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ABSTRACT 
We suggested integrating depth information in addition to regular RGB information 
allowing camera-based article localization in our study, which enables us broaden the 
existing -status-presentation. An autonomous driving system that identifies preceding 
cars at intermediate and long distances utilizing a range of sensors is advantageous for 
increasing driving performance and providing numerous features. However, because to 
the limits of each sensor, acquiring the required data is challenging if just LiDAR or 
cameras are employed in the identification step. Our combination models entirely 
outflank the pattern RGB network in both accuracy and confinement of the recognitions. 
To ease the road toward constructing, planning, and supporting the driving structures, 
CARLA encouraged an organic arrangement of exercises and worked around the 
important stage by the neighborhood. Time to impact is a significant time-sensitive 
wellbeing pointer for recognizing backside clashes in rush hour gridlock security 
assessments. A key weakness of the chance to crash idea is the premise of constant 
speeds across the span of a mishap. In this paper, we use conditions of movement to 
foster a summed-up definition for time to crash by loosening up the suspicion of 
consistent speed, steady speed increase, etc. This study further demonstrates how this 
approach may be applied to genuine facts, and the information acquired in the work is 
employed. Then, at that moment, time to impact is decided dependent on the knowledge 
of stable speed, consistent speed rise for driving and following cars. Our suggested 
approach is superior in precision and accuracy other than provided ways. 
Keywords: RGB camera, Depth camera, Sensor Fusion, Object detection, Angle 
Measurement, Slope. 
 

1. INTRODUCTION 

Several autonomous driving technologies have recently appeared. Combining several sensors 
existing in the automobile, 2such as lane maintenance, omnidirectional vehicle distance 
estimate, side vehicle recognition, and vehicle distance maintenance sensors, has resulted in a 
support system for safe vehicle driving [1-3]. This opens the route for entirely autonomous 
driving to become a reality. The charge-coupled device (CCD) vision sensor is the most critical 
of the sensors used in automobiles to allow autonomous driving [4-9]. The majority of driving 
tasks are visual in nature. The visual information is applied to study the road environment, the 
situation is identified, and the vehicle steering job is eventually defined by the driving task. 
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Thus, image recognition using vision sensors is crucial for autonomous vehicle safety 
assistance. The majority of driving tasks are visual in nature. The visual information is applied 
to study the road environment, the situation is identified, and the vehicle steering job is 
eventually defined by the driving task. 

The current automotive black-box system, on the other hand, is only exploited as a video 
recording device for accident identification. It will be conceivable to assist safe driving if the 
black-box product offers a feature for safe driving support. Image processing activities such as 
lane keeping, identifying whether the automobile in front is commencing or not, and traffic 
sign recognition are integrated in some devices. Existing black-box systems capable of 
identifying intelligent road conditions, on the other hand, may be used in regions where 
illumination or road conditions do not fluctuate substantially. For example, distinguishing the 
correct road condition is difficult in a site with insufficient illumination that is not an usual 
road setting, such as those under tunnels or bridges. 

Significant improvements have been accomplished towards continual identification 
frameworks utilizing single-pass convolutional neural organizations (CNN) (CNN). 
Nonetheless, in these ongoing recognitions we have recognized the object and with the leaping 
boxes and measure the distance and plot for improved execution and accurate anticipation. 
With the assistance of sensor combination (RGB and Depth) through it a profundity outline is 
created from which we measure the middle profundity of pixels of each item removes, through 
which we estimated the time to collision of the article. "In performing tasks like 'object 
detection' and classification [3], traditional computer vision techniques utilized hand-crafted 
features as input to a learned classifier"[4]. These techniques have been effectively expanded 
leveraging characteristics from many diverse sources such as 'thermal imaging' [5]and 
'depth' in increasing the detection-precision. Benenson et al. [6] have showed That "Depth 
may be a strong element allowing image preprocessing, decreasing the detection search space.” 

Deep learning, on the other hand, has beaten typical computer vision algorithms by a large 
margin since the CNNs'[7] inception. A CNN enabling the classification being frequently 
applied in combination with a sliding-window or other area proposal approach for 'object 
identification' [8]. "While these strategies have proved efficient, one important downside lays 
in its computationally intensiveness. These approaches provide broad variety of proposals, 
each of which must be assessed by a classification network. Sharing calculations across the 
region proposal and classification pipelines has assisted in overcoming some of these 
difficulties." 

