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Abstract: 
We aim to construct an orthogonal matrix Q that transform a given column of A-call it𝑥 into 
the corresponding column of R-call it 𝑦.  For this we found ‖𝑥‖   = ‖𝑄𝑥‖  = ‖𝑦‖.We 
extended the notation of orthogonal projection that we explained it we also discussed only 
projection onto a single vector (or, equivalently,the one dimensional subspace spanned by 
that vector).We saw that we can find the analogous formulas for projection onto a plane in 
𝐼𝑅. The orthogonality is becoming an important mathematical tools in linear algebra, there 
are many ways of constructing new cods from old ones.Here ,we consider one of the most. 
Keywords : Orthogonality , orthogonal matrix , Dual Code Application , orthogonal 
projection . 

1. Introduction: 
The modified QR factorizationand its applications are very important tools in 

mathematics, when we are dealing with these tools number of similar applications of 
common results can be found .This results can be specified as the modified QR 
factorizationthat are independent from a particular specification; but sometimes such 
modules are not so simple: A general module that can satisfy different purposes is not 
trivial.Moreover, the more complicated modules often differ very slightly from application 
to application.Immediately one asks: Does the modified QR factorizationanswer these 
quantity estimates; involving tools such sum ability methods. 
2. Orthogonality in Rn:  

Definition (2.1): 
 A set of vectors (𝑣 , 𝑣 , … , 𝑣 ) in 𝑅  is called an orthogonal set if all pairs of distinct 
vector in the set are orthogonal. That is, if 𝑉 . 𝑉 = 0 whenever 𝑖 ≠ 𝑗for𝑖, 𝑗 = 1, 2, … , 𝑘. [4] 

Example (2. 2): 
Show that (𝑣 , 𝑣 , 𝑣 ) is an orthogonal set in 𝑅  if.  

𝑣 =
2
1

−1
, 𝑣 =

0
1
1

, 𝑣 =
1

−1
1

 

Solution: 
We must show that every pair of vector from this set is orthogonal. This is true, since.  

𝑣 . 𝑣 = 2.0 + 1.1 + −1.1 = 0 
𝑣 . 𝑣 = 0.1 + 1. (−1) + 1.1 = 0 

𝑣 . 𝑣 = 2.1 + 1. (−1) + −1.1 = 0 
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Fig N0. (1) : Orthogonal Set in 𝑅  
Theorem (2. 3): 

If the vectors in set (𝑣 , 𝑣 , … , 𝑣 ) in 𝑅  are mutually orthogonal and nonzero then that 
set is linearly independent. 
Proof 
If 𝑐 , … , 𝑐  are scalars such that  

𝑐 𝑣 + 𝑐 𝑣 + ⋯ + 𝑐 𝑣 = 0 
Then  
(𝑐 𝑣 + 𝑐 𝑣 +  … + 𝑐 𝑣 ). 𝑣  
= 0. 𝑣 = 0 
Show, since 𝑣  is non zero, that𝑐  is zero.  [5] 
Definition (2. 4): 
 An orthogonal basis for a subspace W of 𝑅  is a basis of W that is an orthogonal set.  
Example (2. 5): 
Findan orthogonal basis for the subspace w, of 𝑅 given by  

𝑊 =
𝑥
𝑦
𝑧

= 𝑥 − 𝑦 + 2𝑧 = 0  

Solution: 
The subspace 𝑊 is a plane through the origin in 𝑅 . Fromthe equation of the plane, we have 
𝑥 = 𝑦 − 2𝑧, so 𝑊consists of  vectors of the form 

𝑦 − 2𝑧
𝑦
𝑧

= 𝑦
1
1
0

+ 𝑧
−2
0
1

 

It follows that 𝑢 =
1
1
0

 and 𝑣 =
−2
0
1

 are a basis for 𝑊, but they are not orthogonal it suffices 

to find another nonzero vector in 𝑊 that is orthogonal to either one of these. 

Suppose 𝑊 =
𝑥
𝑦
𝑧

 is a vector in w that is orthogonal to u.  

Then 𝑥 − 𝑦 + 2𝑧 = 0 
Since w is in the plane W. since 𝑢. 𝑤 = 0 
We also have 𝑥 + 𝑦 = 0 
Solving the linear system  

𝑥 − 𝑦 + 2𝑧 = 0 
𝑥 + 𝑦        = 0 

We find that 𝑥 =  −𝑧 and 𝑦 = 𝑧 

x 
y 

z 𝑣  

𝑣  

𝑣  
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Thus any nonzero vector w of the form 𝑊 =
−𝑧
𝑧
𝑧

 will do. To be specific, we could take 𝑊 =

−1
1
1

. It is easy to check that (𝑢, 𝑤) is an orthogonal set in W and hence an orthogonal basis 

for w, sincedim 𝑊 = 2. 
Definition (2. 6): 
A set of vector in 𝑅  is an orthonormal set if it is an orthogonal set  of unit vectors. An 
orthonormal basis for a subspace W of 𝑅  is a basis of W that is an orthonormal set.  
Remark (2. 7): 

If 𝑠 = (𝑞 , … , 𝑞 ) is an orthonormal set of vectors, then 𝑞 . 𝑞 = 0 for 𝑖 ≠ 𝑗and ‖𝑞 ‖ =

1. The fact that each 𝑞  is a unit vector is equivalent to 𝑞 . 𝑞 = 1. 

It follows that we can summarize the statement that S is orthonormal as:[10] 

𝑞 . 𝑞 =
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

Example (2. 8): 
Show that 𝑆 = (𝑞 , 𝑞 ) is an orthonormal set in 𝑅   if  

𝑞 =

1 √3⁄

− 1 √3⁄

1 √3⁄

and𝑞 =

1 √6⁄

2 √6⁄

1 √6⁄

 

Solution: 
We check that  

𝑞 . 𝑞 =  1 √18⁄ − 2 √18⁄ + 1 √18⁄ = 0 
𝑞 . 𝑞 =  1 3⁄ + 1 3⁄ + 1 3⁄ = 1 

𝑞 . 𝑞 =  1 6⁄ + 4 6⁄ + 1 6⁄ = 1 # 
If we have an orthogonal set. We can easily obtain an orthonomal set from it. We simply 
normalize vector.  
Example (2. 9): 
Construct an orthonomal basis for 𝑅  from the vectors.  

