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ABSTRACT 
This research explores the clustering ensemble problem, which tries to aggregate various base 
clustering to generate performance that is superior to that of the individual one. As a weighted 
linear combination of the connective matrices from various base clustering, the existing 
clustering ensemble methods typically create a co-association matrix, which indicates the 
pairwise similarity between samples. The resulting Co-association matrix is then adopted as 
the input of a pre-existing clustering algorithm, such as Meta clustering. The co-association 
matrix, meanwhile, could be dominated by weak base clustering, leading to weak performance. 
In order to address the issue, we suggest a new matrix of similar label approximation based 
approach in this study. We specifically create a Cohesive Matrix, which comprises a small but 
highly reliable set of links between samples, by examining whether two samples are grouped 
to the same cluster with various base clustering. The Cohesive Matrix and the Co-association 
matrix are then stacked to create a three-dimensional Matrix, whose label correspondence 
quality is further investigated to convey the Cohesive Matrix's information to the Co-
association matrix and create a more accurate co-association matrix. We frame and effectively 
solve the proposed approach as a smooth confined optimal solution. Comparing the proposed 
model to 11 state-of-the-art approaches, experimental results over 7 benchmark data sets 
demonstrate that it delivers a breakthrough in clustering performance. To the best of our 
knowledge, this study to investigate the potential of a clustering ensemble using a matrix of 
similar label, which is fundamentally different from other methods. Last but not least, our 
technique just has one easily adjustable parameter. 
Introduction:  
The purpose of the vital but difficult unsupervised task of clustering is to divide a set of samples 
into cohesive subgroups. Many applications, including recommender systems, community 
identification, and picture segmentation, can be framed as a clustering problem. Numerous 
clustering methods have been proposed throughout the years, such as K-means and Meta 
clustering. Hierarchical clustering, matrix factorization, Gaussian mixture models, and others. 
Since each technique has benefits and disadvantages of its own, no technique can always 
dominate another. A clustering approach often includes a few hyper-parameters, on which its 
effectiveness greatly depends. Additionally, it can be challenging to adjust the hyper-
parameters, and some algorithms, like K-means, are quite sensitive to initialization. These 
dilemmas make it more challenging to select the best clustering technique for a normal 
clustering task. In order to do this, the clustering ensemble method was developed. Its goal is 
to construct a consensus clustering that performs better than the base clustering given a set of 
base clustering created by various methods or the same method with various hyper-parameters 
and initializations. Clustering ensemble is more challenging than supervised methods, as 
voting and other popular supervised methods procedures cannot be easily applied to clustering 
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ensemble whenever sample labels are not present. Existing techniques often learn a pairwise 
association matrix from the base clustering before applying pre-made techniques like Meta 
clustering to the resulting matrix to obtain the final clustering result. We basically introduced 
by U.Soni in 2022 classify the existing approaches into two groups based on the way the 
pairwise co-association matrix is generated: 

1. In order to develop a pairwise similarity matrix, the first class of approaches treats the 
base clustering as new multilayer perceptron (as illustrated in Fig. 1-A). For instance, 
clustering ensemble was defined as a convex matrix of similar label representation issue 
by Gao in 2016, searched for a dense affinity matrix for clustering ensemble using a 
Frobenius norm self-representation model. 

2. The Co-association matrix (shown in Fig. 1-C), which summarizes the co-occurrence 
of samples in the same cluster of the base clustering, is the foundation of the second 
category of approaches. Co-association matrices were first introduced by Fred and Jain, 
and ever since then, they have gained popularity as a key fundamental technique in 
clustering ensembles. Hypothetically, weighted K-means clustering reduces computing 
complexity by theoretically bridging the co-association based technique to weighted K-
means clustering. 

