THE MONOPHONIC VERTEX COVERING NUMBER OF POWER OF CYCLES

S. Durai Raj ${ }^{1}$, K. A. Francis Jude Shini ${ }^{2}$, X. Lenin Xaviour ${ }^{3}$, A. M. Anto ${ }^{4}$
${ }^{1}$ Associate Professor and Principal, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India, Email: durairajsprincpkc@gmail.com
${ }^{2}$ Research Scholar(Full time), Reg. No: 20213132092001 , Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India. Email: shinishini111@gmail.com
${ }^{3}$ Assistant Professor, Department of Mathematics, Nesamony Memorial College, Marthandam 629165, Tamil Nadu, India, Email: leninxaviour93@gmail.com
${ }^{4}$ Assistant Professor, Department of Mathematics, St. Albert's College (Autonomous), Kochi, Kerala, India, Email: antoalexam@gmail.com
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, India.

Abstract

Let C_{n}^{k} be the $k^{\text {th }}$ power of cycle C_{n}. A set S of vertices of C_{n}^{k} is a monophonic vertex cover of C_{n}^{k} if S is both a monophonic set and a vertex cover of C_{n}^{k}. The minimum cardinality of a monophonic vertex cover of C_{n}^{k} is called the monophonic vertex covering number of power of cycles and is denoted by $m_{\alpha}\left(C_{n}^{k}\right)$. Any monophonic vertex cover of cardinality $m_{\alpha}\left(C_{n}^{k}\right)$ is a m_{α}-set of C_{n}^{k}. Some general properties satisfied by monophonic vertex cover of power of cycles are studied.

Keywords: monophonic set, vertex covering set, monophonic vertex cover, monophonic vertex covering number, power of cycles, monophonic vertex covering number of power of cycles

1 INTRODUCTION

By a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, we mean a finite undirected connected graph without loops and multiple edges. The order and size of G are denoted by n and m respectively. Also $\delta(G)$ is the minimum degree in a graph G. For basic graph theoretic terminology we refer to Harary[10]. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $\mathrm{u}-\mathrm{v}$ path in $\mathrm{G}[2]$. For a vertex v of G , the eccentricity $e(v)$ is the distance between v and a vertex farthest from v . The minimum eccentricity among the vertices of G is the radius, rad G and the maximum eccentricity is its diameter, diam G. The neighbourhood of a vertex v of G is the set $N(v)$ consisting of all vertices which are adjacent with v . A vertex v is a simplical vertex or an extreme vertex of G if the subgraph induced by its neighbourhood $N(v)$ is complete.

A graph G is called symmetric if for every two pairs of adjacent vertices $u_{1}, v_{1} \in \mathrm{~V}(\mathrm{G})$ and $u_{2}, v_{2} \in \mathrm{~V}(\mathrm{G})$, there is an automorphism $\sigma \ni \sigma\left(u_{1}\right)=u_{2}, \sigma\left(v_{1}\right)=v_{2}$. Path P_{n} graphs are graphs with $\mathrm{V}\left(P_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $\mathrm{E}\left(P_{n}\right)=\{$ $\left.v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-2} v_{n-1}\right\}$. Cycle C_{n} graphs are graphs with $\mathrm{V}\left(C_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $\mathrm{E}\left(C_{n}\right)=E\left(P_{n}\right) \cup\left\{v_{0} v_{n-1}\right\}$.For a positive integer n and a set of integers $\mathrm{J}=$ $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$, circulant graph $C_{n}(J)$ is defined to be the graph with vertex set $\mathrm{V}\left(C_{n}(J\right.$
$))=\mathrm{V}\left(C_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $\mathrm{E}\left(C_{n}(J)\right)=\left\{v_{i} v_{j} / i-j \equiv r\right.$ mod n, for some r $\in J\}$. The $k^{t h}$ power of a graph G, G^{k} has the same vertices as G and two distinct vertices u and v of G are adjacent in G^{k} if their distance in G is at most k . Every power of cycle is circulant graph. Circulant graph was introduced and studied in [14].

