Journal of
Data Acquisition and Processing
ON EDGE IRREGULAR m-BIPOLAR FUZZY GRAPHS

Ramakrishna Mankena ${ }^{1 *}$, D Prathap ${ }^{2}$ T V Pradeep Kumar ${ }^{3}$, Ch Ramprasad ${ }^{4}$
${ }^{1}$ Department of Mathematics, Malla Reddy College of Engineering, Hyderabad-500100, India.
${ }^{2}$ Department of Mathematics, CMR Institute of Technology, Bengaluru-560037, India.
${ }^{1,3}$ Department of Mathematics, University College of Engineering, Acharya Nagarjuna University-522510, India.
${ }^{4}$ Department of Mathematics, Vasireddy Venkatadri Institute of Technology, Namburu-522 508, India.
E mail ids: ${ }^{1^{*}}$ rams.prof@gmail.com, ${ }^{2}$ pratap.d@cmrit.ac.in ${ }^{3}$ pradeeptv5@gmail.com , ${ }^{4}$ ramprasadchegu1984@gmail.com

Nomenclature	
m-bipolar fuzzy graph	m-BPFG
Strongly edge irregular	SEIR
Strongly edge totally irregular	SETIR
Neighbourly edge irregular	NEIR
Neighbourly edge totally irregular	NETIR
Highly irregular	HIR

Abstract

In combinatory and theoretical computer science, irregular graphs are crucial. Strongly irregular graphs belong to a significant class of highly organised graphs. We define SETIR mBPFG and SEIR m-BPFG in this study. We establish equivalence between SEIR m-BPFG and SETIR m-BPFG and investigate a few features of the former and the latter. Keywords: m-BPFG, SEIR m-BPFG, SETIR m-BPFG, irregular m-BPFG

\section*{1. Introduction}

Each of the nodes and edges of an m-polar fuzzy graph includes components, but those features are fixed. However, these elements could be bipolar. An m-BPFG has been presented based on this concept.

Bose [7] was the first to define a strongly regular graph. Regular and irregular fuzzy graphs were first proposed by Nagoorgani et al. [8, 9]. Radha and Kumaravel [10] were the ones who initially proposed the idea of a substantially regular fuzzy graph. The paper introduces the notion of strongly edge irregular and strongly edge entirely irregular m-BPFGs. Bose [7] was the first to define a strongly regular graph. Regular and irregular fuzzy graphs were first proposed by Nagoorgani et al. [8, 9]. The idea of SEIR and SETIR m-BPFGs is

introduced in this study. Additionally, certain aspects of them are investigated to define it and explored some of their characteristics.

2. Preliminaries

Prior to creating the m-BPFG, we presumptively consider:
Define an equivalency relation $\leftrightarrow, N \times N-\{(r, r): r \in N\}$ on the basis of the following $\left(\gamma_{1}, \delta_{1}\right) \leftrightarrow\left(\gamma_{2}, \delta_{2}\right) \Leftrightarrow$ either $\left(\gamma_{1}, \delta_{1}\right)=\left(\gamma_{2}, \delta_{2}\right)$ or $\gamma_{1}=\delta_{2}, \delta_{1}=\gamma_{2}$ for a given set N.