𝑣 =
2
1

−1
, 𝑣 =

0
1
1

, 𝑣 =
1

−1
1

 

Solution: 
Since we already know that 𝑣 , 𝑣  and 𝑣  an orthogonal basis, we normalize them to get 

𝑞 =
1

‖𝑣 ‖
𝑣 =

1

√6

2
1

−1
=

2 √6⁄

1 √6⁄

− 1 √6⁄

 

𝑞 =
1

‖𝑣 ‖
𝑣 =

1

√2

0
1
1

=

0

1 √2⁄

1 √2⁄

 

𝑞 =
1

‖𝑣 ‖
𝑣 =

1

√3

1
−1
1

=

1 √3⁄

−1 √3⁄

1 √3⁄
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Then (𝑞 , 𝑞 , 𝑞 ) is an orthonomal basis for 𝑅 . 
Theorem (2. 10): 
 The column of an𝑚 × 𝑛 matrix Q form an orthonomal set if and only if: 

𝑄 𝑄 = 𝐼  
Proof 
We need to show that  

(𝑄 𝑄) =  
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

Let 𝑞  denote the 𝑖𝑡ℎ column of Q (and, hence the 𝑖𝑡ℎ row of the 𝑄 ). 
Since  the(𝑖, 𝑗) entry of 𝑄 𝑄 is the dot product of the ith row of 𝑄  and the jth column of Q, it 
follows that 

(𝑄 𝑄) = 𝑞 . 𝑞 (∗) 

By the definition of matrix multiplication. 
Now the columns Q form an orthonormalset if and only if: 

𝑞 . 𝑞 =  
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

Which by equation (*) holds if and only if  

(𝑄 𝑄) =  
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

Definition (2. 11): 
An 𝑛 × 𝑛 matrix Q whose column form an orthonormal set is called an orthogonal matrix. 
Theorem (2. 12): 
 A square matrix Q is orthogonal if and only if 𝑄 = 𝑄 . 
Example (2. 13): 
Show that the following matrices are orthogonal and find their inverses:  

𝐴 =
0 1 0
0 0 1
1 0 0

 𝑎𝑛𝑑 𝐵 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

 

Solution: 
The columns of A are just the standard basis vectors for 𝑅 . Which are clearlyorthonormal 
  Hence, A is orthogonal 

𝐴 = 𝐴 =
0 0 1
1 0 0
0 1 0

 

For B, we check directly that 

𝐵 𝐵 =
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

 

𝐵 𝐵 = cos 𝜃 + sin 𝜃 − cos 𝜃 sin 𝜃 + sin 𝜃 cos 𝜃
− sin 𝜃 cos 𝜃 + cos 𝜃 sin 𝜃 sin 𝜃 + cos 𝜃

 

𝐵 𝐵 =
1 0
0 1

 

𝐵 𝐵 = 𝐼 
Therefore, B is orthogonal, the theorem (2. 12)and 

𝐵 = 𝐵 =
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
 

Theorem (2. 14): 
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 Let Q be an𝑛 × 𝑛 matrix. The following statements are equivalent:  
i. Q is orthogonal.  
ii. ‖𝑄𝑥‖ = ‖𝑋‖for every 𝑥 in 𝑅 . 
iii. 𝑄𝑥. 𝑄𝑦 = 𝑥. 𝑦for every 𝑥 and 𝑦 in 𝑅 . 

Proof 
We will prove that (𝑖) ⟹ (𝑖𝑖𝑖) ⟹ (𝑖𝑖) ⟹ (𝑖).  
To do so, we will need to make use of the fact that if 𝑥 and 𝑦 are (column) vectors in 𝑅 , then 
𝑥. 𝑦 = 𝑥 𝑦. 
(𝑖) ⟹ (𝑖𝑖𝑖) Assume that Q is orthogonal. Then 𝑄 𝑄 = 𝐼 and we have 
𝑄𝑥. 𝑄𝑦 = (𝑄𝑥) 𝑄𝑦 
𝑄𝑥. 𝑄𝑦 = 𝑥 𝑄 𝑄𝑦 
𝑄𝑥. 𝑄𝑦 = 𝑥 𝐼𝑦 
𝑄𝑥. 𝑄𝑦 = 𝑥 𝑦 
𝑄𝑥. 𝑄𝑦 = 𝑥. 𝑦 
(𝑖𝑖𝑖) ⟹ (𝑖𝑖) Assume that 𝑄𝑥. 𝑄𝑦 = 𝑥. 𝑦 for every 𝑥 and 𝑦in 𝑅 . 
Then, taking 𝑦 = 𝑥 we have𝑄𝑥. 𝑄𝑥 = 𝑥. 𝑥      so 

‖𝑄𝑥‖ = 𝑄𝑥. 𝑄𝑥 

‖𝑄𝑥‖ = √𝑥. 𝑥 
‖𝑄𝑥‖ = ‖𝑥‖ 

(𝑖𝑖) ⟹ (𝑖) Assume that property (ii) holds and let 𝑞  denoted the ith column of Q.  

𝑥. 𝑦 =
1

4
(‖𝑥 + 𝑦‖ − ‖𝑥 − 𝑦‖ ) 

𝑥. 𝑦 =
1

4
(‖𝑄(𝑥 + 𝑦)‖ − ‖𝑄(𝑥 − 𝑦)‖ ) 

𝑥. 𝑦 =
1

4
(‖𝑄𝑥 + 𝑄𝑦‖ − ‖𝑄𝑥 − 𝑄𝑦‖ ) 

𝑥. 𝑦 = 𝑄𝑥. 𝑄𝑦 
for  all𝑥 and 𝑦 in 𝑅 . 
Now if 𝑒  is the ith standard basis vector then 𝑞 = 𝑄 𝑒 . 
Consequently,  
𝑞 . 𝑞 = 𝑄𝑒 . 𝑄𝑒  

𝑞 . 𝑞 = 𝑒 . 𝑒  

𝑞 . 𝑞 =
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

Thus, the column of Q form an orthonormal set, so Q is an orthogonal matrix.  
Theorem (2. 15): 
If Q is an orthogonal matrix, then its rows form an orthnormal set.  
Proof 
By theorem (2. 12). We know that 𝑄 = 𝑄  
Therefore:  

