism to the Bidirectional LSTM further enhances the
model's performance. Attention mechanisms allow the model to focus on more relevant parts
of the input sequence, giving higher importance to specific time steps and effectively ignoring
noise or less important elements. This adaptability makes the model more robust to variations
in code structure and improves its ability to detect defect-related patterns.
3.5.3 Language Independence:
Software defect prediction often deals with code written in various programming languages.
The attention-based Bidirectional LSTM, with its token-level processing, can be language-
independent. By feeding the model with language-agnostic features extracted from code
tokens, it can be applied to projects written in multiple programming languages without
significant modification.
3.5.4 Bidirectional Processing:
In many defect prediction scenarios, the context of a code token can depend on both preceding
and succeeding tokens. Bidirectional LSTM can capture dependencies in both directions,
allowing the model to leverage information from the past and future in its decision-making
process. This bidirectional processing is advantageous for detecting defect patterns that rely on
context from both directions.
3.5. 5. Sequence-to-Sequence Prediction:
Attention-based Bidirectional LSTM can perform sequence-to-sequence prediction. In the
context of software defect prediction, this means the model can take a variable-length sequence
of code tokens as input and generate a corresponding sequence of predictions, indicating the
presence or absence of defects at each code token. This fine-grained prediction capability
allows the model to identify specific locations of potential defects in the source code.
3.5. 6. Generalization:
The attention-based Bidirectional LSTM model has the potential to generalize well to unseen
projects and codebases. The attention mechanism enables the model to focus on relevant
features and patterns, making it adaptable to new projects with varying code structures and
styles.
3.5. 7. Previous Success in NLP Tasks:
Attention-based LSTMs have demonstrated remarkable success in natural language processing
(NLP) tasks, such as machine translation and sentiment analysis. Given the similarity between
code tokens and natural language words, the success of attention-based LSTMs in NLP tasks
provides a strong rationale for their application in software defect prediction.
3.5. 8. Better Feature Extraction:
The attention mechanism helps the model to selectively attend to important features during the
prediction process. This capability enhances the model's ability to extract salient information
from the input sequences and focus on the most relevant parts of the code to make accurate
predictions.

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5063

In summary, the rationale for choosing an attention-based Bidirectional LSTM for software
defect prediction lies in its capability to handle long-term dependencies, language
independence, bidirectional processing, sequence-to-sequence prediction, generalization
ability, and the success of attention-based models in NLP tasks. This model offers a powerful
approach for accurately detecting defects in source code, allowing for improved software
quality and maintenance in diverse programming projects.
4. Experimental Setup
This approach is divided into various steps like Data Pre-processing, address class imbalance
issues, LSTM model building, training, testing and validating the model. and finally analysis
of results.
4.1 Data Pre Processing
4.1.1 Merge the Bug Data Set with Source Code Tokens
Merged the File wise source code tokens and Corresponding Bug Flag from Bug Data Set to
Create Final Data Set for Training and Test Purpose. The labeled data is gathered from well-
known GitHub Bug Data Set. which consist of Multiple language and versions, Package wise
and file Wise Bug Data with Static Code Metrics. Then gathered the Source Code of
corresponding Versions from same GitHub like for example Promise Backups (PROMISE-
Backup/Bug-Data at Master · Feiwww/PROMISE-Backup, n.d.). The Bug Data and Source
code of following Products and versions were analyzed.

 ant: 1.3, 1.4, 1.5, 1.6.0, 1.7.0

 camel: 1.0, 1.2, 1.4, 1.6

 ivy: 1.0, 1.1, 1.2

 jedit: 3.2, 4.0, 4.1, 4.2, 4.3

 log4j: 1.0, 1.1, 1.2

 lucene: 2.0, 2.2, 2.4

 poi: 1.5, 2.0, 2.5, 3.0

 synapse: 1.0, 1.1, 1.2

 velocity: 1.4, 1.5, 1.6

 xalan: 2.4, 2.5, 2.6, 2.7

 xerces: 1.1, 1.2, 1.3, 1.4.4

4.1.2 Final Structure of the pre-processed data:
The two data sets (source code token datasets created as mention in section 3 and corresponding
labeled datasets) are joined using custom code and created the final data set, which columns
are Project Name and version like Jakarta15, Module Name of the Source Code file with
complete package identifier, Source code converted into language independent tokens and the
bug status, here 0 means no bug and 1 means source code have bug as shown in table 4.

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5064

Project Name
Language Independent Source code
Tokens

bu
g

jakarta1
5

org.apache.tools.ant.taskdefs.Exec
uteOn

...