A geodetic set of G is a set $S \subseteq V(G)$ such that every vertex of G is contained in a geodesic joining some pair of vertices in S. The geodetic number $g(G)$ of G is the minimum cardinality of its geodetic sets and any geodetic set of cardinality $g(G)$ is a minimum geodetic set or a geodetic basis or a $g-$ set of G. The geodetic number of a graph was introduced in [3, 11] and further studied in [4-6].

The geodetic number $g\left(C_{n}^{k}\right)$ of power of cycles is the minimum cardinality of its geodetic sets and any geodetic set of cardinality $g\left(C_{n}^{k}\right)$ is a minimum geodetic set or a geodetic basis or a g - set of C_{n}^{k}. The geodetic number of power of cycles was introduced and studied in [1].

A chord of a path P is an edge joining two non-adjacent vertices of P . A path P is called a monophonic path if it is a chordless path. A set S of vertices of G is a monophonic set of G if each vertex v of G lies on a $\mathrm{x}-\mathrm{y}$ monophonic path for some $x, y \in$ S. The minimum cardinality of a monophonic set of G is the monophonic number of G and is denoted by $\mathrm{m}(\mathrm{G})$. Any monophonic set of cardinality $\mathrm{m}(\mathrm{G})$ is a minimum monophonic set or a monophonic basis or a m-set of G. The monophonic number of a graph was studied and discussed in [12, 15]. A subset $S \subseteq V(G)$ is said to be a vertex covering set of G if every edge has at least one end vertex in S . A vertex covering set of G with the minimum cardinality is called a minimum vertex covering set of G . The vertex covering number of G is the cardinality of any minimum vertex covering set of G . It is denoted by $\alpha(G)$. The vertex covering number was studied in [16].

Let G be a connected graph of order $n \geq 2$. A set S of vertices of G is a monophonic vertex cover of G if S is both a monophonic set and a vertex cover of G. The minimum cardinality of a monophonic vertex cover of G is called the monophonic vertex covering number of G and is denoted by $m_{\alpha}(\mathrm{G})$. Any monophonic vertex cover of cardinality $m_{\alpha}(\mathrm{G})$ is a m_{α}-set of G . The monophonic vertex covering number was studied in [7]. Let G be a connected graph of order $n \geq 2$. A set S of vertices of G is an edge monophonic vertex cover of G if S is both an edge monophonic set and a vertex cover of G. The minimum cardinality of an edge monophonic vertex cover of G is called the edge monophonic vertex covering number of G and is denoted by $m_{e \alpha}(\mathrm{G})$. Any monophonic vertex cover of cardinality $m_{e \alpha}(\mathrm{G})$ is a $m_{e \alpha}$-set of G. The edge monophonic vertex covering number was studied in [8].

A subset $S \subseteq V(G)$ is a dominating set if every vertex in V-S is adjacent to at least one vertex in S . The minimum cardinality of a dominating set in a graph G is called the dominating number of G and denoted by $\gamma(G)$. The dominating number of a graph was studied in [9]. A set of vertices of G is said to be monophonic domination set if it is both a monophonic set and a dominating set of G . The minimum cardinality of a monophonic domination set of G is called a monophonic domination number of G and denoted by $\gamma_{m}(G)$. The monophonic domination number was studied in [13].

The following theorem will be used in the sequel.

Theorem 1.1. [1] If $\mathrm{n}=2 \mathrm{qk}+\mathrm{r}$ for some positive integers q and r where $0<\mathrm{r}<\mathrm{k}$ then $g\left(C_{n}^{k}\right)=2$ if and only if $\mathrm{r}=2$.
Theorem 1.2. [7] Monophonic vertex covering number of the complete graph with n vertices is n .
2 THE MONOPHONIC VERTEX COVERING NUMBER OF POWER OF CYCLES
Definition 2.1. Let C_{n}^{k} be the $k^{t h}$ power of cycle C_{n}. A set S of vertices of C_{n}^{k} is a monophonic vertex cover of C_{n}^{k} if S is both a monophonic set and a vertex cover of C_{n}^{k}. The minimum cardinality of a monophonic vertex cover of C_{n}^{k} is called the monophonic vertex covering number of power of cycles and is denoted by $m_{\alpha}\left(C_{n}^{k}\right)$. Any monophonic vertex cover of cardinality $m_{\alpha}\left(C_{n}^{k}\right)$ is a m_{α}-set of C_{n}^{k}.

