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Abstract. The goal of cosmology is to characterize the Universe’s contents, distributions and 
motion. Why the Universe’s expansion rate is accelerating can be explained by Λ, a added 
factor to the Einstein field formula. The ΛCDM model is the most simple and widely used 
model, but it has some theatrical issues. Therefore, cosmologists are searching for its 
alternative. The barotropic fluid model, the canonical scalar field model and the non-canonical 
scalar field model are among them. In this study We provide a comparative examining dark 
energy models using Bayesian model selection. To do this, we utilize observational data of 
supernova type Ia, Hubble parameter and Baryon acoustic oscillation measurements. 
 
1 Introduction 
The cosmos is a huge laboratory to test our current understanding of physics. Cosmology aims 
to characterize the Universe’s contents, distribution, and motion. With the help of our 
instruments, we collect light (electron magnetic radiation) from far-off galaxies and clusters 
and build a model of our former universe. The next step for cosmologists is to explain 
observational facts using state-of-the-art physics and make any necessary modifications if 
necessary. The human ability to observe the cosmos has considerably increased in the past 20 
years. The electromagnetic spectrum, from radio to X-rays and gamma rays, can be covered 
over a wide range. It will soon be feasible to use gravitational waves to capture a moment in 
time in our universe. 
The currently observable portion of the universe was much smaller, incredibly hot, and dense 
when we map it at higher redshifts (earlier in time). This supports the “Hot Big Bang Theory” 
(HBB), which postulates that an explosion created the cosmos. An inflationary period came 
after this. For this little period of time, the Universe grew enormously. It is possible to observe 
cosmological microwave background (CMB), the remnant energy from the HBB and thus 
provides evidence for the existence of the HBB and inflation. Small oscillations in the 
otherwise isotropic CMB (of the order of 10−5) show that inflation laid the foundation for the 
construction of the universe structures [1, 2]. After the inflationary era, the Universe entered a 
decelerating phase of radiation and matter domination. Every organization in the universe, 
including galaxies, galaxy clusters, and superclusters, was created during the period when 
matter dominated the universe. 
The lengthening of the separation between any two specific gravitationally unbound objects 
over time, the observable universe is the area of the cosmos that is expanding. Observations 
indicate that the cosmos recently went through a change from a slowing to an accelerating 
expansion, and 
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Figure 1. In the top left panel, we show the phases of evolution of the Universe for the ΛCDM 
model. The evolution of the density parameters of matter (in red), vacuum (in blue), and 
radiation (in orange) are shown in top right panel. In these plots, we set the parameter Ωm0 = 
0.315 and H0 = 67.4 km s−1Mpc−1 (Planck-2018 best fit values). 
Since then, science has accelerated [3–6]. According to the simplest model, which has a 
formula for the state w = −1, this transition and rapid expansion are related to vacuum energy 
density [7, 8]. 
The universe is expanding faster because of the universal constant Λ, which is an extra constant 
to the Einstein field equations [7, 8]. It was originally put forth by Einstein in 1917 to address 
the problem of static cosmology, but it was dropped after Hubble discovered that the universe 
was expanding. This model satisfy data well, but suffers from theoretical problems, e.g., fine 
tuning and coincident problem [8–11]. There are also some tension between independent 
observations in the measurement of the cosmological parameters [12]. Therefore, cosmologist 
search for alternative of this model. The barotropic fluid model, canonical and non-canonical 
scalar field models are most common dark energy models. These models are able to explain 
the late time acceleration in cosmic expansion, and satisfy data with same merit as the ΛCDM 
model does [12–16]. 
In the next session, we discuss the the ΛCDM mode, and then in section 3 we list the problem 
this model suffers from. In section 4 we introduce the popular dark energy models. The 
statistical methods to compare models are discussed in section 5. In section 6 we summarize 
our discussion about dark energy models. 
2 The Cosmological Constant Model 
The equation those govern the dynamics of the expansion of the Universe are the Friedmann 
equations, given by 

 
where, a is the scale factor of the expansion, ρ(= ρr + ρm + ρΛ) is the total energy density sum 
of energy densities of radiation, matter, and vacuum components, P is the pressure density, and 
K represents the curvature of the Universe. The symbol Λ is the cosmological constant. It 
represents the vacuum. The expression for the energy density and density parameters of 
vacuum in terms of Λ [5-6] 
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Figure 2. We show comparison of the ΛCDM model with SN-Ia union 2.1 data and direct 
measurements of  Hubble parameter H(z). The theoretical curves are drawn using same set of 

parameters as described in figure 1. 

