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Abstract: 
Probabilistic modelling provides a frame-work for understanding what learning is, 
and has therefore emerged as one of the principal theoretical and practical 
approaches for designing machines that learn from data acquired through 
experience. The probabilistic framework, which describes how to represent and 
manipulate uncertainty about models and predictions, plays a central role in 
scientific data analysis, machine learning, robotics, cognitive science, and artificial 
intelligence. This article provides an introduction to this probabilistic framework, 
and reviews some state-of-the-art advances in the field, namely, probabilistic 
programming, Bayesian optimisation, data compression, and automatic model 
discovery. 
1. Introduction 
The key idea behind the probabilistic framework to machine learning is that 
learning can be thought of as inferring plausible models to explain observed data. 
A machine can use such models to make predictions about future data, and 
decisions that are rational given these predictions. Uncertainty plays a fundamental 
role in all of this. Observed data can be consistent with many models, and therefore 
which model is appropriate given the data is uncertain. Similarly, predictions, 
about future data and the future consequences of actions, are uncertain. Probability 
theory provides a framework for modelling uncertainty. This article starts with an 
introduction to the probabilistic approach to machine learning and Bayesian 
inference, and then reviews some of the state-of-the-art in the field. The central 
thesis is that many aspects of learning and intelligence depend crucially on the 
careful probabilistic representation of uncertainty. Probabilistic approaches have 
only recently become a main-stream paradigm in artificial intelligence, 
roboticsand machine learning [1]. Even now, there is controversy in these fields 
about how important it is to fully represent uncertainty. For example, recent 
advances using deep neural networks to solve challenging pattern recognition 
problems such as speech recognition, image classificationand prediction of words 
in text [2], do not overtly represent the uncertainty in the structure or parameters 
of those neural networks. However, my focus will not be on these types of pattern 
recognition problems, characterised by the availability of large amounts of data, 
but rather on problems where uncertainty is really a key ingredient, for example 
where a decision may depend on the amount of uncertainty.  
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2. Probabilistic Modelling and the Representation of Uncertainty 
At a most basic level, machine learning seeks to develop methods for computers to improve 
theirperformance at certain tasks based on observed data. Typical examples of such tasks might 
includedetecting pedestrians in images taken from an autonomous vehicle, classifying gene-
expressionpatterns from leukaemia patients into subtypes by clinical outcome, or translating 
English sentencesinto French. However, as we will see, the scope of machine learning tasks is 
even broader thanthese pattern classification or mapping tasks, and can include optimisation 
and decision making,compressing data, and automatically extracting interpretable models from 
data. 
Data are the key ingredient of all machine learning systems. But data, even so called “Big 
Data",is useless on its own until one extracts knowledge or inferences from it. Almost all 
machinelearning tasks can be formulated as making inferences about missing or latent data 
from the observed data. We will variously use the terms inference, prediction or forecasting to 
refer to thisgeneral task. Elaborating the example mentioned above, consider classifying 
leukaemia patientsinto one of the four main subtypes of this disease, based on each patient's 
measured gene-expressionpatterns. Here the observed data are pairs of gene-expression 
patterns and labelled subtypes, andthe unobserved or missing data to be inferred are the 
subtypes for new patients. 
There are many forms of uncertainties in modelling. At the lowest level, model uncertainty 
isintroduced from measurement noise, e.g., pixel noise or blur in images. At higher levels, 
amodelmay have many parameters, such as the linear regression, and there is uncertaintyabout 
which values of these parameters will be good at predicting new data. Finally, at the 
highestlevels, there is often uncertainty about even the general structure of the model: is linear 
regressionappropriate or a neural network, if the latter, how many layers, etc. 
The probabilistic approach to modelling uses probability theory to express all forms of 
uncertainty. Probability theory is the mathematical language for representing and manipulating 
uncertainty, in much the same way as calculus is the language for representing and 
manipulating rates ofchange. Fortunately, the probabilistic approach to modelling is 
conceptually very simple: probabilitydistributions are used to represent all the uncertain 
unobserved quantities in a model (includingstructural, parametric, and noise-related) and how 
they relate to the data. Then the basic rulesof probability theory are used to infer the unobserved 
quantities given the observed data. Learning from data occurs through the transformation of 
the prior probability distributions (definedbefore observing the data), into posterior 
distributions (after observing data). The application ofprobability theory to learning from data 
is called Bayesian learning. 
Probabilistic modelling also has some conceptual advantages over alternatives as a normative 
theoryfor learning in artificially intelligent (AI) systems. How should an AI system represent 
and updateits beliefs about the world in light of data? The Cox axioms dene some desiderata 
for representingbeliefs; a consequence of these axioms is that `degrees of belief', ranging from 
“impossible" toabsolutely certain", must follow all the rules of probability theory [3]. This 
justifies the useof subjective Bayesian probabilistic representations in AI. An argument for 
Bayesian representationsin AI that is motivated by decision theory is given by the Dutch-Book 
theorems. The argumentrests on the idea that the strength of beliefs of an agent can be assessed 