Finally, single-pass detection networks, such 'YOLO and 'SSD' [9], are the current state-of-
the-art allowing rapid object recognition. By recasting 'object detection' [10] as a single 
regression problem, a single network may deliver ‘bounding box’ [11] coordinates & class 
scores simultaneously. Beyond being orders of magnitude quicker than early efforts, these 
networks also provide the bounding boxes’ computational benefit regarding complete picture 
capture (i.e., leveraging context information) (i.e., exploiting context information). This new 
data leads in increasingly better detectors, which transcend prior detection systems. 

2. Literature review 



ESTIMATION OF TIME TO COLLISION FOR AN EGO-VEHICLE USING SENSOR FUSION-BASED APPROACH 

 
Journal of Data Acquisition and Processing Vol. 38 (3) 2023      2230 

 

Jangannath A. et al. (2017), (2017), A driverless car is one that can travel without human 
intervention by sensing its surroundings. The collision detection and avoidance system is a 
device aimed to safeguard the safety of self-driving autos. The purpose of this project is to 
examine and give a solution for real-time 3D collision detection and avoidance algorithms 
based on Deep Learning and Convolutional Neural Networks. 

H. Bae et al. (2021), (2021), Using a variety of sensors to detect preceding automobiles at 
intermediate and long distances is important in autonomous driving for enhancing driving 
performance and developing various features. However, thanks of the restrictions of each 
sensor, acquiring the required data is problematic if just LiDAR or cameras are utilized in 
the identification stage. We devised a means of translating vision-tracked data into bird's 
eye-view (BEV) coordinates using an equation that projects LiDAR points onto an image, 
as well as a method of fusion between LiDAR and vision-tracked data, in this study. As a 
consequence of the findings of detecting the closest in-path vehicle (CIPV) under different 
settings, the recommended approach proved useful. strengthening ACC's overall stability. 

R. S. Dhara et al. (2019), (2019), A traffic accident happens when a car hits another car, a 
person, an animal, a piece of road debris, or another immovable item like a building, tree, 
or pole. Traffic accidents commonly result in injury, death, and property damage. This car 
accident may be lessened with the power of computers, and the best remedy is a self-
driving/autonomous automobile. We did a simulated test of a self-driving vehicle that can 
avoid collisions with obstacles on the route. Models were trained and tested on two 
simulator versions using a deep convolutional neural network and an open-source simulator 
given by Udacity. Different findings were reviewed in order to design a model that 
successfully prevents accidents. 

K. B. Jong et al. (2020), (2020), This study presents a real-time detection mechanism for a 
car driving ahead on a tunnel route in real time. The tunnel environment, in contrast to the 
main road environment, is irregular and has greatly decreased illumination, including 
tunnel lighting and light reflected from moving automobiles. The pollution created by 
automotive exhaust gas has resulted in harsh environmental legislation. A real-time 
detection methodology for autos in tunnel images trained in advance using deep learning 
methods is implemented in the proposed method. Brightness smoothing and noise reduction 
technologies are employed to determine the vehicle zone in the tunnel environment. After 
developing a learning picture using the ground-truth technique, the vehicle region is 
learned. The YOLO v2 model is utilized, which has the greatest performance when 
compared to deep learning algorithms. Experiments are used to fine-tune the training 
parameters. For the recommended approach applied to different tunnel road conditions, the 
vehicle detection rate is nearly 87%, while the detection accuracy is approximately 94%. 

We evaluated the improved usefulness of RGB + Depth fusion for real-time pedestrian 
detection systems by fusing RGB and depth data in a single-shot end-to-end network.[18]. 
We exhibited about depth being a valuable channel for pedestrian detection as it provides 
for a simpler depiction of the area using peoples' core outlines. This makes it simpler 
regarding network detecting the individual objects & providing more exact boundary 
bounds [19]. “This past study, on the other hand, was naïve in terms precise position 
regarding fusion in the network. Only few particular sites were examined in the network 
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design to conduct this sensor fusion” [20, 21]. No focus was paid to the trade-off between 
fusion point and maximum accuracy. Moreover, it was only empirically shown that the 
arbitrary midway fusion was optimum for a particular ‘object detection’ [22] job i.e., 
pedestrian identification. 