(𝑄 ) = (𝑄 )  
(𝑄 ) = 𝑄 

(𝑄 ) = (𝑄 )  
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So 𝑄  is an orthogonal matrix. 
Thus the column of 𝑄 −. Which are just rows of Q- form an orthonormal set.  
3. Orthogonal Complement and Orthogonal Projection : 
Definition (3.1): 
 Let W be a subspace of 𝑅 , we say that a vector v in 𝑅  is orthogonal to W if v is 
orthogonal to every vector in W. the set of all vectors that are orthogonal to w is called the 
orthogonal complement of W, denoten𝑤 . That is                          [11] 

𝑤 = {𝑣 𝑖𝑛 𝑅 : 𝑣. 𝑤 = 0; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑤 𝑖𝑠 𝑊} 
Theorem (3.2): 
 Let A be an 𝑚 × 𝑛 matrix. Then the orthogonal complement of the row space of A is 
the null space of A, and the orthogonal complement of the column space of A is the null space 
of 𝐴 . 

𝑟𝑜𝑤 (𝐴) = 𝑛𝑢𝑙𝑙 (𝐴)     𝑎𝑛𝑑    𝑐𝑜𝑙(𝐴) = 𝑛𝑢𝑙𝑙(𝐴 ) 

Proof 

If 𝑥 is a vector in 𝑅 , then 𝑥 is in 𝑟𝑜𝑤 (𝐴) if and only if 𝑥 is orthogonal to every 

row of A. but this is true if and only if 𝐴𝑥 = 0, which is equivalent to 𝑥 being in null (A), so 
we have established the first identity. 

To prove the second identity, we simply replace 𝐴  by 𝐴  and use the fact that 
𝑟𝑜𝑤(𝐴 ) = 𝑐𝑜𝑙(𝐴). 
Definition (3.3): 
 Let 𝑊 be a subspace of 𝑅  and let {𝑢 , … , 𝑢 } be an orthogonal basis for W. for any 
vector in 𝑅 , the orthogonal projection of v onto w is defined as: 

𝑝𝑟𝑜𝑗 (𝑣) =
𝑢 . 𝑣

𝑢 . 𝑢
𝑢 + ⋯ +

𝑢 . 𝑣

𝑢 . 𝑢
𝑢  

The component of v orthogonal to w is the vector  
𝑝𝑟𝑒𝑝 (𝑣) = 𝑣 − 𝑝𝑟𝑜𝑗 (𝑣) 

Theorem (3.4): 
Let  w be a subspace of 𝑅  and let v be a vector in 𝑅 . Then there are unique vectors 

w in W and 𝑤  in𝑊 such that  
𝑣 = 𝑤 + 𝑤  

Proof 
We need to show two things: that such a decomposition exists and that it is unique. 
To show existence, we choose an orthogonal basis {𝑢 , … , 𝑢 } for w. let 𝑤 = 𝑝𝑟𝑜𝑗 (𝑣) 

and let 𝑤 = 𝑝𝑒𝑟𝑝 (𝑣); Then  
𝑤 + 𝑤 = 𝑝𝑟𝑜𝑗 (𝑣) + 𝑝𝑒𝑟𝑝 (𝑣) 

𝑤 + 𝑤 = 𝑝𝑟𝑜𝑗 (𝑣) + 𝑣 − 𝑝𝑒𝑟𝑝 (𝑣)  

𝑤 + 𝑤 = 𝑣 
Clearly;  
𝑤 = 𝑝𝑟𝑜𝑗 (𝑣)is in w.  
Since it is a linear combination of the basis vectors (𝑢 , … , 𝑢 ). 
To show that 𝑤 is in 𝑊 , it is enough to show that 𝑤  is orthogonal to each of the basis 
vectors 𝑢 , we compute  
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𝑢 . 𝑤 = 𝑢 . 𝑝𝑒𝑟𝑝 (𝑣) 

𝑢 . 𝑤 = 𝑢 . 𝑣 − 𝑝𝑟𝑜𝑗 (𝑣)  

𝑢 . 𝑤 = 𝑢 . 𝑣 −
𝑢 . 𝑣

𝑢 . 𝑢
𝑢 − ⋯

𝑢 . 𝑣

𝑢 . 𝑢
𝑢  

𝑢 . 𝑤 = 𝑢 . 𝑣 −
𝑢 . 𝑣

𝑢 . 𝑢
(𝑢 𝑢 ) − ⋯ −

𝑢 . 𝑣

𝑢 . 𝑢
(𝑢 𝑢) − ⋯ −

𝑢 . 𝑣

𝑢 . 𝑢
(𝑢 . 𝑢 ) 

𝑢 . 𝑤 = 𝑢 . 𝑣 − 0 − ⋯ −
𝑢 . 𝑣

𝑢 . 𝑢
𝑢 𝑢 − ⋯ − 0 

𝑢 . 𝑤 = 𝑢 . 𝑣 − 𝑢 . 𝑣 = 0 
Since 𝑢 . 𝑢 = 0 𝑓𝑜𝑟 𝑗 ≠ 𝑖. 

This proves that 𝑤  is in 𝑊  and completes the existence part of the proof.  
To show that uniqueness of this decomposition, let’s suppose we 

haveanotherdecomposition 
𝑣 = 𝑤 + 𝑤  

Where 𝑤  is in W and 𝑤  is in 𝑊 ; then  
𝑤 + 𝑤 = 𝑤 + 𝑤  

So.. 
𝑤 − 𝑤 =  𝑤 − 𝑤  

But since 𝑤 − 𝑤  is in W and 𝑤 − 𝑤  is in 𝑤  (because these are subspaces). 
We know that this common vector is in 𝑊⋂𝑊 = {0} . Thus  
𝑤 − 𝑤 =  𝑤 − 𝑤 = 0 , so 𝑤 = 𝑤and𝑤 = 𝑤 . 
4. The Gram-Schmidt Process and the QR factorization : 

We present a simple method for constructing an orthogonal (or orthonormal) basis for 
any subspace of 𝑅 . This method will then lead us to one of the most useful of all matrix 
factorizations.  
Example (4.1): 
Let 𝑤 = 𝑠𝑝𝑎𝑛 (𝑥 , 𝑥 ), where  