In this case, the Quotient Set is indicated by $\overleftrightarrow{N^{2}}$.
Definition 2.1: [5] A 3-tuple $Z=(N, A, B)$ is an m-BPFG of a graph $Z^{*}=(N, E)$, where $A=\left\langle\left[p_{j} \circ \Psi_{A}^{p}, p_{j} \circ \Psi_{A}^{n}\right]_{j=1}^{m}\right\rangle, p_{j} \circ \Psi_{A}^{p}: N \rightarrow[0,1]$ and $p_{j} \circ \Psi_{A}^{n}: V \rightarrow[-1,0]$ is an m-BPFS on N and $B=\left\langle\left[p_{j} \circ \Psi_{B}^{p}, p_{j} \circ \Psi_{B}^{n}\right]_{j=1}^{m}\right\rangle, p_{j} \circ \Psi_{B}^{p}: \overleftrightarrow{N^{2}} \rightarrow[0,1]$ and $p_{j} \circ \Psi_{B}^{n}: \overleftrightarrow{N^{2}} \rightarrow[-1,0]$ is an mBPFS in $\overrightarrow{N^{2}}$ such that $p_{j} \circ \Psi_{B}^{p}(\tau, \varsigma) \leq \min \left\{p_{j} \circ \Psi_{A}^{p}(\tau), p_{j} \circ \Psi_{A}^{p}(\varsigma)\right\}$, $p_{j} \circ \Psi_{B}^{n}(\tau, \varsigma) \geq \max \left\{p_{j} \circ \Psi_{A}^{n}(\tau), p_{j} \circ \Psi_{A}^{n}(\varsigma)\right\}$ for all $(\tau, \varsigma) \in \overleftrightarrow{N^{2}}, j=1,2, \cdots, m$ and $p_{j} \circ \Psi_{B}^{p}(\tau, \varsigma)=p_{j} \circ \Psi_{B}^{n}(\tau, \varsigma)=0$ for all $(\tau, \varsigma) \in \overleftrightarrow{N^{2}}-E$.
Definition 2.2: An m-BPFG node's $\gamma \in N$ neighbourhood degree in $Z=(N, A, B)$ is described as $d_{N b}(\gamma)=\left\langle\left[p_{j} \circ \mathbf{d}_{N b}^{p}(\gamma), p_{j} \circ \mathbf{d}_{N b}^{n}(\gamma)\right]_{j=1}^{m}\right\rangle=\left\langle\left[\sum_{t \in N b(\gamma)} p_{j} \circ \Psi_{A}^{p}(t), \sum_{t \in N b(\gamma)} p_{j} \circ \Psi_{A}^{n}(t)\right]\right\rangle$

Definition 2.3:The open neighbourhood degree of a node $\gamma \in N$ in an m-BPFG $Z=(N, A, B)$ is defined as

$$
d_{Z}(\gamma)=\left\langle\left[p_{j} \circ \mathrm{~d}_{Z}^{p}(\gamma), p_{j} \circ \mathrm{~d}_{Z}^{n}(\gamma)\right]_{j=1}^{m}\right\rangle=\left\langle\left[\sum_{\substack{\gamma \neq \delta \\(\gamma, \delta) \cdot E}} p_{j} \circ \Psi_{B}^{p}(\gamma, \delta), \sum_{\substack{\gamma \neq \delta \\(\gamma, \delta) \dot{ } \circ}} p_{j} \circ \Psi_{B}^{n}(\gamma, \delta)\right]_{j=1}^{m}\right\rangle
$$

Definition 2.4: The closed neighbourhood degree of a node $\gamma \in N$ in an m-BPFG $Z=(N, A, B)$ is defined as $d_{Z}[\gamma]=\left\langle\left[p_{j} \circ \mathrm{~d}_{G}^{p}[\gamma], p_{j} \circ \mathrm{~d}_{G}^{n}[\gamma]\right]_{j=1}^{m}\right\rangle=\left\langle\left[\sum_{\substack{\gamma \neq \delta \\ \gamma, \delta) \dot{ }}} p_{j} \circ \Psi_{B}^{p}(\gamma, \delta), \sum_{\substack{\gamma \neq \delta \\(\gamma, \delta) \dot{ }}} p_{j} \circ \Psi_{B}^{n}(\gamma, \delta)\right]_{j=1}^{m}\right\rangle+\left\langle\left[p_{j} \circ \Psi_{A}^{p}(\gamma), p_{j} \circ \Psi_{A}^{n}(\gamma)\right]_{j=1}^{m}\right\rangle$
Definition 2.5: If all of the nodes have the same open neighbourhood degree $\left\langle\left[\eta_{j}^{p}, \eta_{j}^{n}\right]_{j=1}^{m}\right\rangle$, then an m-BPFG Z of Z^{*} is said to be $\left\langle\left[\eta_{j}^{p}, \eta_{j}^{n}\right]_{j=1}^{m}\right\rangle$-regular.
Definition 2.6: If all of the nodes have the same closed neighbourhood degree $\left\langle\left[\gamma_{j}^{p}, \gamma_{j}^{n}\right]_{j=1}^{m}\right\rangle$, then an m-BPFG Z of Z^{*} is said to be $\left\langle\left[\gamma_{j}^{p}, \gamma_{j}^{n}\right]_{j=1}^{m}\right\rangle$-totally regular.