As a consequence, in this study, we explore where in the network this sensor fusion should 
be conducted. In our knowledge, no full search has been reported in the literature; where 
the flawless point being in fusing procedure regarding the two data stream, both in the 
instance of ‘RGB + Depth’ and in the case of ‘RGB + Depth’ [23]. Apart from that, we test 
our system utilizing ‘object detection’ [24] in particular and on multiple datasets using 
various depth acquisition techniques. Maybe, where these gains are most visible is in the 
car linked sector where numerous security frameworks have been given. It is estimated; 
mishaps’ 90% are brought by by human error, primarily because of interruptions, 
misunderstanding or unavailability of knowledge on the scenario [25]. TTC (Time to 
Crash) is the most well-known time-sensitive security pointer. TTC [26,27] talking to the 
time amount passing till a backside accident if the track & vehicle speeds are maintained. 
TTC has shown beneficial tool notably in identifying between basic & common operations 
in vehicle [28,29] following scenarios. 

The aim of the TTC [30] which this work is focused on is self-explaining. The computation 
should produce the time until our object – In this example our model car – collides with 
another object. While the collision object might be not moving and so be static, it could 
also be a moving and hence dynamic object. The issue can arise whether the computation 
of TTC [30] is even required when a simple use of the break based on the distance 
approaching the collision objects would be adequate. This would generally be the case for 
static objects but as soon as the collision object is dynamic it requires a route estimate to 
evaluate if the model car would clash in the future. That manner, assuming the TTC [30]is 
high enough, it would be feasible to compute a new course for the model car or change its 
velocity in order to escape the approaching accident. Another thinkable use is to follow a 
new vehicle; in that case the TTC [31] needs to keep the same. 

3. PROPOSED SYSTEM MODEL  

Figure 1, illustrates tackles the process of an RGB sensor successfully supporting the camera 
with studying the situation being captured and chooses the measure of light needed to offer an 
all-around uncovered image. The sensor gathers information on the brilliance of the topic, and 
thereafter enhances openness by modifying the shade speed, gap and ISO affectability as 
requirements be. By dissecting every single pixel in the edge, this invention produces a general 
image that has been painstakingly developed. In the aftermath of creating a broad image. 
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Figure1: Proposed System Workflow 

The angle determined tells at what angle the detected object is so that in the future we may 
estimate the steering angle required to prevent collision with this added knowledge. The 
records are created of angle and distance measurement and by human control, the velocity of 
the vehicle or we may show the detected item and the angle in the particular picture. The 
position of the angle is also measured i.e., if it is on right side or left side. 
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2.1 RGB Camera 

An apparent camera sensor which being an imager, collecting noteworthy light (400~700nm) 
& incorporating the electrical sign modifications, simultaneously, at that point, sorts out the 
data in giving photos & video transfers. Noticeable cameras employ frequencies of light from 
400~700nm, which is the same range that the natural eye senses. Noticeable cameras are 
meant to generate photos imitating human eyesight, capturing light in red, green, and blue 
frequencies (RGB) for exact shading depiction. Current security and reconnaissance cameras 
perform this at HD objective or higher and accompany an assortment of focal point options 
for wide-point or fax viewpoints to distinguish targets and objects in the scene. The “RGB” 
camera gathers photographs from the scene by means of whether it being a conventional 
camera. The “RGB” camera functions like any other camera, capturing the scene- based 
photographs. 

2.2 Carla. Color Converter 

“In case enable-post process-effects are well empowered, a post-measure impacts-cluster 
being effectively implemented over the image; completing the authenticity. 

i. Vignette: darkens the screen’s border.  

ii. Grain jitter: facilitating the render with some sound.  

iii. Bloom: The area being covered is engulfed in a blaze of light. 

iv. Auto exposure: reenacts the eye's variation into more obscure or more dazzling places by 
changing the picture gamma. 

v. Lens flares: Recreates the magnificent objects over the focal point. 

vi. Depth of field: obscures protest close or extremely far away from the cameras. 