𝑥 =
1
1
0

and𝑥 =
−2
0
1

 

Construct an orthogonal basis for W. 
Solution: 
Starting with 𝑥 , we get a second vector that is orthogonal to it by taking the component of 𝑥  
orthogonal to 𝑥  
Algebraically, we set 𝑣 = 𝑥 , so  
𝑣 = 𝑝𝑒𝑟𝑝 (𝑥 ) = 𝑥 −  𝑝𝑟𝑜𝑗 (𝑥 ) 

𝑣 = 𝑝𝑒𝑟𝑝 (𝑥 ) = 𝑥 −
𝑥 . 𝑥

𝑥 . 𝑥
𝑥  

𝑣 = 𝑝𝑒𝑟𝑝 (𝑥 ) =
−2
0
1

− −
2

2

1
1
0

=
−1
1
1

 

Then [𝑣 , 𝑣 ] is an orthogonal set of vectors in W.  
Hence, [𝑣 , 𝑣 ] is a linearly independent set and therefore a basis for Wsincedim 𝑤 = 2. 
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Fig No. (2) : Orthogonal Basis for W 

Theorem (4.2): 
Let {𝑥 , … , 𝑥 } be a basis for a subspace W of 𝑅  and define the following.  
𝑣 = 𝑥 𝑤 = 𝑠𝑝𝑎𝑛 (𝑥 ) 

𝑣 = 𝑥 −  
𝑣 . 𝑥

𝑣 . 𝑣
𝑣 𝑤 = 𝑠𝑝𝑎𝑛 (𝑥 , 𝑥 ) 

𝑣 = 𝑥 −  
𝑣 . 𝑥

𝑣 . 𝑣
𝑣 −

𝑣 . 𝑥

𝑣 . 𝑣
𝑣 𝑤 = 𝑠𝑝𝑎𝑛 (𝑥 , 𝑥 , 𝑥 ) 

⋮ 

𝑣 = 𝑥 −  
𝑣 . 𝑥

𝑣 . 𝑣
𝑣 −

𝑣 . 𝑥

𝑣 . 𝑣
𝑣 − ⋯ −

𝑣 . 𝑥

𝑣 . 𝑣
𝑣 𝑤 = 𝑠𝑝𝑎𝑛 (𝑥 , … , 𝑥 ) 

Then for each 𝑖 = 1, … , 𝑘, {𝑣 , … , 𝑣 } is an orthogonal basis for 𝑊 . in particular, {𝑣 , … , 𝑣 } is 
an orthogonal basis for w. 
Proof 
We will prove by induction that, for each 𝑖 = 1, … , 𝑘, {𝑣 , … , 𝑣 } is an orthogonal basis for 𝑊 . 
      Since𝑣 = 𝑥 , clearly{𝑣 } is an (orthogonal) basis for 𝑊 = 𝑠𝑝𝑎𝑛(𝑥 ). 
Now assume that, for some 𝑖 < 𝑘, {𝑣 , … , 𝑣 } is an orthogonal basis for 𝑤 . Then  

𝑣 = 𝑥 −
𝑣 . 𝑥

𝑣 . 𝑣
𝑣 − 

𝑣 . 𝑥

𝑣 . 𝑣
𝑣 − ⋯ −  

𝑣 . 𝑥

𝑣 . 𝑣
𝑣  

By induction hypothesis, {𝑣 , … , 𝑣 } is an orthogonal basis for 𝑠𝑝𝑎𝑛 (𝑥 , … , 𝑥 ) = 𝑤 . 
Hence,  

𝑣 = 𝑥 − 𝑝𝑟𝑜𝑗 (𝑥 ) 

𝑣 = 𝑝𝑒𝑟𝑝 (𝑥 ) 

So, by the orthogonal decomposition theorem, 𝑣  is orthogonal to 𝑤 . By definition, 𝑣 , … , 𝑣  
are linear combination of 𝑥 , … , 𝑥  and, hence, are in 𝑤  therefore {𝑣 , … , 𝑣 }  is an 
orthogonal set of vector in 𝑤 . Moreover, 𝑣 ≠ 0, since otherwise 

𝑋 = 𝑝𝑟𝑜𝑗 (𝑥 ) 

Which is turn implies that 𝑥  is in 𝑊 .But this is impossible, since 𝑤 =

𝑠𝑝𝑎𝑛 (𝑥 , … , 𝑥 ) and {𝑥 , … , 𝑥 } is linearly independent. 
We conclude that {𝑣 , … , 𝑣 } is a set of i+1 linearly independent vectors in 𝑤 . 

Consequently {𝑣 , … , 𝑣 } is a basis for 𝑤 , since  
dim 𝑤 = 𝑖 + 1 

Example (4.3): 
 Apply the Gram-Schmidt process to construct an orthonormal basis for subspace 𝑤 =

𝑠𝑝𝑎𝑛 (𝑥 , 𝑥 , 𝑥 )of 𝑅 , where  
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𝑥 =

1
−1
−1
1

𝑥 =

2
1
0
1

𝑥 =

2
2
1
2

 

Solution: 
First we note that (𝑥 , 𝑥 , 𝑥 ) is a linearly independent set, so it forms a basis for w. 

 We begin by setting 𝑣 = 𝑥 . Next we compute the component of 𝑥  orthogonal to 
𝑤 = 𝑠𝑝𝑎𝑛 (𝑣 ) 

𝑣 = 𝑝𝑒𝑟𝑝 (𝑥 ) = 𝑥 −  
𝑣 . 𝑥

𝑣 . 𝑣
𝑣  

𝑣 = 𝑝𝑒𝑟𝑝 (𝑥 )                      =

2
1
0
1

−
2

4

1
−1
−1
1

 

𝑣 = 𝑝𝑒𝑟𝑝 (𝑥 )                      =

3 2⁄

3 2⁄

1 2⁄

1 2⁄

 

For hand calculations, it is a good idea to “scale”𝑣  at this point to eliminate fractions when 
we are finished, we can rescale the orthogonal set we are constructing to obtain an orthogonal 
set; thus, we can replace each 𝑣  by any convenient scalar multiple without affecting the final 
result. 
Accordingly, we replace 𝑣  by 

�̀� = 2𝑣 =

3
3
1
1

 