Definition 2.7: An m-BPFG Z of Z^{*} is said to be irregular if there exists a node which is adjacent to node with different degree.

3. Irregular graphs

In this section some irregular graphs are discussed.
Definition 3.1: Let Z of Z^{*} be an m- BPFG. Then Z is said to be HIR m-BPFG if each node of Z is adjacent to nodes with different degrees.
Definition 3.2: Let Z be an m-BPFG. Then Z is said to be NEIR m-BPFG if each pair of adjacent edges have different degrees.
Definition 3.3: Let Z be an m- BPFG. Then Z is said to be NETIR m-BPFG if each pair of adjacent edges have different total degrees.
Definition 3.4: Let Z be an m-BPFG. Then
(i) If each pair of edges has a different degree, then Z is called SEIR m-BPFG. (i.e. no two edges have the equal degree) [5].
(ii) If each pair of edges has a different total degree, then Z called SETIR m-BPFG. (i.e. no two edges have the equal degree) [5].
Theorem 3.1: Let $Z=(N, A, B)$ be an m-BPFG of Z^{*} where B is constant. Then Z is SEIR m-BPFG if and only if Z is SETIR m-BPFG.
Proof: Let $B(\gamma, \delta)=\left\langle\left[p_{j} \circ \psi_{B}^{p}(\gamma, \delta), p_{j} \circ \psi_{B}^{n}(\gamma, \delta)\right]_{j=1}^{m}\right\rangle=\left\langle\left[k_{j}^{p}, k_{j}^{n}\right]_{j=1}^{m}\right\rangle$ for all $(\gamma, \delta) \in E$,where $k_{j}^{p} \in[0,1]$ and $k_{j}^{n} \in[-1,0]$.
Let Z be SEIR m-BPFG.
$\Leftrightarrow d_{Z}\left(\gamma_{1}, \gamma_{2}\right) \neq d_{Z}\left(\delta_{1}, \delta_{2}\right)$ for all $\left(\gamma_{1}, \gamma_{2}\right),\left(\delta_{1}, \delta_{2}\right) \in E$
$\Leftrightarrow d_{Z}\left(\gamma_{1}, \gamma_{2}\right)+\left\langle\left[k_{j}^{p}, k_{j}^{n}\right]_{j=1}^{m}\right\rangle \neq d_{Z}\left(\delta_{1}, \delta_{2}\right)+\left\langle\left[k_{j}^{p}, k_{j}^{n}\right]_{j=1}^{m}\right\rangle$ for all $\left(\gamma_{1}, \gamma_{2}\right),\left(\delta_{1}, \delta_{2}\right) \in E$
$\Leftrightarrow d_{Z}\left(\gamma_{1}, \gamma_{2}\right)+B\left(\gamma_{1}, \gamma_{2}\right) \neq d_{Z}\left(\delta_{1}, \delta_{2}\right)+B\left(\delta_{1}, \delta_{2}\right)$ for all $\left(\gamma_{1}, \gamma_{2}\right),\left(\delta_{1}, \delta_{2}\right) \in E$
$\Leftrightarrow t d_{Z}\left(\gamma_{1}, \gamma_{2}\right) \neq t d_{Z}\left(\delta_{1}, \delta_{2}\right)$ for all $\left(\gamma_{1}, \gamma_{2}\right),\left(\delta_{1}, \delta_{2}\right) \in E$