Numerous sophisticated approaches for building co-association matrices have recently 
been developed. For instance, suggested a locally weighted Co-association matrix after 
taking the uncertainty of each base clustering. Cluster-wise similarities were employed to 
improve the conventional co-association matrix. A self-paced learning method for the Co-
association matrix was suggested. View the specifics in the next section. We note that the 
former co-association matrices of earlier research has variations in weighted linear 
combination of the connective matrices (as shown in Fig. 1-B) from various base clusters. 
When some base clustering performs poorly, they dominate the Co-association matrix and 
significantly lower clustering performance. In order to improve the Co-association matrix 
from a global standpoint, we provide a unique restricted matrices of similar label 
approximation (MSA) model in this study. We then build a Cohesive Matrix, whose 
element determines whether or not two samples are from the same cluster in all of the base 
clustering, as illustrated in Fig. 1-D. We next combine the standard Co-association matrix 
with the Cohesive Matrix to create the 3-dimensional (3-D) Matrix depicted in Figure 1—
E, which is made up of additional matrices with approximated labels. The new proposal 
can refine the Co-association matrix by examining the label correspondence, propagating 
the Cohesive Matrix's highly reliable information to the co-association matrix. This refined 
Co-association matrix is then used as the input of available clustering method to produce 
the final clustering result. Practically speaking, the new proposal is an alternate iterative 
solution to a convex optimization problem. We test the suggested model against seven 
benchmark data sets and 11 clustering ensemble techniques. The range of research prove 
that the suggested model performs noticeably better than existing approaches. We believe 
this study to investigate the impact of similar label matrices on clustering ensembles. 

Related Work: 
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Notation: We use letter 𝓐 to indicate array-matrix (an algebraic object that describes a 
multi-linear relationship between groups of algebraic objects related to a vector space.), 
A to denote matrices, a and a to denote vectors and scaler. Let 𝓐 (i, j, k) stand for the 3-D 
Matrix (i, j, k) th element. a(i) indicates the i-th entry of vector a, while A(i, j) indicates 
the(i, j)-th member of matrix A. Matrix  𝓐 A's i-th frontal slice is denoted as 𝓐. (:, :, i). 
Matrix tier: In this study we use a matrix nuclear norm computed by label single value 
decomposition (kilmer 2013) to measure the label. Especially the 3-d Matrix 𝓐 ϵ 𝑅 ∗ ∗  
can stated as 

𝑨 = 𝑼 ∗ 𝑺 ∗ 𝑽𝑻    (1) 
Here𝑼 ϵ 𝑹 ∗ ∗  and 𝑽ϵ 𝑹 ∗ ∗ are the two analogous label, 𝑺 ϵ 𝑹 ∗ ∗  is an 
diagonal label, ∗ and T denote label product and label transpose, respectively 

 
Figure- 1: Using three base clusters, represented by π1, π2, and π3, and six input samples, 
represented by x1, x2, x3, x4, x5, x6, as an example, the proposed approach is demonstrated. 
The limited but very reliable information present in the Cohesive Matrix can be used to 
improve the co-association matrix's quality by examining the label correspondence of the 
created 3-D matrix. 
 

Algorithm 1 l-SVD of a 3-D matrix (Zhang 2014) 

Input: 3-D Matrix 𝓐 ϵ 𝑅 ∗ ∗  

1: Perform FFT on 𝓐, i.e., 𝓐 f = fft(𝓐, [ ], 3); 
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2: for k = 1: n3; do 

3: Perform SVD on each frontal slice of Af , i.e., 

[U,S,V]=SVD(𝓐 f (:, :, k)) ; 

4: Uf (:, :, k) = U, Sf (:, :, k) = s, Vf (:, :, k) = V; 

5: end 

6: Perform inverse FFT on Uf, Sf and Vf, i.e., U = 

ifft(Uf, [], 3), S = ifft(Sf, [], 3) and V = ifft(Vf, [], 3); 

Output: U, S and V. 

 
The complete definitions of the matrix-related operators described above may be found in 
(Zhang 2014). The L-SVD form of a matrix can be derived with the fast Fourier transform 
(FFT is nothing but computation of discrete Fourier transform in an algorithmic format, 
where the computational part will be reduced.) efficiently as shown in Algorithm 1 because 
the matrix product can be computed in the Fourier domain efficiently (Kilmer 2013). The 
matrix nuclear norm is described by Zhang (2014) as the sum of the absolute values of the 
diagonal entries of 𝑺, i.e.  