STUDY OF STRUCTURAL AND PROBABILISTIC MODELLING AND MACHINE LEARNING 

 
Journal of Data Acquisition and Processing Vol. 38 (3) 2023      1059 

 

by asking the agent whetherit would be willing to accept bets at various odds (ratios of payos). 
The Dutch-Book theoremsstate that unless an AI system's (or human's, for that matter) degrees 
of beliefs are consistentwith the rules of probability it will be willing to accept bets that are 
guaranteed to lose money[4]. Because of the force of these and many other arguments on the 
importance of a principledhandling of uncertainty for intelligence, Bayesian probabilistic 
modelling has emerged not only asthe theoretical foundation for rationality in AI systems but 
also as a model for normative behaviourin humans and animals and much research is devoted 
tounderstanding how neural circuitry may be implementing Bayesian inference [5]. 
3. Flexibility through Non-Parametrics 
The best way to understand non-parametric models is through comparison to parametric ones. 
In aparametric model, there are anumber of parameters, and no matter how much trainingdata 
are observed, all the data can do is set theseparameters that control futurepredictions. In 
contrast, nonparametric approaches have predictions that grow in complexity withthe amount 
of training data, either by considering a nested sequence of parametric models withincreasing 
numbers of parameters or by starting out with a model with infinitely many parameters. 
For example, in a classification problem, whereas a linear (i.e., parametric) classifier will 
alwayspredict using a linear boundary between classes, a nonparametric classifier can learn a 
nonlinearboundary whose shape becomes more complex with more data. Many nonparametric 
models can bederived starting from a parametric model and considering that happens as the 
model grows to thelimit of infinitely many parameters [6]. Clearly, fitting a model with 
infinitely many parametersto finite training data would result in\over fitting", in the sense that 
the model's predictions mightfect quirks of the training data rather than regularities that can be 
generalised to test data. 
3.1 Probabilistic Programming 
The basic idea in probabilistic programming it to use computer programs to represent 
probabilisticmodels[2],[7]. One way to do this is for the computer program to dene a generator 
fordata from the probabilistic model, i.e., a simulator. This simulator makes calls to arandom 
number generator in such a way that repeated runs from the simulator would sampledifferent 
possible data sets from the model. This simulation framework is more general than thegraphical 
model framework described previously since computer programs can allow constructssuch as 
recursion (functions calling themselves) and controlo/p statements (e.g., if statementsresulting 
in multiple paths a program can follow) which are difficult or impossible to represent in a finite 
graph. In fact, for many of the recent probabilistic programming languages that are based 
onextending Turing-complete languages (a class that includes almost all commonly-used 
languages),it is possible to represent any computable probability distribution as a probabilistic 
program [8]. 
The full potential of probabilistic programming comes from automating the process of 
inferringunobserved variables in the model conditioned on the observed data. 
Conceptually,conditioning needs to compute input states of the program that generate data 
matching the observeddata. Whereas normally we think of programs running from inputs to 
outputs, conditioninginvolves solving the inverse problem of inferring the inputs (in particular 
the random number calls)that match a certain program output. Such conditioning is performed 
by a universal inferenceengine, usually implemented by Monte Carlo sampling over possible 
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executions over the simulatorprogram that are consistent with the observed data. The fact that 
defining such universal inferencealgorithms for computer programs is even possible is 
somewhat surprising, but it is related to thegenerality of certain key ideas from sampling such 
as rejection sampling, sequential Monte Carlo and \approximate Bayesian computation" [9]. 
3.2 Bayesian optimisation 
Consider the very general problem of finding the global maximum of an unknown function 
whichis expensive to evaluate (say, evaluating the function requires performing lots of 
computation, orconducting an experiment). Mathematically, for a function f on a domain X, 
the goal is to find aglobal maximiser x*:    