$\Leftrightarrow Z$ is SETIR m-BPFG.
Remark 3.1: B might not be a be a constant function if $Z=(N, A, B)$ is both SEIR and SETIR m-BPFG.
Theorem 3.2: If Z is SEIR m-BPFG, then Z is NEIR m-BPFG.
Proof: As Z is SEIR m-BPFG, therefore each pair of edges in Z have different degrees.
Hence each pair of adjacent edges have different degrees.
So, Z is NEIR m-BPFG.
Theorem 3.3:If Z is SETIR-BPFG, then Z is NETIR m-BPFG.
Proof: Let Z be an m-BPFG and SETIR.
Each pair of edges in Z has a different total degree, hence each pair of adjacent edges also has a different total degree, making Z a NETIR m-BPFG.
Theorem 3.4: Let $Z=(N, A, B)$ be an m-BPFG of Z^{*} where B is constant. If Z is SEIR m -BPFG, then Z is an irregular m-BPFG.
Proof: Let $B(\gamma, \delta)=\left\langle\left[p_{j} \circ \psi_{B}^{p}(\gamma, \delta), p_{j} \circ \psi_{B}^{n}(\gamma, \delta)\right]_{j=1}^{m}\right\rangle=\left\langle\left[k_{j}^{p}, k_{j}^{n}\right]_{j=1}^{m}\right\rangle$ for all $(\gamma, \delta) \in E$
, where $k_{j}^{p} \in[0,1]$ and $k_{j}^{n} \in[-1,0]$. As Z is SEIR, we have each pair of edges will have different degrees. Assume that the two adjacent edges $\left(\gamma_{1}, \delta_{1}\right)$ and $\left(\delta_{1}, \eta_{1}\right)$ having distinct degrees.
This provides that $d_{Z}\left(\gamma_{1}, \delta_{1}\right) \neq d_{Z}\left(\delta_{1}, \eta_{1}\right)$
$\Rightarrow d_{Z}\left(\gamma_{1}\right)+d_{Z}\left(\delta_{1}\right)-2\left\langle\left[p_{j} \circ \psi_{B}^{p}\left(\gamma_{1}, \delta_{1}\right), p_{j} \circ \psi_{B}^{n}\left(\gamma_{1}, \delta_{1}\right)\right]_{j=1}^{m}\right\rangle \neq$
$d_{Z}\left(\delta_{1}\right)+d_{Z}\left(\eta_{1}\right)-2\left\langle\left[p_{j} \circ \psi_{B}^{p}\left(\delta_{1}, \eta_{1}\right), p_{j} \circ \psi_{B}^{n}\left(\delta_{1}, \eta_{1}\right)\right]_{j=1}^{m}\right\rangle$
$d_{Z}\left(\gamma_{1}\right)+d_{Z}\left(\delta_{1}\right)-2\left\langle\left[k_{j}^{p}, k_{j}^{n}\right]_{j=1}^{m}\right\rangle \neq d_{Z}\left(\delta_{1}\right)+d_{Z}\left(\eta_{1}\right)-2\left\langle\left[k_{j}^{p}, k_{j}^{n}\right]_{j=1}^{m}\right\rangle$
$\Rightarrow d_{Z}\left(\gamma_{1}\right) \neq d_{Z}\left(\eta_{1}\right)$.