‖𝓐‖⍟ = ∑ ∑ |𝑺(𝒊, 𝒋, 𝒌)|.
𝒏𝟑
𝒌 𝟏

𝒎𝒊𝒏(𝒏𝟏,𝒏𝟐)
𝒊 𝟏   (2) 

                                                                      ⍟ 𝒊𝒔 APL Functional Symbol Circle Star 
Formulation of Clustering Ensemble: Given a data collection 𝒳 = [𝑥 , 𝑥 , … 𝑥 ] ∈ ℝ ∗  

containing n samples, each sample 𝑥 ∈ ℝ ∗ , and 𝑚 base clustering ∏ =

[𝜋 , 𝜋 , … 𝜋 ]𝜖ℝ ∗  where each base clustering 𝜋 ∈  ℝ ∗  is an 𝑛-dimensional vector 
with the 𝑗-th element 𝜋 (𝑗) representing the cluster The cluster indicators in various base 
clustering for clustering ensemble are often unique. A fictitious example with 6 samples 
and 3 base clustering is shown in Fig. 1-A. The goal of a clustering ensemble is to combine 
several m base clustering in order to outperform each one separately. 

Proposed Method:  
The preceding techniques, which create a Co-association matrix as the linear combination 
of connective matrices, are susceptible to some subpar base clustering. To do this, we 
suggest a brand-new approach based on matrix of similar labels approximation that may be 
used to improve the original co-association matrix. 

Problem Formulation: 
First, we build a Cohesive Matrix (as seen in Fig. 1-D), which checks if two samples are 
clustered to the same category under every base clustering, in order to refine the co-
association matrix. It is important to note that the Cohesive Matrix's components are 
extremely trustworthy data that we might extrapolate from the base clustering. In particular, 
using the Co-association matrix, we might immediately obtain the Cohesive 
Matrix  𝑀𝜖 ℝ ∗  , i.e. 
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𝑀(𝒊, 𝒋) =
𝟏 𝒊𝒇 𝑨(𝒊, 𝒋) = 𝟏
𝟎  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆   

                      (𝟑) 

The Cohesive Matrix and the Co-association matrix are then stacked to create the 3-D 
matrix  𝓟𝜖ℝ ∗ ∗ , where 𝓟(: , : , 1) = 𝑴  and  𝓟(: , : 2) = 𝑨. The produced matrix should 
ideally be minimal because the members of both the Cohesive Matrix and the Co-
association matrix indicate the pairwise similarity between samples. We attempt to 
complement the zero elements with reference to the non-zero ones and the Co-association 
matrix because the non-one elements of 𝑴 are constrained but express the very reliable 
similarity between samples. The elements of the co-association matrix, on the other hand, 
are dense but have numerous wrong connections, and we attempt to improve it by deleting 
the faulty connections, which are represented by 𝑬𝜖 ℝ ∗  , by using the data from the 
Cohesive Matrix. Additionally, each frontal slice of 𝓟 should be symmetric, and the 
elements of 𝓟 should be constrained to the range  [0, 1] . The proposed method is formally 
defined as a label correspondence optimization problem, written as  

                                                  𝑚𝑖𝑛𝓟,𝑬‖𝓟‖⍟ +⋋ ‖𝚬‖           (4) 

Where  𝓟(: , : , 𝟐) = 𝟎  is placed on 𝑬 to prevent trivial solutions and ⋋= 0 is the 
coefficient to balance the error matrix. By improving Eq. (4), it is anticipated that the 
Cohesive Matrix will be supplemented according to the information from the Co-
association matrix at the same time as the restricted but highly reliable information in 𝑴 is 
propagated to the co-association matrix. 
We can get a refined Co-association matrix 𝓟(: , : , 𝟐) after solving the issue in Eq. (4), with 
the optimal solution. The final clustering result can then be produced by using any pairwise 
similarity-based clustering methods on  𝓟(: , : , 𝟐) . In this article, we examine two widely 
used clustering techniques: agglomerative hierarchical clustering (Ng, Jordan, and Weiss 
2002) and Meta clustering (Fred and Jain 2005). 
Numerical Solution:  
Based on the imprecise Augmented Lagrangian method, we suggest an optimization 
technique to solve Eq (4). (Jia, Kwong, and Hou 2018). To work with the limited and 
symmetric restrictions on 𝓟(: , : , 𝟏)and 𝓟(: , : , 𝟐)respectively, we first define two auxiliary 
matrices   𝑩, 𝑪 𝜖ℝ ∗ , and Eq. (4) can be equally expressed as 