In Figure 2, the sensor tick displays about the rapidity being needed by the sensor in 
capturing the information. A number - 1.5 suggesting about the time the sensor requires in 
taking an image per second & a half. Naturally, worth of 0.0 signifies as rapidly as may be 

expected.” 
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Figure 2: Image captured by RGB camera 

2.3 Depth Camera 

A depth camera, then again, includes pixels that have an additional mathematical worth linked 
with them, that quantity being the separation from the camera, or "depth." Some depth cameras 
feature both an RGB and a depth framework, which may deliver pixels with every one of the 
four characteristics, or RGBD. The two separate components being continually be offered 
targeting ‘depth’ sense: “An IR (Infra-Red) projector, and an IR camera. The IR projector 
spreads an IR light’s example dropping on items around it like an ocean of dabs. We can't 
notice the dabs on the grounds where the light is thrown in the Infra-Red shading range: But 
the IR camera may detect the spots. An IR camera is generally comparable to a conventional 
RGB camera with the difference which the photographs it captures are in the Infra-Red shading 
range. Thus, nothing unduly fancy going on there, nevertheless no genuine depth sense”. 

 
                 
                       Figure 3: Depth Image created with depth map 
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Figure 3 illustrates the depth image obtained using depth map. The camera transmits this 
distorted dot pattern’s streaming towards the depth sensor's CPU, which utilizes the dots' 
displacement to compute depth. The pattern being distributed out on near things & thick on 
distant ones. Such 'worked out' depth map may be read into our computer through the depth 
sensor, or the signal may be received directly from the IR camera. In generating the elements’ 
depth map; the camera supplies raw scene's data commonly codifies the distance between each 
pixel & the camera (also known as depth buffer or z- buffer) (also known as depth buffer or z- 
buffer). “The resultant Carla. picture should now be saved to disc using a Carla. color 
Converter, which will transform the distance recorded in RGB channels into a [0,1] float 
indicating the distance & then convert it to grayscale. In gaining a depth view in Carla. color 
Converter, you have two options: Depth and Logarithmic depth.” 

2.4 Depth Map 

A ‘depth map’ may be characterized as a "image or image channel containing data on the 
distance between the scene-objects' surfaces as perceived from a given perspective. 
Understanding geometric connections within a scene demands evaluating depth. A ‘depth map’ 
being an image or image channel in 3D computer graphics and computer vision; comprising 
the information on the distance between scene objects' surfaces from a perspective. The words 
depth buffer, Z-buffer, Z-buffering, and Z-depth are related & may be equivalent. The "Z" in 
these expressions referring towards the convention which a camera's principal view- axis 
being in the camera's Z axis’ direction, rather than the scene's absolute Z axis. 

 

Figure 4: Depth map of a RGB Image 
 
The "depth map" camera offers an image 24-digit floating accuracy point systematized in the 
RGB shading space’s 3 channels. R - > G - > B being the request from fewer towards more 
huge bytes. 
 

1. To decode our depth, we must first get the int24. 
                           

 norm = (R + G * 256 + B * 256 * 256) / (256 * 256 * 256 - 1)                         (1) 
 

where norm variable contains normalized image pixel values.  
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2. And finally multiply the units that we want to get. We have set the far plane at 1000 meters. 

in meters = 1000 * normalized                                                            (2) 

in-meters contains the variable pixel depth in meters 
 
In figure 4, the produced “depth map” pictures are often transformed to a logarithmic 
grayscale for presentation. A point cloud may also be derived from depth photos. 
 