We now find the component of 𝑥  orthogonal to:  
𝑤 = 𝑠𝑝𝑎𝑛(𝑥 , 𝑥 ) = 𝑠𝑝𝑎𝑛(𝑣 , 𝑣 ) =  𝑠𝑝𝑎𝑛(𝑣 , �̀� ) 

Using the orthogonal basis (𝑣 , �̀� ) 

𝑣 = 𝑝𝑒𝑟𝑝 (𝑥 ) = 𝑥 −
𝑣 . 𝑥

𝑣 . 𝑣
𝑣 −

�́� . 𝑥

�́� . �́�
�́�  

𝑣 = 𝑝𝑒𝑟𝑝 (𝑥 ) =

2
2
1
2

−
1

4

1
−1
−1
1

−
15

20

3
3
1
1

 

𝑣 = 𝑝𝑒𝑟𝑝 (𝑥 ) =

−1 2⁄
0

1 2⁄
1

 

Again , we rescale and use �́� = 2𝑣 =

−1
0
1
2

 

We now have an orthogonal basis (𝑣 , �́� , �́� )  for w, to obtain an orthonormal basis, we 
normalize each vector 
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𝑞 =
1

‖𝑣 ‖
𝑣 =

1

2

1
−1
−1
1

=

1 2⁄

− 1 2⁄

− 1 2⁄

1 2⁄

 

𝑞 =
1

‖�́� ‖
�́� =

1

2√5

3
3
1
1

=

⎣
⎢
⎢
⎢
⎡3 2√5⁄

3 2⁄ √5

1 2√5⁄

1 2⁄ √5⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡3√5 10⁄

3√5 10⁄

√5 10⁄

√5 10⁄ ⎦
⎥
⎥
⎥
⎤

 

𝑞 =
1

‖�́� ‖
�́� =

1

√6

−1
0
1
2

=

⎣
⎢
⎢
⎢
⎡−1 √6⁄

0

1 √6⁄

2 √6⁄ ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡−√6 6⁄

0

√6 6⁄

√6 3⁄ ⎦
⎥
⎥
⎥
⎤

 

Then (𝑞 , 𝑞 , 𝑞 ) is an orthonormal basis for w. 
Definition (4.4):  
If A is an 𝑚 × 𝑛  matrix with linearly independent columns (requiring that 𝑚 ≥ 𝑛 ) then 
applying the Gram-Shamidt process to these columns yields a very  useful factorization of A 
into the product of a matrix Q with orthonormal columns and an upper triangular matrix R. this 
is the QR factorization, and it has applications to the numerical approximation of eigenvalues, 
which we explore at the end of this section. 

To see how the QR factorization arises let 𝑎 , … , 𝑎  be the (linearly independent) 
column of A. andlet 𝑞 , … , 𝑞  be the orthonormal vectors obtained by applying the Gram-
Schmidt process to A with normalizations from theorem (5-21) we know that, for each 𝑖 =

1, … , 𝑛 
𝑊 = 𝑠𝑝𝑎𝑛(𝑎 , … , 𝑎 ) = 𝑠𝑝𝑎𝑛 (𝑞 , … , 𝑞 ) 

Therefore, there are scalars,𝑟 , 𝑟 , … , 𝑟  such that  
𝑎 =  𝑟 𝑞 + 𝑟 𝑞 + ⋯ + 𝑟 𝑞         𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 

That is 
𝑎 =  𝑟 𝑞  

𝑎 =  𝑟 𝑞 + 𝑟 𝑞  
⋮ 

𝑎 =  𝑟 𝑞 + 𝑟 𝑞 + ⋯ + 𝑟 𝑞  
Which can be written in matrix form as 

𝐴 = [𝑎 𝑎 … 𝑎 ] = [𝑞 𝑞 … 𝑞 ]

𝑟 𝑟 … 𝑟
0 𝑟 … 𝑟
⋮ ⋮ ⋮ ⋮
0 0 … 𝑟

 

𝐴 = 𝑄𝑅 
Clearly,  
the matrix Q has orthonormal columns. It is also the case that the diagonal entries of 𝑅 are all 
non-zero. 
To see this, observe that if 𝑟 = 0, then 𝑎 is  a linear combination of 𝑞 , … , 𝑞  and, hence, is 
in 𝑊 . But then 𝑎  would be a linear combination of 𝑎 , … , 𝑎 , which is impossible, since 
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𝑎 , … , 𝑎  are linearly independent. We conclude that 𝑟 ≠ 0for 𝑖 = 1, … , 𝑛. Since R is upper 
triangular, it follows that it must be invertible.  
Theorem (4.5): 
Let A be an𝑚 × 𝑛 matrix with linearly independent columns. Then A can be factored as 𝐴 =

𝑄𝑅 , where Q is an 𝑚 × 𝑛  matrix with orthonormal columns and R is an invertible upper 
triangular matrix. 
Proof 
To prove this, suppose that A is an𝑚 × 𝑛 matrix that has a QR factorization then, since R is 
invertible, we have 

𝑄 = 𝐴𝑅  
Hence,𝑟𝑎𝑛𝑘 (𝑄) = 𝑟𝑎𝑛𝐾 (𝐴) 
But 𝑟𝑎𝑛𝑘 (𝑄) = 𝑛 
Since its columns are orthonormal and therefore, linearly independent so 𝑟𝑎𝑛𝑘 (𝐴) = 𝑛 too, 
and consequently the columns of A are linearly independent by the fundamental theorem. 
The QR factorization can be extended to arbitrary matrices in a slightly modified form. If A 
× 𝑛 , it is possible to find a sequence of orthogonal matrices 𝑄 , … , 𝑄   such that 

𝑄 , … , 𝑄 𝑄 𝐴 
In an upper triangular 𝑚 × 𝑛 matrix R then.𝐴 = 𝑄𝑅 
Where 𝑄 = (𝑄 , … , 𝑄 𝑄 ) is an orthongonal matrix.[6] 
Example (4.6): 

Find a QR factorization of 𝐴 =

1 2 2
−1 1 2
−1 0 1
1 1 2

 

Solution: 
The columns of A are just the vectors from example (4.3). The orthonormal basis for col(A) 
produced by the Gram-Schmidt process was; 