  𝒂𝒓𝒈𝒎𝒊𝒏𝓟,𝑬,𝑩,𝑪‖𝓟‖⍟ +⋋ ‖𝚬‖𝑭
𝟐    (𝟓)                          

The augmented Lagrangian form we apply three Lagrange multipliers 
∧ ,∧  𝑎𝑛𝑑 ∧𝟑 𝝐 ℝ𝒏∗𝒏  
Where the penalty coefficient is µ >  0. Then, it can be made more efficient by solving the 
following four subproblems alternately and iteratively, where only one variable is changed 
while the others are left fixed. 

 The 𝓟 sub-problem: 
 𝓟 is expressed as after the unwanted terms have been removed. And expressed as 

  𝒂𝒓𝒈𝒎𝒊𝒏𝓟

𝟏

µ
‖𝓟‖⍟ +

𝟏

𝟐
‖𝓟 − 𝓣‖𝑭

𝟐 ,                                                  (𝟔) 

Using the soft-threshold operator of the matrix singular values, it has a closed form 
solution, according to +Zhang (2014). Algorithm 1's computation of FFT and SVD on the 
frontal slices of the input 3-D matrix 𝓣(: , : , 𝒊) and its FFT version 𝓣𝒇  (: , : . 𝒊), respectively, 
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emphasizes the frontal slices' label correspondence. On the other hand, we hope to benefit 
from the adjustment between the initial Co-association matrix and the Cohesive Matrix. To 
obtain the L-SVD representation, we therefore execute FFT and SVD on the lateral slices 
of the matrix 𝓣(: , 𝒊, : ) and 𝓣𝒇(: , 𝒊, : )  respectively. 

The 𝑬 subproblem: 
 Without the irrelevant terms, the 𝑬 subproblem becomes: 

𝒎𝒊𝒏𝑬 ⋋ ‖𝑬‖𝑭
𝟐 +

µ

𝟐
𝓟(: , : , 𝟐) + 𝑬 − 𝑨 +

⋀𝟐

µ 𝑭

𝟐

   (7) 

Putting the derivative of above Eq to 0 will result the global minimum because it is a 
complex quantity of 𝑬. 

The 𝑩 sub-problem:  
The B sub-problem is written as 

𝒎𝒊𝒏𝑩
µ

𝟐
𝑩 − (𝓟(: , : , 𝟏) +

⋀𝟏

µ
)

𝑭

𝟐

                  (𝟖) 

According to Jia (2020d), has an ideal element-wise solution and is a symmetric and 
bounded restricted least. 

  The 𝑪 sub-problem: 
 Without a set of element-wise equality constraints, the 𝑪 sub-problem is the same as the B 
sub-problem and optimal solution of it. Update 𝜦𝟏,  𝜦𝟐, 𝜦𝟑 𝒂𝒏𝒅 µ, µ𝐦𝐚𝐱 .The Lagrange 
multipliers and µ are updated. µ𝐦𝐚𝐱 Is upper bound and µ is initially set to 0.0001 (Liu 
2019). The halting conditions for Algorithm 2 total numerical solution are  𝐦𝐚𝐱(‖𝐁 −

𝓟(: , ∶, 𝟏)‖ , ‖𝐂 − 𝓟(: , ∶, 𝟐)‖ , ‖𝐀 − 𝐄 − 𝓟(: , ∶, 𝟐)‖ ) <  𝟏𝟎 𝟖 with ‖. ‖  is the highest 
possible value of a matrix's absolute values. 

Experiment:  
We performed numerous tests to assess the suggested hypothesis. 