 
Bayesian optimisation poses this as a problem in sequential decision theory: where should 
oneevaluate next so as to most quickly maximize f, taking into account the gain in information 
aboutthe unknown function f [10]? For example, having evaluated at three points measuring 
thecorresponding values of the function at those points, f(x1; f(x1)); (x2; f(x2)); (x3; f(x3))g, 
whichpoint x should the algorithm evaluate next, and where does it believe the maximum to 
be? This isa classic machine intelligence problem with a wide range of applications in science 
and engineering,e.g., from drug design to robotics where the function could be the drug's 
efficacy or the speed ofa robot's gait respectively. Basically, it can be applied to any problem 
involving the optimisationof expensive functions; the qualifier expensive" comes because 
Bayesian optimisation might usesubstantial computational resources to decide where to 
evaluate next, and these resources have tobe traded with the cost of function evaluations. 
3.3 Data Compression 
Consider the problem of compressing data so as to communicate it or store it in as few bits 
aspossible, in such a manner that the original data can be recovered exactly from the 
compressed data.Methods for such lossless data compression are ubiquitous in information 
technology, from computerhard drives to data transfer over the internet. Data compression and 
probabilistic modelling aretwo sides of the same coin, and Bayesian machine learning methods 
are increasingly advancing thestate of the art in compression. The connection between 
compression and probabilistic modellingwas established in Shannon's seminal work on the 
source coding theorem [11] which states that thenumber of bits required to compress data is 
bounded by the entropy of the probabilitydistribution of the data. All commonly used lossless 
data compression algorithms (e.g., gzip, etc)can be viewed as probabilistic models of sequences 
of symbols. 
4. Automatically Discovering Interpretable Models from Data 
One of the grand challenges of machine learning is to fully automate the process of learning 
andexplaining statistical models from data. This it the goal of the Automatic Statistician, a 
system thatcan automatically discover plausible models from data, and explain what it has 
discovered in plainEnglish [12]. This could be useful to almost any field of endeavour that is 
reliant on extractingknowledge from data. In contrast to much of the machine learning literature 
which has beenfocused on extracting increasing performance improvements on pattern 
recognition problems usingtechniques such as kernel methods, random forests, or deep 
learning, the Automatic Statisticianneeds to build models that are composed of interpretable 
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components, and to have a principledway of representing uncertainty about model structures 
given data. It also needs to be able to givereasonable answers not just for big data sets but also 
for small ones. Bayesian approaches providean elegant way of trading of the complexity of the 
model and the complexity of the data, andprobabilistic models are compositional and 
interpretable as described previously [13]. 
Probabilistic Model for Attributes A probabilistic relational model O specifies a probability 
distribution overall instantiations K of the relational schema. It consists ofthe qualitative 
dependency structure, P, and the parameters associated with it, Q*R. The dependency structure 
isdefined by associating with each attribute $ a set of parents Pa $. Each parent has the form $
  S5Twhere Sis either empty or a single slot %. (PRMs alsoallow dependencies on longer 
slot chains, but we have chosen to omit those for simplicity of presentation.) To understand the 
semantics of this dependence, note that US5 isa multi-set of values V in S5. We use the notion 
of aggregation from database theory to define the dependenceon a multi-set; thus, Uwill depend 
probabilistically onsome aggregate property W8XV. In this paper, we use themedian for 
ordinal attributes, and the mode (most commonvalue) for others. When V is single-valued, both 
reduce toa dependence on the value of U S5T. 
The quantitative part of the PRM specifies the parameterization of the model. Given a set of 
parents for an attribute,we can define a local probability model by associating withit a 
conditional probability distribution (CPD). For each attribute we have a CPD that specifies Y[Z 
Pa $ 
Definition 1: A probabilistic relational model (PRM) O fora relational schema P is defined as 
follows. For each classand each descriptive attribute, we havea set of parents Pa $, and a 
conditional probability distribution (CPD) that represents Y_^`$[Z Pa $.Given a relational 
skeleton LAM , a PRM O specifies adistribution over a set of instantiations K consistent with 
LM : 

 
where LCMare the objects of each class as specified bythe relational skeleton LAM (in general 
we will use the notationL to refer to the set objects of each class as definedby any type of 
domain skeleton).For this definition to specify a coherent probability distributionover 
instantiations, we must ensure that our probabilisticdependencies are acyclic, so that a random 
variabledoes not depend, directly or indirectly, on its own value.Moreover, we want to 
guarantee that this will be the casefor any skeleton. For this purpose, we use a class 
dependencygraph, which describes all possible dependenciesamong attributes. In this graph, 
we have an (intra-object) edge $T $ if $T is a parent of  . If $%T is a parent of $, and 9  
021=3C4*6*+%*-, we have an (inter-object)edge 9 T . If the dependency graph of is acyclic, 
then it defines a legal model for any relationaP lskeleton L M [14]. 
Definition 2: A probabilistic relational model O with referenceuncertainty has the same 
components as in Definition1. In addition, for each reference slot % ] #with0;1=35476*+%7-
N 9 , we have: 
a set of attributes Y,+-.0/5.0/02"3+%*-74 9>; 
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a new selector attribute V 6 within  which takes onvalues in the cross-product space  Y,+-
".0/1.0/02"3+%*-;a set of parents and a CPD for V 6.To define the semantics of this extension, 
we must definethe probability of reference slots as well as descriptive attributes: 
5. Conclusion 
We evaluated the methods on several real-life data sets,comparing standard PRMs, PRMs with 
reference uncertainty(RU), and PRMs with existence uncertainty (EU).Our experiments used 
the Bayesian score with a uniformDirichlet parameter prior with equivalent sample size , and 
a uniform distribution over structures. We first tested whether the additional expressive power 
allowsus to better capture regularities in the domain. Towardthis end, we evaluated the 
likelihood of test data given ourlearned models. Unfortunately, we cannot directly 
comparelikelihoods, since the PRMs involve different sets ofprobabilistic events. Instead, we 
compare the two variantsof PRMs with structural uncertainty, EU and RU, to “baseline”models 
which incorporate link probabilities, but makethe “null” assumption that the link structure is 
uncorrelatedwith the descriptive attributes. For reference uncertainty,the baseline has +%7-
8for each slot. For existence uncertainty,it forces U % to have no parents in the model. 
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