𝑞 =

1 2⁄

− 1 2⁄

− 1 2⁄

1 2⁄

, 𝑞 =

⎣
⎢
⎢
⎢
⎡3√5 10⁄

3√5 10⁄

√5 10⁄

√5 10⁄ ⎦
⎥
⎥
⎥
⎤

, 𝑞 =

⎣
⎢
⎢
⎢
⎡−√6 6⁄

0

√6 6⁄

√6 3⁄ ⎦
⎥
⎥
⎥
⎤

 

So: 
𝑄 = [𝑞 𝑞 𝑞 ] 

𝑄 =

⎣
⎢
⎢
⎢
⎡ 1 2⁄

− 1 2⁄
− 1 2⁄

1 2⁄

−3√5 10⁄

−3 3√5 10⁄

− √5 10⁄

− √5 10⁄

−√6 6⁄
0

√6 6⁄

√6 3⁄ ⎦
⎥
⎥
⎥
⎤

 

From theorem (4.5)  
𝐴 = 𝑄𝑅 

For some upper triangular matrix R. to find R, we use the fact that Q has orthonormal columns 
and, hence,  

𝑄 𝑄 = 𝐼 
Therefore, 
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𝑄 𝐴 = 𝑄 𝑄𝑅  
𝑄 𝐴 = 𝐼𝑅 
𝑄 𝐴 = 𝑅 

We compute: 𝑅 = 𝑄 𝐴 

=

1 2⁄ − 1 2⁄ − 1 2⁄ 1 2⁄

3√5 10⁄ 3√5 10⁄ √5 10⁄ √5 10⁄

−√6 6⁄ 0 √6 6⁄ √6 3⁄

1 2 2
−1 1 2
−1 0 1
1 1 2

 

=

2 1 1 2⁄

0 √5 3√5 2⁄

0 0 √6 2⁄

 

 
5. The Modified QR Factorization 
 When the matrix A does not have linearly independent columns, the Gram-Schmidt 
process as we have stated it does not work and so cannot be used to develop a generalized QR 
factorization of A. there is a modification of the Gram-Schmidt process that can be used, but 
instead we will explore a method that converts A into upper triangular form one column at a 
time, using a sequence of orthogonal matrices. The method is analogous to that of Lu 
factorization in which the matrix L is formed using sequence of elementary matrices.  
 The first thing we need is the “orthogonal analogue” of an elementary matrix, that is, 
we need to know how to construct an orthogonal matrix Q that will transform a given column 
of A-call it x –into the corresponding column of R-call it y. 
By theorem (4.2), it will be necessary that  
‖𝑥‖ = ‖𝑄𝑋‖ = ‖𝑦‖. 
Fig No.(3)  suggests away to proceed. 
 
 

 
 
 
 

Fig (3) : Modification of the Gram-Schmidt Process 
we can reflect x in a line  perpendicular to 𝑥 − 𝑦. If  

𝑢 =
1

‖𝑥 − 𝑦‖
(𝑥 − 𝑦) =

𝑑
𝑑

 

In the unit vector in the direction of 𝑥 − 𝑦, then 𝑢 =
−𝑑
𝑑

 is orthogonal to u. 

We can generalize the definition of Q as follows. If 𝑢 is any unit vector in 𝑅 . 
We define an𝑛 × 𝑛 matrix Q as: 

𝑄 = 𝐼 − 2𝑢𝑢  
Such a matrix is called a householder matrix (or an elementary reflector). 
6.Dual Codes: 
 There are many ways of constructing new codes from old ones. In this section, we 
consider one of the most important of these. 

x 
x-y 

y 
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First, we need to generalize the concepts of a generator and parity check matrix for a code. 
Definition (6.1): 
 For 𝑛 > 𝑚, an 𝑛 × 𝑚 matrix G and an (𝑛 − 𝑘) × 𝑛 matrix P (with entries in 𝑍 )are a 
generator matrix and parity check matrix, respectively, for an (𝑛, 𝑘) binary code C if the 
following condition are all satisfied: 

i. The column of G are linearly independent. 
ii. The rows of P are linearly independent. 
iii. PG=0 
Notice that property (iii) implies that every column V of G satisfies 𝑃𝑣 = 0 and so is a code 

vector in C. also, a vector y is in C if and only if it obtained from the generator matrix as 𝑦 =

𝐺𝑢 for some vector u in 𝑍 . In other words, C is the column space of 𝐺.  
To understand the relationship between different generator matrices for the same code, we 

only need to recall that, just as elementary row operations do not affect the row space of a 
matrix , elementary column operation do not affect the column space. For matrix over 𝑧 , there 
are only two relevant operation: interchange two columns (C1) and add one column to another 
column 𝐶2. 

Similarly, elementary row operations preserve the linear independence of the rows of P. 
moreover, if E is an elementary matrix and c is a code vector, 
Then, 

(𝐸𝑃) = 𝐸(𝑃𝑐) = 𝐸0 = 0 
It follows that EP is also a parity check matrix for C. thus, any parity check matrix can be 
converted into another one by means of  a sequence of row operations; interchange two 
rows(𝑅1)  and add one row to another row (𝑅 ) . We are interested in showing that any 
generator or parity check matrix can be brought into standard form there is one other definition 
we need. We will call two cods 𝐶 and 𝐶  equivalent if there is a permutation matrix M such 
that 

{𝑀𝑥: 𝑥 𝑖𝑛 𝐶 } = 𝐶  
In other words, if we permute the entries of the vectors in 𝐶  (all in the same way) we can 
obtain 𝐶 . For example: 

𝑐 =
0
0
0

,
1
0
0

,
1
0
1

,
0
0
1

 

and,  

𝑐 =  
0
0
0

,
0
1
0

,
1
1
0

,
1
0
0

 

are equivalent via the permutation matrix 

𝑀 =
0 0 1
1 0 0
0 1 0

 

permuting the entries of code vectors corresponds to permuting the row of generator matrix 
and permuting the columns of a parity check matrix for the code. 
 We can bring any generator matrix for code into standard form by mean of operation 
𝐶 , 𝐶  and R1. If 𝑅1 has not been used, then we have the same code;if R1 has been used, then 
we have an equivalent code. We can bring any parity check matrix for a code into standard 
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form by mean of operation 𝑅1, 𝑅2 andC1. If C1 has not been used, then we have the same 
code, if C1 has been used, then we have an equivalent code .The following example illustrate 
these points. 
Example (6.2): 
 Bring the generator matrix 

𝐺 =
1 0
1 0
0 1

 

Into standard form and find an associated parity check matrix. 
Solution: 
We can bring the generator matrix G into standard form as follows:. 