ρΛ = Λ/8πG, and ΩΛ = Λ/3H2 (2.3) 

The pressure density of vacuum is given by PΛ = −Λ/8πG. Therefore, the equation of state for 
this component is w = −PΛ/ρ = −1, and it remains the same throughout the universe’s 
evolution. These definitions allow for the following expression of the Friedmann equation: 

                            𝐻ଶ =
௔̇మ

௔మ = 𝐻଴
ଶ[

Ωೝబ

௔ర +
Ω೘బ

௔య + Ω௸଴ ]                                                           (2.4) 

Here, K = 0, or a flat universe’s geometry, has been taken into account. The non-relativistic 
component is created by combining dark matter and pressure-free baryonic matter, i.e, 

                     Ω௠଴ = Ω௕଴ + Ωௗ௠଴                                                                                                      
(2.5) 

For a flat universe, the luminosity distance is given by 

                    𝐷௅ =
௖

ுబ
(1 + 𝑧) ∫

ௗ௭

ா(௭)

௭

଴
                                                                                 (2.6) 

and the angular diameter distance is given by 

                       𝐷஺ =
௖

ுబ
 

ଵ

ଵା௭
∫

ௗ௭

ா(௭)

௭

଴
                                                                                 (2.7) 

Where E(z) = H(z)/H0. The symbol c represents the speed of light in vacuum and H0 is the present 
value of the Hubble parameter (Hubble constant). Form luminosity distance we can calculate 
the distance modulus of the object at redshift z. The distance modulus is given by 

                     𝜇 = 5log (𝐷௅) − 5                                                                                 (2.8) 

In the right panel of figure 1 we see that at very early universe (for more than 103 redshift) 
the dominating component was radiation, after that non-relativistic matter (dark matter + 
baryonic matter) dominated the energy budget. Currently, the energy budget of the Universe 
is dominated by the cosmological constant. In the left panel of figure 1 we show the the 
phases of evolution of the Universe considering ΛCDM model. We see that after 
decelerating phases of radiation and matter domination, the Universe has started accelerating 
it’s expansion. Most current cosmic observations support the ΛCDM paradigm. In the figure 
2 we show the comparison between Supernova-Ia data (SN-Ia union 2.1 data) and 
measurement of the Hubble parameters. Although the ΛCDM model show agreement with 
observations but it fails on some theoretical ground and there are some inconsistencies between 
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measurement of cosmological parameters from independent observations. 
3. Problem with the Cosmological Constant Model 
The ΛCDM model suffers from following problems: 

• Cosmological constant problem: the cosmological constant is equivalent to a zero point 
vac- uum energy density, ρvac = Λ/8πG. The value of the vacuum energy density calculated 

from zero point vacuum fluctuation in field theory is 𝜌௩௔௖
௧௛௘௢௥௬

∼ 2 × 10ଵଵ଴𝑒𝑟𝑔 𝑐𝑚ିଷ, 

whereas the value obtained by observations in cosmology is 𝜌௩௔௖
௢௕௦ ∼ 2 ×

 10ିଵ଴𝑒𝑟𝑔 𝑐𝑚ିଷ. We can see that there is a discrepancy of 120 order of magnitude 
between these values [8]. 

• Fine tuning problem: The relative scaling ρΛ/ρm ∝ a3 implies that the cosmological 
constant was negligible in the past (in the matter-dominated era), and will dominate in 
future. If the cosmological constant is set as an initial condition at very early in the 
matter-dominated era, it has to be set or tuned precisely [7, 8]. 

• Tension between observations: There is a discrepancy between the Planck observations 
and other independent growth rate measurements in estimation of cosmological 
parameters in the context of ΛCDM. These include the estimation of the Hubble 
constant H0, the root mean square matter power fluctuation in 8 h−1 Mpc radius σ8, and 
the present day matter density parameter Ωm0 [12]. 