Algorithm 2 Numerical solution to Eq. (4)  

Base clustering matrix ᴨ is entered 

𝓟, 𝑬, 𝑩, C  and µ  are initialized to 0 and 10  respectively 

1. Create the Co-association matrix 𝑨; 

2. To construct the Cohesive Matrix 𝑴,;  

3. While not converged do 

4. update 𝓟 ;  

5. update 𝑬;  

6. update 𝑩 ; 

7. update 𝑪; 

8. 𝜦𝟏, 𝜦𝟐, 𝜦𝟑𝒂𝒏𝒅 µ; 
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9.  To check the convergence requirements. 

10.  Finish while producing the revised Co-association 
matrix 𝓟(: , : , 𝟐) as output. 

 
Data Sets: 

We selected 7 frequently used data sets, including BinAlpha, Multiple features (MF), 
MNIST, Semeion, CalTech, Texture, and ISOLET, in accordance with current clustering 
ensemble works (Huang, Wang, and Lai 2018; Huang, Lai, and Wang 2016; Zhou, Zheng, 
and Pan 2019). In accordance with Huang, Wang, and Lai (2018), we chose 5000 samples 
at random from MNIST and used the subset in the experiments. We also used 20 typical 
categories out of 101 categories for CalTech, which we referred to as CalTech20. 

Generation of Base Clustering:  
In accordance with Huang, Wang, and Lai (2018), we first created a pool of 100 potential 
base clustering for each of the data sets by using the K-means technique, where 𝑲 is a 

random number with a value that varies between [2, √𝑛], where 𝑛 is the total number of 
input data samples. 

Methods under Comparison:  
We contrasted the proposed model with 11 state-of-the-art clustering ensemble techniques, 
such as the TA-CL, TA-SL, and PTGP (Huang, Lai, and Wang 2016), LWSC, and LWGP 
(Huang, Wang, and Lai 2018), E-HC and E-MC (Huang  2018), DREC (Zhou, Zheng, and 
Pan 2019), SPCE (Zhou  2020), and sMLCA (2018), SEC (2017 Liu.et.al). The authors 
offer the codes for each of the approaches that were compared. The proposed model is 
designated as sMLCA and OMC, respectively, and is provided with agglomerative 
hierarchical clustering and Meta clustering to produce the final clustering result. 

Evaluation Metrics:  
We used the clustering accuracy (ACC), normalized mutual information (NMI), purity, 
adjust rand index (ARI), F1-score, precision, and recall measures to assess clustering 
performance. The values of all the measures are up-bounded by 1, and for all of them, a 
higher number indicates greater clustering performance. You may find the comprehensive 
definitions of those measures in (Zhang 2020; Jia 2020b). 

Experiment Settings:  
We choose 10 base clustering at random for each data set from the candidate base clustering 
pool, then we applied several clustering ensemble techniques on the chosen base clustering. 
We performed the random selection 20 times in order to reduce the impact of the chosen 
base clustering, and we then reported the average performance over those 20 iterations. We 
set the hyper-parameters for the comparison algorithms in accordance with the original 
papers. Unless no suggested values were available, we thoroughly examined the hyper-
parameters and used those that produced the best results. The single hyper-parameter in the 
suggested model, which was set to 0.002 for all the data sets. 
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Figure 2: The NMI of our methods against the average NMI of the base clustering in the 
candidate base clustering pool. 
                                     sMLCA     OMC 

Figure 3: The NMI of our methods against different λ. 
                                       sMLCA     OMC 

 
Figure 4: The NMI of our methods with different numbers of base clustering, where the vertical 
error bar indicates the standard deviation over 20 repetitions 
Analysis of the Clustering Performance:  
The clustering performance of each approach across 7 data sets is shown in Tables 1–7. These 
data sets contain the following observations. Firstly, virtually always outperforming all 
approaches in comparison, including sMLCA and OMC, the proposed methods demonstrate 
the applicability of the proposed model's enhanced Co-association matrix to various clustering 
techniques. However, OMC typically surpasses sMLCA, indicating that the refined co-
association is better suited for Meta clustering. Second, the suggested methods have made some 
notable advances. For instance, on BinAlpha, OMC improves the ACC from 0.45 to 0.85 when 