Example 2.2. For the power of cycle C_{7}^{2} given in Figure 2.1, $\mathrm{S}=\left\{v_{0}, v_{3}\right\}$ is a minimum monophonic set of C_{7}^{2} so that $m\left(C_{7}^{2}\right)=2$ and $S=\left\{v_{0}, v_{1}, v_{3}, v_{4}, v_{6}\right\}$ is a minimum monophonic vertex cover of C_{7}^{2} so that $m_{\alpha}\left(C_{7}^{2}\right)=5$. Thus the monophonic number is different from the monophonic vertex covering number of power of cycles.

Figure 2.1: C_{7}^{2}
Example 2.3. For the power of cycle C_{8}^{3} given in Figure 2.2, $\mathrm{S}=\left\{v_{0}, v_{4}\right\}$ is a minimum geodetic set of C_{8}^{3} so that $g\left(C_{8}^{3}\right)=2$ by Theorem 1.1. Also, $S=\left\{v_{0}, v_{1}, v_{3}, v_{4}, v_{5}, v_{7}\right\}$ is a minimum monophonic vertex cover of C_{8}^{3} so that $m_{\alpha}\left(C_{8}^{3}\right)=6$. Hence the geodetic number of power of cycles is different from the monophonic vertex covering number of power of cycles.

Figure 2.2: C_{8}^{3}
Example 2.4. For the power of cycle C_{10}^{4} given in Figure 2.3, $\mathrm{S}=\left\{v_{0}, v_{5}\right\}$ is a minimum monophonic dominating set of C_{10}^{4} so that $\gamma_{m}\left(C_{10}^{4}\right)=2$. Also, $S^{\prime}=\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is a minimum monophonic vertex cover of C_{10}^{4} so that $m_{\alpha}\left(C_{10}^{4}\right)=8$. Hence the monophonic dominating number of power of cycles is different from the monophonic vertex covering number of power of cycles.

Figure 2.3: C_{10}^{4}
Theorem 2.5. For the power of cycle $C_{n}^{k}, 2 \leq \max \left\{\alpha\left(C_{n}^{k}\right), m\left(C_{n}^{k}\right)\right\} \leq m_{\alpha}\left(C_{n}^{k}\right) \leq n$.
Proof. Any monophonic set of C_{n}^{k} needs at least 2 vertices. Then $2 \leq \max \left\{\alpha\left(C_{n}^{k}\right), m\left(C_{n}^{k}\right)\right\}$. From the definition of monophonic vertex cover of C_{n}^{k}, we have, $\max \left\{\alpha\left(C_{n}^{k}\right), m\left(C_{n}^{k}\right)\right\} \leq$
$m_{\alpha}\left(C_{n}^{k}\right)$. Clearly $\mathrm{V}\left(C_{n}^{k}\right)$ is a monophonic vertex cover of C_{n}^{k}. Hence $m_{\alpha}\left(C_{n}^{k}\right) \leq n$. Thus 2 $\leq \max \left\{\alpha\left(C_{n}^{k}\right), m\left(C_{n}^{k}\right)\right\} \leq m_{\alpha}\left(C_{n}^{k}\right) \leq n$.

Remark 2.6. The bounds in Theorem 2.5 are sharp. For the power of cycle C_{4}^{2} in Figure 2.4, $m_{\alpha}\left(C_{4}^{2}\right)=4$.

Figure 2.4: C_{4}^{2}
Theorem 2.7. For positive integers k and $\mathrm{n}, m_{\alpha}\left(C_{n}^{k}\right)=m_{\alpha}\left(K_{n}\right)=n$, where $k \geq\left\lfloor\frac{n}{2}\right\rfloor$.
Proof. For positive integers n and k , two different vertices v_{i} and v_{j} in $V\left(C_{n}^{k}\right)$ are adjacent in C_{n}^{k} if $0<d_{C_{n}}\left(v_{i}, v_{j}\right) \leq k$. That is, $\mathrm{E}\left(C_{n}^{k}\right)=\left\{v_{i} v_{j} / \mathrm{i}-\mathrm{j} \equiv \pm \mathrm{r}(\bmod \mathrm{n}), 1 \leq \mathrm{r} \leq \mathrm{k}\right\}$. When $k \geq\left\lfloor\frac{n}{2}\right\rfloor$, we have, $\mathrm{E}\left(C_{n}^{k}\right)=\left\{v_{i} v_{j} / \mathrm{i}-\mathrm{j} \equiv \pm \mathrm{r}(\bmod \mathrm{n}), 1 \leq \mathrm{r} \leq \frac{n}{2}+1\right\}=\mathrm{E}\left(K_{n}\right)$, where K_{n} is the complete graph with n vertices. Thus by Theorem - 1.2, we have, $m_{\alpha}\left(C_{n}^{k}\right)=m_{\alpha}\left(K_{n}\right)=n$, where $k \geq\left\lfloor\frac{n}{2}\right\rfloor$.