Above facts motivate cosmologist to go for alternative of this models. There are large number 
of dark energy models those can effectively explain the present day accelerated expansion and 
satisfy observational data. In next section we discuss some popular classes of dark energy 
models. 
4. Dark Energy Models 
4.1 Barotropic Fluid Model 
We look at the group of barotropic fluid dark energy models, where the expression P = f (ρ) 
indicates that the pressure is direct function of energy density. We set bounds on the asymptotic 
past and future. Show to a class that such actions are equivalent to the combination of a perfect 
fluid that is slowing down and a cosmological constant, or “aether,” with w = 0. With the 
exception of CDM, barotropic models offer forecasts based on quintessence that are notably 
different from one another. They are especially intriguing since they solve the issue of 
coincidence, and “predict” a use for w = −1 at the same time [17–19]. 
The simplest alternative is one in which dynamic characteristics of the equation of state 
variable is established by taking into account a parametric modeling or operational form of w. 
With w1, the scale factor or redshift affects the equation of state of the situation. The two key 
parameters in these models are the current Value and derivative of the w0 equation of state 
parameter, w′(z = 0). Some of the more well-liked and common parameterizations are as 
follows [13, 20]: 
 The Chevallier-Polarski-Linder (CPL) parameterization [17, 19, 21] where 
 
              W(a) =  𝑤଴ + 𝑤ᇱ

଴(1 − 𝑎)                                                                                (4.1) 

   W(a) = 𝑤଴ + 𝑤′଴
௭

ଵା௭
                                                                                          (4.2) 

 The Jassal-Bagla-Padmanabhan parameterization [13, 20, 22], where 
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⋍

              W(a)=𝑤଴+𝑤′଴  
௭

(ଵା௭)మ                                                                                          (4.3) 

Logarithmic parameterization [13, 22]: 
   w(a) = w0 + 𝑤′଴  log(1 + z) (4.4) 

4.2 Canonical Scalar Field Model 
A well-researched concept for dark energy is the quintessence field, often known as the 
standard scalar field. According to scalar field theories, the universe’s current, rapid expansion 
is caused by a slow-moving field. The quintessence field is described by a canonical 
Lagrangian [23–27]. 

                            L=
ଵ

ଶ
𝜙ଶ̇ − 𝑉(𝜙)                                                                                         (4.5) 

where an arbitrary potential is indicated by V (φ). An uniform quintessence field’s dynamics 
is gov- erned by an equation, 

               𝜙̈ + 3𝐻𝜙̇ +
ௗ௏(థ)

ௗథ
= 0                    (4.6) 

To research the development of the cosmos, the Friedmann equation must also be solved. The 
inten- sity of pressure and energy of a quintessence field is provided by, 

         𝜌థ =
ଵ

ଶ
𝜙ଶ̇ + 𝑉(𝜙)  , and          𝜌థ =

ଵ

ଶ
𝜙ଶ̇ − 𝑉(𝜙)                                                 (4.7) 

The equation of state parameter for the quintessence model is given by, 

       W=
௣ഝ

ఘഝ
=

థమିଶ௏(థ)̇

థమ̇ ାଶ௏(థ)
                                                    (4.8) 

It is obvious that the functional shape of the equation of state parameter depends on whether 
the kinetic term or the potential term prevails. For slow rolling potential, φ 2/2V (φ) << 1, we 
receive w ≈ −1 for a scalar field that is gradually expanding. The scalar field in this case 
behaves as a gradually fluctuating with vacuum potential ρvacc V (φ). Depending on whether a 
scalar field is evolving slowly or quickly, the value of w can often go from -1 to +1. 
Depending on how the equation of state-parameter develops, the models are loosely 
categorized as “freezing” or ”thawing” models [23–25]. 
4.3 Non Canonical Scalar Field Model 
As a D-brane decay model, string theory inevitably leads to the this model called as the tachyon. 
The tachyon field is expressed in the Lagrangian [12, 15, 28–30]. 

                         L=-V(ϕ)ට1 − 𝜙ଶ̇                                                                            (4.9) 

Where an arbitrary potential is indicated by V(ϕ). The pressure and energy density of the 
tachyon field are  

                𝜌థ  =  V(ϕ)/ ට1 − 𝜙ଶ̇  ,   𝑝థ = -V(ϕ)ට1 − 𝜙ଶ̇                                                (4.10) 

As a result, the equation of state parameter for the tachyon field is wφ = P − φ /ρφ = φ̇ 2 − 1.  
The industry’s dynamics are governed by the formula regarding the scalar field’s movement, 

                      𝜙 =  −(1 − 𝜙ଶ̇̈ )[2H𝜙̇+ 
ଵ

௏(థ)

ௗ௩

ௗథ
 ]                                                      (4.11) 

 