0
0.5

1
1.5

NMI

Base Clustering Ours-HC Ours-SC



LABEL CORRESPONDENCE OPTIMIZATION MODEL 

 
Journal of Data Acquisition and Processing Vol. 38 (3) 2023      2297 

 

compared to the best approach in the comparison. The greatest ACC of the compared 
algorithms on CalTech20 is 0.49, whereas ACC sMLCA's is 0.72. Significant improvements 
have been made by the suggested methods in terms of various measures. Additionally, OMC 
does incredibly well on MF, MNIST, Semeion, and Texture; all metrics are very close to 1. 
These events imply that the suggested model results in a clustering ensemble success. Third, 
the suggested model's highly competitive performance is attained with A set hyper-parameter, 
demonstrating the model's viability. Additionally, because sMLCA and OMC consistently 
generate higher clustering performance on all the data sets, the proposed model is robust to 
various data sets. 

BinAlp
ha 

TA-
CL 

TA-
SL 

PTG
P 

LWS
C 

LW
GP 

E-
HC 

E-
MC 

DRE
C 

SPC
E 

SE
C 

sMLC
A 

OMC 

ACC 0.42 0.18 0.42 0.42 0.43 0.37 0.45 0.37 0.29 0.44 0.71 0.85 
NMI 0.57 0.30 0.57 0.57 0.57 0.53 0.59 0.51 0.54 0.58 0.82 0.91 
Purity 0.45 0.19 0.44 0.44 0.45 0.38 0.47 0.39 0.28 0.47 0.71 0.87 
ARI 0.29 0.08 0.29 0.28 0.28 0.26 0.30 0.24 0.22 0.29 0.64 0.81 
F1-
score 

0.31 0.12 0.31 0.30 0.30 0.29 0.32 0.27 0.30 0.31 0.65 0.82 

Precisio
n 

0.27 0.07 0.27 0.27 0.27 0.22 0.30 0.23 0.29 0.29 0.55 0.80 

Recall 0.36 0.63 0.36 0.34 0.34 0.45 0.33 0.32 0.31 0.32 0.79 0.84 
             Table 1: Clustering Performance on BinAlpha (# samples: 1404, dimension: 320, # 
clusters: 36) 

MF TA-
CL 

TA-
SL 

PTG
P 

LWS
C 

LW
GP 

E-
HC 

E-
MC 

DRE
C 

SPC
E 

SEC sMLC
A 

OMC 

ACC 0.60 0.50 0.64 0.67 0.64 0.58 0.65 0.36 0.58 0.59 0.71 0.99 
NMI 0.63 0.53 0.65 0.65 0.65 0.61 0.65 0.34 0.62 0.60 0.79 0.97 
Purity 0.64 0.53 0.67 0.69 0.67 0.61 0.67 0.38 0.61 0.62 0.71 0.99 
ARI 0.50 0.37 0.52 0.53 0.53 0.48 0.52 0.25 0.45 0.47 0.68 0.97 
F1-
score 

0.55 0.45 0.57 0.58 0.58 0.54 0.57 0.37 0.52 0.52 0.72 0.98 

Precisi
on 

0.51 0.34 0.53 0.55 0.53 0.47 0.54 0.31 0.42 0.49 0.58 0.98 

Recall 0.60 0.71 0.62 0.61 0.64 0.63 0.61 0.73 0.71 0.56 0.96 0.98 

Table 2: Clustering Performance on MF (# samples: 2000, 
dimension: 649, # clusters: 10) 