Theorem 2.8. For positive integers k and n , the power of cycles $C_{n}^{k} h$ as $m\left(C_{n}^{k}\right)=2$, where k $<\left\lfloor\frac{n}{2}\right\rfloor$.

Proof. Let $\left\{v_{0}, v_{1}, \ldots, v_{n-1}, v_{0}\right\}$ be the vertices of C_{n}^{k}. Here $\mathrm{S}=\left\{v_{0}, v_{\left[\frac{n}{2}\right.}\right\}$ is a minimum monophonic set of C_{n}^{k}. Hence C_{n}^{k} has $m\left(C_{n}^{k}\right)=2$, where $k<\left\lfloor\frac{n}{2}\right\rfloor$.

3.Conclusions

In this paper we analysed the monophonic vertex covering number of power of cycles. It is more interesting to continue my research in this area and it is very useful for further research.

Acknowledgements

The authors are grateful to the reviewers for their valuable remarks to improve this paper.

References

1. M. Abudayah, O. Alomari, and H. Al Ezeh. Geodetic number of powers of cycles. Symmetry, 10(11):592, 2018.
2. F. Buckley and F. Harary. Distance in graphs. Addison-Wesley, 1990.
3. F. Buckley, F. Harary, and L. Quintas. Extremal results on the geodetic number of a graph. Scientia A, 2, 1988.
4. G. Chartrand, F. Harary, and P. Zhang. On the geodetic number of a graph. Networks: An International Journal, 39(1):1-6, 2002.
5. G. Chartrand, G. L. Johns, and P. Zhang. On the detour number and geodetic number of a graph. Ars Combinatoria, 72:3-15, 2004.
6. G. Chartrand, E. M. Palmer, and P. Zhang. The geodetic number of a graph: A survey. Congressus numerantium, pages 37-58, 2002.
7. S. Durai raj, K. A. Francis jude shini, X. Lenin Xaviour, and Anto A. M. Themonophonic vertex covering number of a graph. Mathematical Statistician and Engineering Appilications, 71(4):10450-10458, Feb. 2023.
8. S. Durai raj, K. A. Francis jude shini, X. Lenin Xaviour, and Anto A. M. On The Study Of Edge Monophonic Vertex Covering Number. Ratio Mathematica, 44:197, 2022.
9. A. Hansberg and L. Volkmann. On the geodetic and geodetic domination numbers of a graph. Discrete mathematics, 310(15-16):2140-2146, 2010.
10. F. Harary. Graph theory. addison wesley publishing company. Reading, MA, USA., 1969.
11. F. Harary, E. Loukakis, and C. Tsouros. The geodetic number of a graph. Mathematical and Computer Modelling, 17(11):89-95, 1993.
12. J. John and S. Panchali. The upper monophonic number of a graph. International J. Math. Combin, 4:46-52, 2010.
13. J. John, P. A. Paul Sudhahar, and D. Stalin. On the (m, d) number of a graph. Proyecciones (Antofagasta), 38(2):255-266, 2019.
14. P. T. Meijer. Connectivities and diameters of circulant graphs. PhD thesis, Theses (Dept. of Mathematics and Statistics)/Simon Fraser University, 1991.
15. A. Santhakumaran, P. Titus, and K. Ganesamoorthy. On the monophonic number of a graph. Journal of applied mathematics \& informatics, 32(1 2):255-266, 2014.
16. D. Thakkar and J. Bosamiya. Vertex covering number of a graph. Mathematics Today, 27:30-35, 2011.