2.6 Relative Velocity 
 
The relative velocity of an item is defined as its speed in relation to another observer. It is the 
rate at which one item's relative position progresses in comparison to another. As an example: 
When you are in a car, mode of transportation, or train, you may see the trees, structures, and 
various other things outside moving in backward. However, would they claim they are actually 
moving backwards? No, you're completely aware that your car is moving while the trees remain 
still on the ground. However, for what purpose do the trees appear to be going backwards at 
that point?. Likewise, the co-travelers with you who are moving seem fixed to you 
notwithstanding moving. This is on the grounds that in your edge both you and your co-
travelers are moving together, which implies there is no overall speed among you and the 
travelers. Though the trees are fixed while you are moving. The general speed is the speed of 
an item or spectator an in the rest edge of another article or the onlooker B. The overall equation 
of speed is: Velocity of A relative to B is: 

 
                                               Vab = Va− Vb………………………………………………….
 (3) 
 
Likewise, The relative object-velocity B pertaining the object an is provided via, 
 
                                              Vba = Vb− Va………………………………………………                 
(4) 

 
We may observe from the two expressions above ; 

 
                                               Vba = Vb− 
Va…………………………………………………….. (5) 

 
Despite the fact; about both the relative velocities’ equality in magnitudes. Mathematically, 

 
                                              

⃒Vab⃒=⃒Vab⃒……….……..…………….…………………………………(6) 
 

4. UNIFORM MOTION 
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If a body travels the same distance in the same time amount, the time intervals’ shortness 
doesn’t matter, simply it would be in uniform motion. Figure 6 illustrates a uniform motion’s 
distance time graph producing a straight line. 

 
 

Figure 6: Distance Time Graph 

 Accelerated Motion 

The word acceleration appears to be well-known; it is defined as "the rate at which an 
object's velocity varies over time." There is still a word, 'Uniformly Accelerated Motion,' 
which is difficult to grasp since how can an attribute characterized by a rate of change be 
deemed uniform? Figure 7 depicts the acceleration of the ego vehicle. 
 

Figure 7: Acceleration of the ego vehicle 
 

 Uniform acceleration motion 

There exists a perception - uniform speed increase defined by an item’s speed increase, 
which stays consistent time-independent. Simply said, a number equivalent towards the 
speed-increase & not varying as being time function on movement. A ball going down a 
slant, a skydiver leaping out of an aircraft, a ball dropping from the stepping stool's highest 
point, & a bike with locked brakes all being the examples regarding 
uniform speed movement models. Because of the obstruction of gravity as well as contact. 
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In any case, these are still a portion of the situations where speed increase would be uniform 
if gravitational power and erosion is viewed as nothing. 

 
v = u + at (7) 

 
s = ut + ½at² (8) 

 

v2= u2 + 2as 

 
(9) 

 

Where the initial velocity being denoted by (u), final velocity being denoted by (v), acceleration 
being denoted by (a) & its displacement being denoted by (s). 
 
In figure 8, if v1 is moving with the constant velocity and v2 is a stationary object, then 
relative velocity(rv): 
 

rv= v1-v2 (10) 

 
rv= v1 (11) 

 

Since v2=0, 
 

 
 

Figure 8: left object having velocity v1, when both the objects are moving in 
same direction. 

 

In figure 9, if v1 and v2 both are moving with the constant velocity then, in the same 
direction, and v1 > v2 then rv will be: 
 

rv= v1 - v2 (12) 
 

rv>0 (13) 

 
Hence relative velocity will be positive, so the objects will collide 
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Figure 9: both objects are moving objects in same direction.  
 
 
 

 
 

Figure 10: v1 and v2 travel in opposite direction. 
 

In figure 10, if v1  and v2 are moving in opposite direction, then  v2 will be negative and 
relative velocity will always be positive, hence the objects will collide. 

Simulation Model 

1. The code is broken into two portions. It is, nonetheless, suitable to add code to each component; 
the two of them access analogous code for the key programming arrangements, which is handy 
for jobs that must be accomplished in the two. 

2. 2. The similarity inside the code is managed by a Robot-Operating-System (ROS), which 
utilizes supporters and distributors on hubs to communicate between the contents. For example, 
the Time to Collision determined by my material will be transferred to a location through a hub. 
This framework facilitates the design of a measured code structure. 

3. Since the transport of the 1:10 model car components were postponed and the admittance to the 
test track was in comprehensible about then, the usage of the CARLA (CAR Learning to Act) 
test system proved to be effective to obtain the information essential for the estimates. This 
means that the final items were never tested on the authentic model car. 

4. The route into the strategy is a simple, straightforward approach in choosing when the "subject" 
vehicle will "touch" a "target" vehicle. As the per user may assume, the mathematical forms 
accepted for two automobiles fundamentally effect the complexity & time required for the 
calculations. 