This indicates that the node δ_{1} that is adjacent to the nodes γ_{1} and η_{1} have different degrees. As a result, Z is irregular.

Theorem 3.5: Let $Z=(N, A, B)$ be an m-BPFG of Z^{*} where B is constant. If Z is SEIR m-BPFG then Z is HIR m-BPFG.
Proof: Let $B(\alpha, \beta)=\left\langle\left[p_{j} \circ \psi_{B}^{p}(\alpha, \beta), p_{j} \circ \psi_{B}^{n}(\alpha, \beta)\right]_{j=1}^{m}\right\rangle=\left\langle\left[k_{j}^{p}, k_{j}^{n}\right]_{j=1}^{m}\right\rangle$ for all $(\alpha, \beta) \in E$, where $k_{j}^{p} \in[0,1]$ and $k_{j}^{n} \in[-1,0]$. Assume that α_{2} be any node adjacent with the nodes α_{1}, α_{3} and α_{4}.Thus $\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{2}, \alpha_{4}\right)$ are adjacent edges in Z. Let us consider that Z is SEIR m-BPFG. Thus each pair of edges in Z have different degrees. Hence, each pair of adjacent edges in Z have different degrees.
Hence, $d_{Z}\left(\alpha_{1}, \alpha_{2}\right) \neq d_{Z}\left(\alpha_{2}, \alpha_{3}\right) \neq d_{Z}\left(\alpha_{2}, \alpha_{4}\right)$
$\Rightarrow d_{Z}\left(\alpha_{1}\right)+d_{Z}\left(\alpha_{2}\right)-2\left\langle\left[p_{j} \circ \psi_{B}^{p}\left(\alpha_{1}, \alpha_{2}\right), p_{j} \circ \psi_{B}^{n}\left(\alpha_{1}, \alpha_{2}\right)\right]_{j=1}^{m}\right\rangle \neq$
$d_{Z}\left(\alpha_{2}\right)+d_{Z}\left(\alpha_{3}\right)-2\left\langle\left[p_{j} \circ \psi_{B}^{p}\left(\alpha_{2}, \alpha_{3}\right), p_{j} \circ \psi_{B}^{n}\left(\alpha_{2}, \alpha_{3}\right)\right]_{j=1}^{m}\right\rangle \neq$
$d_{Z}\left(\alpha_{2}\right)+d_{Z}\left(\alpha_{4}\right)-2\left\langle\left[p_{j} \circ \psi_{B}^{p}\left(\alpha_{2}, \alpha_{4}\right), p_{j} \circ \psi_{B}^{n}\left(\alpha_{2}, \alpha_{4}\right)\right]_{j=1}^{m}\right\rangle$
$\Rightarrow d_{Z}\left(\alpha_{1}\right)+d_{Z}\left(\alpha_{2}\right)-2\left\langle\left[k_{j}^{p}, k_{j}^{n}\right]_{j=1}^{m}\right\rangle \neq d_{Z}\left(\alpha_{2}\right)+d_{Z}\left(\alpha_{3}\right)-2\left\langle\left[k_{j}^{p}, k_{j}^{n}\right]_{j=1}^{m}\right\rangle \neq$
$d_{Z}\left(\alpha_{2}\right)+d_{Z}\left(\alpha_{4}\right)-2\left\langle\left[k_{j}^{p}, k_{j}^{n}\right]_{j=1}^{m}\right\rangle$
$\Rightarrow d_{Z}\left(\alpha_{1}\right) \neq d_{Z}\left(\alpha_{3}\right) \neq d_{Z}\left(\alpha_{4}\right)$.

Hence the node α_{2} is adjacent to the nodes α_{1}, α_{3} and α_{4} with different degrees.
As a result, Z is HIR.

4. Some Properties of Neighbourly Edge Totally Irregular m-BPFGs

In this part, we look at a few SETIR m-BPFG and NETIR m-BPFG features.