 
MNIS
T 

TA-
CL 

TA-
SL 

PTG
P 

LWS
C 

LW
GP 

E-
HC 

E-
MC 

DRE
C 

SPC
E 

SEC sMLC
A 

OMC 

ACC 0.65 0.20 0.66 0.61 0.57 0.60 0.65 0.48 0.54 0.53 0.79 0.97 
NMI 0.61 0.13 0.62 0.61 0.59 0.60 0.63 0.43 0.48 0.52 0.80 0.97 
Purity 0.66 0.20 0.68 0.66 0.62 0.62 0.69 0.49 0.55 0.58 0.79 0.98 
ARI 0.50 0.05 0.52 0.48 0.46 0.49 0.52 0.34 0.42 0.38 0.73 0.96 
F1- 0.55 0.21 0.57 0.54 0.52 0.55 0.57 0.42 0.44 0.45 0.76 0.97 
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score 
Precisi
on 

0.52 0.12 0.54 0.49 0.45 0.44 0.54 0.37 0.31 0.42 0.66 0.96 

Recall 0.59 0.95 0.60 0.60 0.60 0.74 0.61 0.57 0.83 0.48 0.91 0.97 

Table 3: Clustering Performance on MNIST (# samples: 5000, 
dimension: 784, # clusters: 10) 

 
Semeio
n 

TA-
CL 

TA-
SL 

PTG
P 

LWS
C 

LW
GP 

E-
HC 

E-
MC 

DRE
C 

SPC
E 

SEC sMLC
A 

OMC 

ACC 0.70 0.42 0.69 0.68 0.62 0.63 0.67 0.45 0.57 0.59 0.84 0.98               
NMI 0.63 0.41 0.63 0.63 0.59 0.60 0.63 0.38 0.57 0.56 0.83 0.96 
Purity 0.70 0.44 0.70 0.70 0.65 0.64 0.70 0.46 0.60 0.63 0.84 0.98 
ARI 0.51 0.24 0.50 0.50 0.46 0.48 0.50 0.29 0.40 0.41 0.79 0.96 
F1-
score 

0.56 0.36 0.56 0.55 0.52 0.54 0.56 0.39 0.47 0.48 0.81 0.96 

Precisi
on 

0.52 0.24 0.52 0.52 0.46 0.46 0.52 0.32 0.38 0.44 0.74 0.96 

Recall 0.61 0.71 0.60 0.60 0.60 0.64 0.59 0.66 0.66 0.52 0.89 0.96 

Table 4: Clustering Performance on Semeion (# samples: 1593, 
dimension: 256, # clusters: 10) 

 
CalTech
20 

TA-
CL 

TA-
SL 

PTG
P 

LWS
C 

LWG
P 

E-
HC 

E-
MC 

DRE
C 

SPC
E 

SE
C 

sMLC
A 

OMC 

ACC 0.34 0.42 0.34 0.32 0.33 0.45 0.36 0.34 0.49 0.29 0.72 0.41 
NMI 0.40 0.26 0.40 0.39 0.40 0.45 0.42 0.35 0.45 0.38 0.62 0.62 
Purity 0.63 0.52 0.63 0.64 0.64 0.64 0.66 0.59 0.66 0.63 0.73 0.78 
ARI 0.26 0.18 0.26 0.22 0.22 0.35 0.25 0.22 0.39 0.20 0.78 0.32 
F1-score 0.33 0.36 0.33 0.29 0.29 0.43 0.33 0.31 0.45 0.26 0.82 0.38 
Precisio
n 

0.56 0.28 0.56 0.52 0.51 0.53 0.54 0.47 0.50 0.52 0.76 0.74 

Recall 0.24 0.56 0.24 0.20 0.21 0.37 0.23 0.25 0.44 0.18 0.89 0.25 

Table 5: Clustering Performance on CalTech20 (# samples: 2386, 
dimension: 30,000, # clusters: 20) 

 
Textur
e 

TA-
CL 

TA-
SL 

PTG
P 

LWS
C 

LWGP E-
HC 

E-
MC 

DRE
C 

SPC
E 

SEC sMLC
A 

OMC 

ACC 0.71 0.41 0.73 0.71 0.68 0.67 0.67 0.41 0.63 0.61 0.86 0.99 
NMI 0.72 0.43 0.73 0.74 0.73 0.70 0.71 0.41 0.69 0.63 0.86 0.99 
Purity 0.72 0.42 0.74 0.74 0.72 0.68 0.69 0.44 0.65 0.64 0.86 0.99 
ARI 0.60 0.23 0.61 0.62 0.60 0.56 0.58 0.29 0.53 0.48 0.81 0.99 
F1- 0.63 0.35 0.65 0.66 0.64 0.61 0.62 0.39 0.59 0.53 0.83 0.99 
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score 
Precisi
on 