Despite the fact that we recognized that the cars are fundamentally square forms when 
projected to the plane, we need to control the cushion areas in determining the distance to 
identify the item. Hence why the form employed in the test need to be the real square shape. 
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It needs to be larger or maybe an alternative form. Another motivation to examine distinct 
forms is thatthe mathematical highlights of the shape will affect the complexity of the 
computation. In theaccompanying text, four computations are spoken about dependant on 
distinct forms. Before estimate of this we first need to notice the concerned item in the area of 
perspective on our inner self vehicle to do this we need to grow an insight model for it. With 
a camerasensor attached to our inner self vehicle and a depth camera for sensor fusion we can 
easily identify the objects like walker traveler vehicles, trucks along-side the bounding boxes 
around them, and measure the distance and angle with the location of the angle on the constant 
velocity(m/s). The CARLA test system incorporates a flexible customer worker engineering. 
As it focuses on practical consequences, the ideal match would be operating the worker with 
a devoted GPU, especially when handling AI. The user side contains a user module, 
commanding the performers on scene-rationale and creating world circumstances. This 
becoming performed by employing the CARLA API (in Python or C++), a layer intervening 
involving employees & consumers; assisting in ongoing expanding in supplying fresh 
functionality. Assortment of information in Carla world where we operated personality cars in 
autonomous mode throughout Carla world then noted or remarked on the information 
physically with programming nomenclature. The material is Split in two sections: preparing 
data (3426 photographs) and testing data (364 images) (364 images). Along with their remarks 
related to each photo in particular, envelopes. TensorFlow 2.2 Object Detection is an extension 
of the TensorFlow Object Detection-API. 

TensorFlow 2.2 Object Detection enables you to create an assortment of cutting-edge object 
recognition models beneath a brought together system, including Google Brain's best in class 
model, Efficient (performed here) (executed here). Furthermore, object identification models, 
for the most part, enable you to create your system to recognize things in a scenario utilizing 
bounding boxes and class markers. There exist several strategies you may use deep learning 
procedures to exhibit this problem, and the TensorFlow2 Object Detection API enables you to 
convey a wide variety of models and methodologies to achieve this goal. We train the smallest 
EfficientDet model (EfficientDet- D0) 512x512. Number of steps necessary to prepare is 
8000k, takes 10 hours. of focused training and on GPU Nvidia 1650 GTX GeForce 4 GB 
RAM. Assets offered by Google Colab Pro. To calculate the distance, we first need to identify 
the concerned object in the field of view on our conscious vehicle. To do this, we need to 
create an insight model for it. With a video sensor attached to our conscious vehicle we will 
distinguish the things like walker traveler automobile, truck alongside age of bounding boxes 
surrounding them. 

The model applied for object locating is the discerning model. Item identification is a way to 
differentiate class events to which an object has a position. 

We measured the time to collision of an object, pedestrian, bus, or any object on the road, so 
by calculating the parameters, “ Img _height(px), Img _width(px), Left(px), Right(px), 
Top(px), Bottom(px), Centre _x(px), Centre _y(px), Obstacle (type of obstacle on the road), 
speed (m/s), Acceleration(m/s2), Angle (Degrees) of each object from our ego vehicle, and 
can detect the time to collision(sec) and distance to collision(m).” 
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x (px) 

Centre_
y (px) 

Obstacl
e 
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(m/s) 

Accel
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Angle 

Distan
ce to 

collisio
n Time to 

Collisio
n (s) Heig

ht 

widt
h 
(px) 

(px) (px) ration 
(degree

s) 
(m) 

(px)       (m/s)     

700 1100 912 1080 
36
3 

412 996 388 ['car'] 23 2 55 62 7.87 

700 1100 973 1097 
35
8 

430 1035 394 ['car'] 23 2 58 55 7.42 

700 1100 885 977 
37
5 

438 931 406 ['bike'] 24 2 53 47 6.86 

700 1100 468 518 
58
3 

700 493 641 
['walker

'] 
25 1 49 1 1.41 

700 1100 867 948 
34
2 

387 908 365 ['truck'] 22 5 47 88 5.93 

Table 1: To find time to collision(m) and distance to collision(s). 