Definition 4.1: A walk in a directed graph $\vec{Z}=(\vec{N}, E)$ is a series of steps $w=$ $v_{1} \overrightarrow{e_{1}} v_{2} \overrightarrow{e_{2}} \cdots v_{k-1} \overrightarrow{e_{k-1}} v_{k}$ of nodes v_{i} and arcs $\overrightarrow{e_{l}}$ of \vec{Z} such that the head and tail of \vec{e}_{l} are v_{i} and v_{i+1} for all $i=1,2, \cdots, k-1$ respectively. If $v_{1}=v_{k}$, then a walk is said to be closed. A walk with different arcs is called a trail. A walk with different nodes is called a path. If v_{1} $=v_{k}$, then the path $v_{1}, v_{2}, \cdots v_{k}$ with $k \geq 3$ is a cycle. The number of edges on a path or cycle determines its length.
Definition 4.2: If every edge of an m-BPFG $Z=(N, A, B)$ of Z^{*} is having the equal total degree $\left\langle\left[\delta_{j}^{p}, \delta_{j}^{n}\right]_{j=1}^{m}\right\rangle$, thus Z is said to be totally edge regular m-BPFG.
Property 4.1: Let $Z=(N, A, B)$ be an m-BPFG of Z^{*} and B is constant. If Z is SETIR m-BPFG, thus Z is HIR m-BPFG.
Property 4.2: Let $Z=(N, A, B)$ be an m-BPFG of Z^{*} that is a path of $2 r(r>1)$ nodes.
If the membership value of the edges $f_{1}, f_{2}, \cdots, f_{2 r-1}$ are
$\left(\left[b_{j}^{p(1)}, b_{j}^{n(1)}\right]_{j=1}^{m}\right),\left(\left[b_{j}^{p(2)}, b_{j}^{n(2)}\right]_{j=1}^{m}\right), \cdots,\left(\left[b_{j}^{p(2 r-1)}, b_{j}^{n(2 r-1)}\right]_{j=1}^{m}\right)$ respectively such that $b_{j}^{p(1)}<b_{j}^{p(2)}<\cdots<b_{j}^{p(2 r-1)}$ and $b_{j}^{n(1)}>b_{j}^{n(2)}>\cdots>b_{j}^{n(2 r-1)}$, then Z is both SEIR and SETIR.
(Here, $f_{i}=v_{i} v_{i+1}$ for $i=1,2, \cdots,(2 r-1)$).
Theorem 4.1: Let $Z=(N, A, B)$ be an m-BPFG of Z^{*} that is a path of cycle
$r(r \geq 4)$ nodes. If the membership value of the edges $f_{1}, f_{2}, \cdots, f_{r}$ are
$\left(\left[b_{j}^{p(1)}, b_{j}^{n(1)}\right]_{j=1}^{m}\right),\left(\left[b_{j}^{p(2)}, b_{j}^{n(2)}\right]_{j=1}^{m}\right), \cdots,\left(\left[b_{j}^{p(r)}, b_{j}^{n(r)}\right]_{j=1}^{m}\right)$ respectively such that $b_{j}^{p(1)}<b_{j}^{p(2)}<\cdots<b_{j}^{p(r)}, b_{j}^{n(1)}>b_{j}^{n(2)}>\cdots>b_{j}^{n(r)}$, then Z is both SEIR and SETIR.
Proof: Let $f_{1}, f_{2}, \cdots, f_{r}$ be the edges of the cycle Z^{*} in that order.
Thus, we get

$$
\begin{aligned}
& d_{Z}\left(v_{i}\right)=\left(\left[b_{j}^{p(i-1)}+b_{j}^{p(i)}, b_{j}^{n(i-1)}+b_{j}^{n(i)}\right]_{j=1}^{m}\right) \text { for } i=2,3, \cdots, r \text { and } \\
& d_{Z}\left(v_{1}\right)=\left(\left[b_{j}^{p(1)}+b_{j}^{p(r)}, b_{j}^{n(1)}+b_{j}^{n(r)}\right]_{j=1}^{m}\right), \\
& d_{Z}\left(f_{i}\right)=\left(\left[b_{j}^{p(i-1)}+b_{j}^{p(i+1)}, b_{j}^{n(i-1)}+b_{j}^{n(i-1)}\right]_{j=1}^{m}\right) \text { for } i=2,3, \cdots,(r-1), \\
& d_{Z}\left(f_{1}\right)=\left(\left[b_{j}^{p(2)}+b_{j}^{p(r)}, b_{j}^{n(2)}+b_{j}^{n(r)}\right]_{j=1}^{m}\right), \\
& d_{Z}\left(f_{r}\right)=\left(\left[b_{j}^{p(1)}+b_{j}^{p(r-1)}, b_{j}^{n(1)}+b_{j}^{n(r-1)}\right]_{j=1}^{m}\right)
\end{aligned}
$$