....qualifiedName,block,typeDeclarati
on, 0

…. …. …. …

Table 1: Tokens and Source Code Mapping merged with Bug Status for Training the
model.
4.1.3. Removal of Class Imbalance:
In the next phase the system removes unwanted tokens and separator symbols from Tokens to
neutralize the tokens. The ratio of bug to non-bug showed the class imbalance problems. The
class imbalance problems may lead to biased output. So to remove class imbalance issue
Random Sampling Techniques or SMOTE is used.

4.1.4. Convert Source Code into Language Independent Tokens vector
System represented the tokens as sequence of words of fixed vocabulary size of 2000 and split
it. Then it converted the text to sequence using Tokenizer. Finally, these tokens are converted
into two dimensional Vectors. For Example, it looks like below.
array([[0, 0, 0, ..., 1, 1, 279],
 [0, 0, 0, ..., 1, 1, 42],
 [0, 0, 0, ..., 0, 2, 16],
 ...,
 [0, 0, 0, ..., 278, 12, 91],
 [0, 0, 0, ..., 1, 1, 1272],
 [0, 0, 0, ..., 278, 12, 92]])

4.1.5 Convert feature vector into Dense Feature Vector
The most basic pre-processing in LSTM model is to convert words into an embedding Vectors
using Word2Vec or GloVe. Since here Word2Vec or GloVe model is not used, this model has
added its own embedding’s layers by defining input dimension that means the tokenizer will
consider only the top most frequent unique words in the dataset, output dimension means the
dimension of the dense word embeddings and sequence length to which all input sequences
will be padded or truncated. It ensures that all sequences have the same length for feeding into
the LSTM model.
Figure-1 Represents the bird eye view of data flow in A-LSTM Framework.
As discussed in Section 3, the detail approach is depicted in Figure 2.
This approach used ANTLR Lexer and Parser Grammar Files to extract tokens from Source
code.
The Source code is converted into token using ANTLR Tool.
In the real experimental setup, the above process is applied to all the source code files taken
from Bug Repository.

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5065

The above feature vector is put in A-LSTM layer of model for training and testing the model.

Figure 2: A-LSTM based approach.
4.2. hardware and software environment used for training and testing the LSTM model.
The model depicted in Figure -2 is created using the open source library Tensor Flow, Keras
and using Python programming language. The brief final structure of DL model with various
layer details are described in Table-4 below:
Model Name Attention-Bi LSTM Sequential

Sl No. Layer (type)

1. Embedding 256000

2. spatial dropout 1D 0

3. Attention 328

4. Bidirectional LSTM 509600

5. Dense 394

Total params 766,322

Trainable params 766,322

Non-trainable params 0

Table 4: A-LSTM Model Summary.
The Final Dataset is Split into Training and Test Set in the ratio of 85:15, feed into A-LSTM
Network. The Network is trained initially with training data and epoch of 3 and batch size of
32. With transfer learning principles model is re-trained with new data set from other
languages. Transfer learning involves taking a pre-trained model on one task and fine-tuning it

The word embedding generated from source code is given a input into
the Model.

Output is either
 0: Bug, or 1-no Bug

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5066

on another related task. By doing this, model can leverage the knowledge and representations
learned by the pre-trained model, which helps in improving the performance on the new task.
Initially trained the base model with a small amount of data to reduce training time. This step
is often referred to as pre-training. Then saved the pre-trained model and continued training it
with new data to further refine its representations for a specific task. This is known as fine-
tuning or transfer learning.
By repeating this process iteratively improve the performance of the model as it was trained
with more and more data. Keep in mind that the performance gains may not be as significant
with each iteration, but it can still be an effective way to make use of limited resources (such
as not having a CUDA-based machine) and achieve better results.
The Complete data flow is described in below figure-2.

Figure 2: Complete Framework of A-LSTM based approach.
5. The Result of Experiment.
The Model is compiled with specifying the loss function, optimizer, and evaluation metrics to
be used during training. The parameters are as follows:
 1. The loss function used for binary classification problems, which is binary cross-entropy.
 2. Optimizer: The optimization algorithm used during training, which is the Adam optimizer.
 3. Evaluation Metrics: A list of metrics to evaluate the model's performance during
evaluation. In this case, it included accuracy, F1 Score and the Area Under the ROC Curve
(AUC) as evaluation metrics.
The results of three type of LSTM Model is given in Table-5 below.

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5067

Model Type Loss Score F1 Score Area Under the
Curve (AUC)

Single Forward
LSTM

4.02% .60 .72

Bi-LSTM 3.90 .81 .76

A-LSTM .028 .90 .99

Here we can see that our accuracy and losses of the model in the data has changed drastically
where we are receiving the accuracy around 76% for 12 epochs using a Bi-LSTM model. After
using the attention in the model we increased the accuracy to 99% and also the loss has
decreased to 0.028.