As φ˙ approaches ±1, As φ¨ approaches 0, the equation of state transforms into one that resembles 
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dust. As a result, the tachyon field consistently resembles dust. According to this perspective, 
the cosmic evolution is likewise impacted by the potential option. Two potential escapees 
that used as research tools to study tachyon dynamics are under discussion. Runaway 
potentials are naturally generated by string theory and M-theory, and they have the potential 
to speed up the growth of the universe in a late universe [12, 15, 28–30]. 
All above models of the dark energy are capable of explaining accelerated expansion of the 
Universe. To compare which model is best favored by data we need to do likelihood analysis 
of parameters. In next section we present Bayesian statistics used to study the merit of models. 
5. Bayesian Statistics 
According to the Bayesian interpretation of probability, which forms the basis of the Bayesian 
statis- tics concept, probability expresses the level of confidence in an event. Both individual 
opinions about the incident and prior information of it, including the results in the past studies, 
may have an impact on the degree of belief. This differs from in different ways to interpret 
probability, such comparable to the frequentist interpretation, which regards after numerous 
trials, probability serves as the upper limit on the relative occurrence of an event [31, 32]. The 
Thomas Bayes-named Bayes’ theorem in statistics and probability calculates the likelihood of 
a condition based on previously known elements that could be related to the occurrence [31]. 
The subsequent equation is the mathematical formulation using Bayes’ theorem: 

P(A|B) = P(B|A)P(A)/P(B) (5.1) 
Where events A and B exist and P(B) /= 0. 
5.1 Comparison of Dark Energy Model 
The Bayes theorem can be used to compare the merit of the models for given data. There are 
many ways to compare the models. The most general but computationally expensive method 
is to calculate Bayes factor. Other methods explained below are simpler and computationally 
effective, but they are restricted by certain conditions. For example BIC and AIC can be used 
only if the posterior probability distributions are either Gaussian or near-Gaussian 
        

 
Figure 3. 1σ, 2σ, and 3σ constraints on Ωm   σ8 plane for ΛCDM, tachyon model with inverse 
square potential and tachyon model with exponential potential from left to right respectively. 
Black dot and triangle represents the best fit value for Planck-2015 and Planck-2018 CMB 
measurements. 
 5.2 Bayes Factor 

This is a measure of how much more strongly one hypothesis is supported than the other and 
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compares two statistical models that are in competition and are represented by their marginal 
likelihood [31, 32]. Although unlike that, it is not essential, it is feasible for the models under 
evaluation to share a set of circumstances, such as an assumption or an option. The model under 
evaluation, for instance, might not be linear despite being closest to being linear. The 
likelihood-ratio test and the Bayes factor only agree with abstract ideas since the Bayes factor 
uses the least likelihood (combined) rather than the greatest likelihood [32]. Furthermore, Bayes 
factors are used to review the evidence supporting a null An invalid assumption as opposed to 
just enabling whether the null hypothesis should be dismissed or not. This is in contrast to 
checking the relevance of the nul hypothesis, which only enables whether the null hypothesis 
should be rejected or not [31]. Despite being conceptually simple, determining the Bayes 
factor can be difficult depending on how complex the hypothesis and the design are [32]. The 
Bayes factor, which is using two mathematical frameworks likelihoods combined compared 
to their historical parameter probabilities, is the ratio of two margin likelihoods [31, 32]. 
According to Bayes’ theorem, the post-hoc likelihood Pr(M|D) of a certain model M data D is 
as follows: 

              𝑃௥(𝑀|𝐷) =
௉ೝ ൫𝑀ห𝐷൯௉ೝ(ெ)

௉ೝ(஽)
                                                                              (5.2) 

                 
௣(ெబ|ௗ)

௣(ெభ|ௗ)
=

௣൫𝑑ห𝑀଴൯ூ(ெబ)

௣൫𝑑ห𝑀ଵ൯ூ(ெభ)
.                                                                                         (5.3) 

Here, the ratio of evidences of the models B01 = p(d|M0)/p(d|M1) are known as the ‘Bayes 
factor’. The Bayes factor indicate the change in relative odds between the models after data. If 
B01 > (<)1 then the model M0 is more (less) favorable than the model M1 by the given data. 
The Jeffreys’ scale provides an empirically calibrated scale for strength of evidence to compare 
the two models [33]. 
In figure 3 we show the 1σ, 2σ, and 3σ constraints on Ωm − σ8 plane for ΛCDM, tachyon 
model with inverse square potential and tachyon model with exponential potential from left to 
right respectively. We us use the redshift space distortion measurement data for this calculation. 
For detail about data compilation refer to [12]. The σ8(z) is root mean square matter power 
fluctuation in 8 h−1Mpc scale, it can be written as [12], 