 

We have experimented with different scenarios in Carla simulation environment here our 
method is detecting the obstacle in its vision and calculating various information they are 
angle at which the obstacle is, distance at which obstacle is and finally time to collide to 
detected object we ran our ego vehicle in simulation at various speed and collected this 
information. 
 

 

Figure 11: Time to collision (TTC) and distance to collision (DTC) graph 
 
In figure 11, the graph represents the comparison between distance to collision and time to 
collision of our ego vehicle, as the distance to collision (blue) increases the time to collision 
(red) decreases and vice versa. The graph represents the velocity of our ego vehicle. 
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Figure 12: Distribution of detected object 

In figure 12, the graph represents the Distribution of detected object on the road i.e., 
passenger _car (28), Truck (5), Walker (3) and Motorcycle (2). Hence maximum number 
of objects belongs to passenger car category. 

 

 
Figure 13 (a) 

       
 

 
Figure 13 (b) 

Figure 13 (a) symbolizes a passenger automobile which is recognized with the RGB camera and 
to identify it we have generated ‘bounding boxes’ [29] around it on which the distance is 
estimated in meters i.e., 17m, angle is 55 deg and slope is -8.69. 

Figure 13 (b) symbolizes a pedestrian which is recognized with the RGB camera & in detecting 
it we have generated bounding boxes around him on which the distance being computed in 
meters i.e.,39m, angle is 28deg and slope is -1.23. 
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               Figure 14 (a)    Figure 14 (b) 

 

 
                 

              Figure 14 (c) 

Figure 14 (a) depicts the vehicle with distance to collision (57.6), angle (11) and time to 
collision (7.55), Figure 14 (b) shows the vehicle with distance to collision (48.0), angle (14) 
and time to collision (5.93), Figure 14 (c) shows the vehicle with distance to collision (36.0), 
angle (21) and time to collision (6.0). 

 

 
 

Figure 15: errors in the estimated TTC for the vehicle- vehicle collision 
scenario. 

 
In above graph 15[31,] we have experimented different scenarios for Time to collision 
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warning as we can see there were 4 scenarios of vehicle-pedestrian collision, as seen in 
graph when actual TTC is greater than 3 sec our method is able to give warning with very 
less error margin of 0.04 -0.05 sec and in other scenarios also our methods error margin is 
also very small as compared to other method. 
 

 
 

Figure 16: difference in ground truths and estimated distances. 
 
In this graph 16, [31], we estimated the Mean error in Time to collision (TTC)warning in a 
vehicle-pedestrian collision. We experimented with four situations and found that our 
technique performed better than the compared method. The accuracy of our suggested 
method is 1-2% higher in both graphs (15,16) considering two different scenarios, which is 
noteworthy in the context of autonomous cars. 
 
Conclusion 
In this research, we suggested a technique to identify a vehicle going ahead in a tunnel setting. 
In the suggested approach, a vehicle detector was developed utilizing a YOLO v2 learner. The 
learning was done on road photos recorded in different tunnel settings to build the detector. 
Sensor fusion refers to the ability to focus on merging data from several radars, lidars, and 
cameras to build a single model or world view surrounding a vehicle. Sensor fusion is the 
capacity to concentrate on combining data from numerous radars, lidars, and cameras to form 
a single model or world view around a vehicle. The final model is more exact as the strengths 
of the numerous sensors are balanced. Vehicle systems may now incorporate sensor fusion 
information to allow more intelligent behavior. A vehicle may possibly apply sensor fusion to 
aggregate data from several sensors of the same kind. This increases perception by taking 
advantage of slightly overlapping sight-areas. The present study highlights recent 
breakthroughs in Carla-based object detection. 
We presented an in sightful study on the solutions for training data and fusion procedures 
(RGB+Depth Camera). Here with the assistance of depth map and coordination of RGB camera 
we determined distance to impact. Hence, we conducted object detection on various items or 
people at constant velocity. Sensor fusion-based detection systems have the offering benefit 
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existing in a more precise accuracy -estimation across a larger range of operational conditions. 
Clearly, weaknesses in obstacles localization and evaluation of their kinematical elements 
might render the suggested computation findings erroneous.  
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