Table 5: Evaluation Results of A-LSTM Model.
6. Discussion
Building a cross-language defect predictor can be more challenging than language-specific
ones due to differences in language syntax, semantics, and programming paradigms. Some
challenges are:
6.1 Feature extraction:
Designing language-independent features that capture defects across various languages
effectively.
6.2 Imbalanced datasets:
Ensuring a balanced representation of defects and defect-free examples for each language in
the cross-language dataset.
6.3 Language-specific quirks:
Some languages may have specific constructs or patterns that are unique to them, making it
harder to capture defects universally.
6.3 Language coverage:
Supporting a wide variety of programming languages might require significant effort to
implement their lexers and parsers.
Despite these challenges, building a cross-language defect predictor was highly valuable, as it
allowed to apply defect prediction techniques consistently across projects written in different
programming languages, promoting code quality and maintenance across diverse codebases.
5. Conclusion and Future Work
In this paper, we propose a novel language independent approach via Embedding and A-
LSTM-based neural network. Final empirical results on real open source projects demonstrate
the effectiveness of our proposed approach. In the future, we want to extend our research in
several ways. First we want to investigate the generalization of our empirical studies by
considering datasets from more open source projects and commercial projects. Second we want
to consider more reasonable input for our approach, combining program analysis techniques.
Then we want to consider or propose more Advance DLN models and embedding methods to

CROSS LANGUAGE, ADVANCE LSTM FOR SOFTWARE DEFECT PREDICTION

Journal of Data Acquisition and Processing Vol. 38 (2) 2023 5068

improve the performance of our approach. Finally, we want to apply our approach to the real
software quality assurance process of enterprises.

6. References
1. ANTLR. (n.d.). Retrieved December 25, 2021, from https://www.antlr.org/
2. Fan, Y., Cao, X., Xu, J., Xu, S., & Yang, H. (2018). High-Frequency Keywords to Predict

Defects for Android Applications. 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), 02, 442–447.
https://doi.org/10.1109/COMPSAC.2018.10273

3. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
4. Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief

nets. Neural Computation, 18(7), 1527–1554.
https://doi.org/10.1162/neco.2006.18.7.1527

5. Kumar, Y., & Singh, D. V. (2020). Cross Project and within Project Software Defection
prediction using NLP Techniques. Turkish Journal of Computer and Mathematics
Education (TURCOMAT), 11(3), 842–849.

6. Kumar, Y., & Singh, D. V. (2021). A Practitioner Approach of Deep Learning Based
Software Defect Predictor. Annals of the Romanian Society for Cell Biology, 18764–
18785.

7. Li, H., Li, X., Chen, X., Xie, X., Mu, Y., & Feng, Z. (2019). Cross-project Defect Prediction
via ASTToken2Vec and BLSTM-based Neural Network. 2019 International Joint
Conference on Neural Networks (IJCNN), 1–8.
https://doi.org/10.1109/IJCNN.2019.8852135

8. Li, J., He, P., Zhu, J., & Lyu, M. R. (2017). Software Defect Prediction via Convolutional
Neural Network. 2017 IEEE International Conference on Software Quality, Reliability
and Security (QRS), 318–328. https://doi.org/10.1109/QRS.2017.42

9. Pornprasit, C., & Tantithamthavorn, C. K. (2021). JITLine: A Simpler, Better, Faster, Finer-
grained Just-In-Time Defect Prediction. 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), 369–379.
https://doi.org/10.1109/MSR52588.2021.00049

10. PROMISE-backup/bug-data at master · feiwww/PROMISE-backup. (n.d.). GitHub.
Retrieved December 25, 2021, from https://github.com/feiwww/PROMISE-backup

11. Singh, P. (2019). Learning from Software defect datasets. 2019 5th International
Conference on Signal Processing, Computing and Control (ISPCC), 58–63.
https://doi.org/10.1109/ISPCC48220.2019.8988366

12. Wang, H., Zhuang, W., & Zhang, X. (2021). Software Defect Prediction Based on Gated
Hierarchical LSTMs. IEEE Transactions on Reliability, 70(2), 711–727.
https://doi.org/10.1109/TR.2020.3047396

13. Wang, S., Liu, T., & Tan, L. (2016). Automatically learning semantic features for defect
prediction. Proceedings of the 38th International Conference on Software Engineering,
297–308. https://doi.org/10.1145/2884781.2884804