𝐺 =
1 0
1 0
0 1

↔
⎯⎯⎯

1 0
0 1
1 0

=
𝐼
⋯
𝐴

= 𝐺 

Hence,  
𝐴 = [1    0] 

So, 𝑃 = [𝐴  ⋮   𝐼] = [1  0   1] 
Definition (6.3): 
 Let C be a set of code vectors in 𝑍 . The orthogonal complement of C is called the dual 
code of C and is denoted 𝐶 . That is,  

𝐶 = {𝑥 𝑖𝑛 𝑍 : 𝑐. 𝑥 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 𝑖𝑛 𝐶 } 
Theorem (6.4) : 
If C is an(𝑛, 𝑘) binary code with generator matrix G and parity check matrix P, then 𝐶  is an 
(𝑛, 𝑛 − 𝑘) binary code such that: 

i. 𝐶 is a parity check. Matrix for 𝐶 . 
ii. 𝑃 is a generator matrix for 𝐶 . 

Proof 
By definition, G is an 𝑛 × 𝑘 matrix with linearly independent column, p is an (𝑛 − 𝑘) × 𝑛 
matrix with linearly independent rows, and 𝑃𝐺 = 0. Therefore, the rows of 𝐺  are linearly 
independent, the columns of 𝑃  are linearly independent and𝐺 𝑃 = (𝐺𝑃) = 0 = 0 

This shows that 𝐺  is a parity check matrix for 𝐶  and 𝑃  is a generator matrix for 𝐶 . 
Since  
𝑃 is𝑛 × (𝑛 − 𝑘) 
𝐶 is an (𝑛, 𝑛 − 𝑘) code. 
Example (6.5): 
 Find generator and parity check matrices for the dual code 𝐶  as follow  

𝑃 =
1 0 0 1
0 1 1 1

 

Solution: 

𝐶 = 𝑃 =
1 0 0 1
0 1 1 1

=

1 0
0 1
0 1
1 1

 

This matrix is in standard form with  
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𝐴 =
0 1
1 1

 

So a parity check matrix for 𝐶  is  

𝑃 = [𝐴 ⋮ 𝐼] =
0 1 1 0
1 1 0 1

 

Theorem (6.6): 
 If C is a self dual code, then: 

i. Every vector in C has even weight.  
ii. 1 is in C. 

Proof 
i. A vector 𝑥 in 𝑧  has even weight if and only if 𝑤(𝑥) = 0 in 𝑧  

But 𝑤(𝑥) = 𝑥. 𝑥 = 0 
Since c is self dual.  

ii. Using property (i) we have 1. 𝑥 
= 𝑤(𝑥) = 0 
In 𝑧  for all x in C. 

This mean that 1 is orthogonal to every vector in C.  
So 1 is in 𝐶 = 𝐶, as required.  
Definition (6.7): 
Quadratic form 
A quadratic form in n variables is a function 𝑓: 𝑅 → 𝑅 of the form  

𝑓(𝑥) = 𝑥 𝐴𝑥 
Where A is a symmetric 𝑛 × 𝑛matrix and x is in 𝑅 . We refer to A as the matrix associated 
with f. 
Example (6.8): 
What is the quadratic form with associated matrix 

𝐴 =
2 −3

−3 5
 

Solution: 

If 𝑥 =
𝑥
𝑥  

Then  
𝑓(𝑥) = 𝑥 𝐴𝑥 

𝑓(𝑥) = [𝑥 𝑥 ]
2 −3

−3 5

𝑥
𝑥  

𝑓(𝑥) = 2𝑥 + 5𝑥 − 6𝑥 𝑥  
Generalization: we can expand a quadratic form in n variables 𝑥 𝐴𝑥 as follows: 

𝑥 𝐴𝑥 = 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 + 2𝑎 𝑥 𝑥  

Thus, if𝑖 ≠ 𝑗, the coefficient of 𝑥 , 𝑥  is 2𝑎 . 

Theorem (6.9): 
 Every quadratic form can be diagonalized specifically, if A is the 𝑛 × 𝑛 symmetric 
matrix associated with the quadratic form 𝑥 𝐴𝑥 and if Q is an orthogonal matrix such that 
𝑄 𝐴𝑄 = 𝐷 is a diagonal matrix, then the change of variable 𝑥 = 𝑄𝑦 transforms the quadratic 
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form 𝑥 𝐴𝑥 into the quadratic form 𝑦 𝐷𝑦, which has no cross-product terms. If the eigenvalues 
of A are 𝜆 , … , 𝜆  and 𝑦 = [𝑦 , … . , 𝑦 ] , then 

𝑥 𝐴𝑥 = 𝑦 𝐷𝑦  
𝑋 𝐴𝑋 =  𝜆 𝑦 + ⋯ + 𝜆 𝑦  

Theorem (6.10): 
 Let 𝑓(𝑥) = 𝑥 𝐴𝑥 be a quadratic form with associated 𝑛 × 𝑛 symmetric matrix A.  