                      𝜎଼(𝑍) = 𝜎଼(0)
ఋ೘(௭)

ఋ೘(଴)
                                                                                             (5.4) 

Here, σ8(0) is the present value of σ8(z) and it is a parameter. The symbol δm(z) represents the 
matter density contrast at redshift z and δm(0) is it’s present value. 
We can see that the tension between Planck CMB measurement comes below 2σ if we consider 
a dynamical dark energy model e.g. the tachyon scalar field model. Considering uniform prior, 
the Bayes factors B01 = 0.996 and B02 = 1.019, where ‘0’ stands for ΛCDM model, ‘1’ for 
tachyon models with inverse square potential and ‘2’ for tachyon models with exponen√ 

potential.  Data used for this calculation are described in [12]. Since, Bayes factor 1 < √𝐵 <
 10 is only weak evidence [33], we clearly find that the RSD data, we use, does not 
exclusively favor any of these models. Therefore, we conclude that the tachyon models are as 
good as ΛCDM model to satisfy this data set. 
5.3 Akaike’s Information Criteria (AIC) 

For a particular set of data, the AIC rates the effectiveness of mathematical models and acts 
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as a gauge of forecasting errors [31, 32]. A number of data model collections are used to 
determine each model’s quality in comparison to the other models. As a consequence, AIC 
offers a method for choosing models. Think about the situation when we have some 
information with a mathematical framework. Assume k be the total number of the model’s 
calculated parameters, and L represent the model greatest likelihood functon. The model’s AIC 
value is hence as follows [31, 32]. 

AIC = 2k − 2ln(L) (5.5) 
5.4 The Bayesian Information Criteria (BIC) 

The Bayesian information criteria is a tool used by statisticians to pick one model out of a 
variety alternatives (BIC). Typically, Low BIC models are desirable. It is near relates to the 
Akaike criteria and somewhat follows the likelihood function (AIC). By adding parameters, it 
is possible to increase likelihood while fitting models, although doing so increases the risk of 
overfitting. In an effort to address this issue, both BIC and AIC contain A repercussion word 
for the amount of factors in the model; for sample sizes bigger than 7, the amount of penalty 
is greater in BIC than in AIC [31, 32]. 

The formula given by, 

BIC = 2k ln(n) − 2ln(L) (5.6) 

6. SUMMARY 
The lengthening of the separation between any two specified gravitationally unbound objects 
over time The term ”observable universe” refers to the extent of the cosmos. The Universe 
grew from a very dense and warm starting point, according to the Big Bang theory of physics. 
Energy from the Big Bang was used to propel the Universe’s early evolution. The Universe 
went through different phases of evolution after Big Band. It expanded exponentially in the 
inflationary era, then decelerated it’s expnasion in radiation dominated era, dark age and matter 
dominated era. In matter dominated era, all structures were formed that we see today. 
Currently, the expansion is once again accelerating. 
This late time acceleration is caused by a negetive pressure medium with equation of state w < 
−1/3, and it is termed as ‘the dark energy’. Since then, there has been a cosmic battle between 
gravity and dark energy. Dark energy pushes celestial bodies apart while gravity draws them 
together. Whether or not the universe growing or partnering depends on force—gravity or dark 
energy—is in control. 

The simplest explanation of late time acceleration in the expansion of the Universe is given 
as ΛCDM model. In this model a Constant term Λ (the Cosmological constant) represents the 
vacuum energy density. This model explains the observational data well, but suffers from 
some theoretical problems, e.g., fine tuning and coincident problem. There are some 
inconsistencies in the measurement of the Cosmological parameters from independent 
observations in the light of the ΛCDM model. Therefore, we need to go for search of suitable 
dark energy model. 
The fluid models present simplest alternative to the ΛCDM model. There are some more 
physically motivated, e.g., canonical and non-canonical dark energy models. In these models 
the equation of state is dynamical and evolve with cosmic evolution. These models also satisfy 
data well and capable of explaining late time accelerated expansion. There are large number 
of dark energy models and we need to analyze there merit to satisfy observational data. The 
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Bayesian statistics is a powerful tool to study likelihood of the models. The dynamical dark 
energy models satisfy data as good as the ΛCDM model, and also reduce tension between 
independent observation. Current background expansion measurements are not able to 
remove the degeneracy of cosmological models. Since the effect of dark energy is mostly 
observable at large scale, we need to go large scale observations and measurement of The 
integrated Sachs-Wolfe (ISW) effect. 
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