0.59 0.22 0.62 0.63 0.59 0.54 0.58 0.33 0.46 0.50 0.78 0.99 

Recall 0.69 0.89 0.68 0.70 0.71 0.71 0.67 0.75 0.82 0.58 0.89 0.99 

Table 6: Clustering Performance on Texture (# samples: 5500, 
dimension: 20, # clusters: 11) 

 

     Table 7: Clustering Performance on ISOLET (# samples: 7791, 
dimension: 617, # clusters: 26) 

 
     Coherent link Matrix     Co-association Matrix sMLCA SPCE
 Proposed Ideal 

    

  
 
 

Figure 5: Visual comparison of the learned pairwise similarity matrices for different 
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methods. All the matrices share the same color bar, and the brighter color indicates a larger 
value. 
Comparison against Base Clustering:  

The average NMI of our techniques was compared to the average NMI of each base cluster 
in the candidate clustering pool in Fig. 2. It is notable that both OMC and sMLCA can 
greatly increase the NMI of the base clustering on all of the data sets, with OMC usually 
superior sMLCA. 

Sensitivity to Hyper-parameter:  
The NMI of the proposed methods with different values of is shown in Fig. 3, from which 
we can draw the following conclusions: first, for most data sets, the highest NMI occurs 
when = 0.002 for both sMLCA and OMC, demonstrating the importance of removing the 
incorrect links from the initial co-association matrix; and second, a smaller typically leads 
to better clustering performance for both sMLCA and OMC. 

Performance with Different Number of Base clustering: 
 The observations are shown in Fig. 4, which shows how the proposed model is affected by 
various base clustering numbers. First, base clustering improves clustering performance as 
seen by the fact that the NMIs of both sMLCA and OMC generally rise with base clustering 
numbers. Second, more base clustering generally results in fewer standard deviations for 
all the data sets, which shows that base clustering can improve the consistency of our 
methods. Third, the bulk of data sets only require 20 base clustering for our algorithms to 
provide high NMI values. 

Comparison of the Learned Pairwise Similarity Matrix:  
The ideal similarity matrix of BinAlpha is shown in Fig. 5, along with the cohere-link 
matrix, the conventional co-association matrix, and the learned co-association matrices by 
MLCA (Huang, Wang, and Lai 2018), SPCE (Zhou 2020), and the proposed model. All of 
the matrices are normalized to [0, 1], and they all have the same colour bar. Form 5 shows 
that while the Co-association matrix is dense and contains many wrong connections, the 
Cohesive Matrix is sparse and has the majority of its connections right. The improved Co-
association matrix of the suggested model is very near to the ideal one because it takes use 
of the label correspondence of the 3-D matrix created by the stacking of the Cohesive 
Matrix and the association matrix. High clustering performance was achieved because, 
despite minor mistake corrections, nearly all the relationships between two samples 
belonging to the same cluster had been accurately retrieved. In contrast, both the affinity 
matrices of LWGP and SPCE contain a large number of wrong connections, but not enough 
correct connections, which explains why they performed worse at clustering than the 
suggested model. 

Conclusion 
We initially introduced the clustering ensemble to matric of similar label Matrix 
approximation. In contrast to earlier approaches, the proposed model addresses clustering 
ensemble from a global perspective, i.e., by taking advantage of the 3-D matrix  formed by 
the Cohesive Matrix and the co-association matrix's, which allows the Cohesive Matrix's 
useful information to be efficiently transmitted to the co-association matrix. Numerous tests 
have demonstrated that the proposed model: 
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i. It raises the clustering ensemble's current state-of-the-art performance to a new 
level;  

ii. It is robust to different data sets in terms of the recommended value for the hyper-
parameter; 

iii. Only a small number of base clustering are necessary to produce high clustering 
performance. 
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