Let  the eigenvalues of A be 𝜆 ≥ 𝜆 ≥ ⋯ ≥ 𝜆 . Then the following are true, subject 
to the constraint ‖𝑥‖ = 1: 

i. 𝜆 ≥ 𝑓(𝑥) ≥ 𝜆  
ii. The maximum value of f(x) is 𝜆 ,  and it occurs when x is a unit eigenvector 

corresponding to 𝜆 . 
iii. The minimum value of f(x) is 𝜆  and it occurs when x is a unit eigenvector 

corresponding to 𝜆 . 
Proof 
As usual, we begin by orthogonally diagonalizing A.  accordingly , let Q be an orthogonal 
matrix such that 𝑄 𝐴𝑄 is the diagonal matrix  

𝐷 =
𝜆 … 0
⋮ ⋱ ⋮
0 … 𝜆

 

Then, by the principal Axes theorem, the change of variable 𝑥 = 𝑄𝑦 gives  
𝑥 𝐴𝑥 = 𝑦 𝐷𝑦 

Now note that: 
𝑦 = 𝑄 𝑥 

Implies that  
𝑦 𝑦 = (𝑄 𝑥) (𝑄 𝑥) 
𝑦 𝑦 = 𝑥 (𝑄 ) 𝑄 𝑥 

𝑦 𝑦 = 𝑥 𝑄𝑄 𝑥 
𝑦 𝑦 = 𝑥 𝑥 

Since 𝑄 = 𝑄  
Hence using 𝑥. 𝑥 = 𝑥 𝑥, we see that  

‖𝑦‖ = 𝑦 𝑦 

‖𝑦‖ = 𝑥 𝑥 
‖𝑦‖ = ‖𝑥‖ 

‖𝑦‖ = 1 
Thus, if x is a unitvector, so is the corresponding y, and the values of 𝑥 𝐴𝑥 and 𝑦 𝐷𝑦 are the 
same. 
i. to prove (i), we observe that if 𝑦 = [𝑦 , … , 𝑦 ] ,  
then 

𝑓(𝑥) = 𝑥 𝐴𝑥 = 𝑦 𝐷𝑦 
𝑓(𝑥) = 𝜆 𝑦 + 𝜆 𝑦 + ⋯ + 𝜆 𝑦  
𝑓(𝑥) ≤ 𝜆 𝑦 + 𝜆 𝑦 + ⋯ + 𝜆 𝑦  

𝑓(𝑥) = 𝜆 (𝑦 + 𝑦 + ⋯ + 𝑦 ) 
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𝑓(𝑥) = 𝜆 ‖𝑦‖  
𝑓(𝑥) = 𝜆  

Thus, 𝑓(𝑥) ≤ 𝜆  for all x such that ‖𝑥‖ = 1 
ii. if𝑞  is a unit eigenvector corresponding to 𝜆 . Then  

𝐴𝑞 =  𝜆 𝑞  
and 

𝑓(𝑞 ) = 𝑞 𝐴𝑞  
𝑓(𝑞 ) = 𝑞 𝜆 𝑞  

𝑓(𝑞 ) = 𝜆 (𝑞 𝑞 ) 
𝑓(𝑞 ) = 𝜆  

This shows that the quadratic form actually take on the value𝜆   and so, by property (i), it is 
the maximum value of 𝑓(𝑥) and it occurs when 𝑥 = 𝑞 . 
Definition (6.11): 

The general form of a quadratic equation in two variables x and y is 
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0 

Where at least one of 𝑎, 𝑏 and c is nonzero. The graphs of such quadratic equations are called 
conic section (or conics), since they can be obtained by taking cross sections of a (double) cone. 
(i.e, slicing it with a plane). The most important of the conic sections are the ellipses (with 
circle a special case), hyperbolas, and parabolas. These are called the nondegenerate conics. 
See fig No. (4) 
 
 
 
 
 
 
 

Fig.No.(4) : Nondegenerate Conics 
It also possible for a cross section of a cone to result in a single point, a straight line, or 

a pair of lines. These are called degenerate conics.  
The graph of a non degenerate conics is said to be in standard position relative to the 

coordinate axes if its equation can be expressed in one of the forms in fig No. (5 ). 
 
 
 
 

          𝑎 > 𝑏                                𝑎 < 𝑏                                    𝑎 = 𝑏 
 
 
 
 

Fig No. (5) : Non Degenerate Conics in Standard Position  
Definition (6.12): 
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         Where at least one of 𝑎, 𝑏, … . , 𝑓 is nonzero. The graph of such a quadratic equation is 
called a quadric surface. 
Example (6.13): 
 Identify the quadric surface whose equation is  

5𝑥 +  11𝑦 +  2𝑧 + 16𝑥𝑦 + 20𝑥𝑦 − 4𝑦𝑧 = 36  
Solution: 
The equation can be written in matrix form as 𝑥 𝐴𝑥 = 36,  where  

𝐴 =
5 8 10
8 11 −2

10 −2 2
 

We find the eigenvalues of A to be 18,9 and -9, with corresponding orthogonal eigen vectors 
2
2
1

,
1

−2
2

   𝑎𝑛𝑑  
2

−1
−2

 

Respectively, we normalize them to obtain  

𝑞 =

⎣
⎢
⎢
⎢
⎢
⎡
2

3
2

3
1

3⎦
⎥
⎥
⎥
⎥
⎤

,             𝑞 =

⎣
⎢
⎢
⎢
⎢
⎡

1

3

−
2

3
2

3 ⎦
⎥
⎥
⎥
⎥
⎤

            𝑎𝑛𝑑         𝑞 =

⎣
⎢
⎢
⎢
⎢
⎡

2

3

−
1

3

−
2

3⎦
⎥
⎥
⎥
⎥
⎤

 

And form the orthogonal matrix 
𝑄 = [𝑞 𝑞 𝑞 ] 

𝑄 =

⎣
⎢
⎢
⎢
⎢
⎡
2

3

1

3

2

3
2

3
−

2

3
−

1

3
1

3

2

3
−

2

3⎦
⎥
⎥
⎥
⎥
⎤

 

Not that in order for Q to be the matrix of a rotation, we require  
det 𝑄 = 1 

Which is true in this case. (Otherwise, det 𝑄 = −1and swappingtwo columns changes the sign 
of the determinant).            [50] 
Therefore 

𝑄 𝐴𝑄 = 𝐷 

𝑄 𝐴𝑄 =
18 0 0
0 9 0
0 0 −9

 

and with the change of variable  𝑥 = 𝑄�́� 
We get  

𝑥 𝐴𝑥 = (�́�)𝐷�́� 
𝑥 𝐴𝑥 = 36 

So 
18(�́�) + 9(�́�) − 9(�́�) = 36 

Or  
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(�́�)

2
+

(�́�)

4
−

(�́�)

4
= 1 

Conclusion:  
 
The study dealt with the modified QR factorization and its applications and we took the 

model study ( orthogonal ) and we came to the results of which is access to the relationship 
through the modified QR factorization and we focused on the applications link questioner to 
make the study of study come as an application for the modified QR factorization so they can 
be the beginning of advanced study in concept the modified QR factorization and its 
applications. 
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