So, Z is SEIR m-BPFG.
Again, since
$t d_{Z}\left(f_{i}\right)=\left(\left[b_{j}^{p(i-1)}+b_{j}^{p(i+1)}+b_{j}^{p(i)}, b_{j}^{n(i-1)}+b_{j}^{n(i-1)}+b_{j}^{n(i)}\right]_{j=1}^{m}\right)$ for $i=2,3, \cdots,(r-1)$,
$t d_{Z}\left(f_{1}\right)=\left(\left[b_{j}^{p(2)}+b_{j}^{p(1)}+b_{j}^{p(r)}, b_{j}^{n(2)}+b_{j}^{n(1)}+b_{j}^{n(r)}\right]_{j=1}^{m}\right)$,
$t d_{Z}\left(f_{r}\right)=\left(\left[b_{j}^{p(1)}+b_{j}^{p(r)}+b_{j}^{p(r-1)}, b_{j}^{n(1)}+b_{j}^{n(r)}+b_{j}^{n(r-1)}\right]_{j=1}^{m}\right)$,
as a result, Z is SETIR m-BPFG.
Theorem 4.2: Let $Z=(N, A, B)$ be an m-BPFG of Z^{*} that is a star $K_{1, r}$ If There are no two edges with the same membership values, thus Z is both SEIR and totally edge regular m-BPFG.
Proof: Let the nodes adjacent to the node l_{0} be $l_{1}, l_{2}, \cdots, l_{r}$. Let the edges of the star Z^{*} be $f_{1}, f_{2}, \cdots, f_{r}$, with the membership values

$$
\begin{aligned}
& \left(\left[b_{j}^{p(1)}, b_{j}^{n(1)}\right]_{j=1}^{m}\right),\left(\left[b_{j}^{p(2)}, b_{j}^{n(2)}\right]_{j=1}^{m}\right), \cdots,\left(\left[b_{j}^{p(r)}, b_{j}^{n(r)}\right]_{j=1}^{m}\right) \text { such that } \\
& \left(\left[b_{j}^{p(1)}, b_{j}^{n(1)}\right]_{j=1}^{m}\right) \neq\left(\left[b_{j}^{p(2)}, b_{j}^{n(2)}\right]_{j=1}^{m}\right) \neq \cdots \neq\left(\left[b_{j}^{p(r)}, b_{j}^{n(r)}\right]_{j=1}^{m}\right) \text {. Then } \\
& d_{Z}\left(f_{i}=\left(l_{0}, l_{i}\right)\right)=d_{Z}\left(l_{0}\right)+d_{Z}\left(l_{i}\right)-2 B\left(l_{0}, l_{i}\right) \\
& =\left(\left[b_{j}^{p(1)}+b_{j}^{p(2)}+\cdots+b_{j}^{p(r)}, b_{j}^{n(1)}+b_{j}^{n(2)}+\cdots+b_{j}^{n(r)}\right]_{j=1}^{m}+\left[b_{j}^{p(i)}, b_{j}^{n(i)}\right]-2\left[b_{j}^{p(i)}, b_{j}^{n(i)}\right]\right) \\
& =\left(\left[b_{j}^{p(1)}+b_{j}^{p(2)}+\cdots+b_{j}^{p(r)}, b_{j}^{n(1)}+b_{j}^{n(2)}+\cdots+b_{j}^{n(r)}\right]_{j=1}^{m}-\left[b_{j}^{p(i)}, b_{j}^{n(i)}\right]\right) \text { for } i=1,2, \cdots, r .
\end{aligned}
$$

All of the edges' degrees can be seen to vary. Z is hence SEIR.
Also $t d_{Z}\left(f_{i}=\left(l_{0}, l_{i}\right)\right)$

$$
\begin{aligned}
& =\left(\left[b_{j}^{p(1)}+b_{j}^{p(2)}+\cdots+b_{j}^{p(r)}, b_{j}^{n(1)}+b_{j}^{n(2)}+\cdots+b_{j}^{n(r)}\right]_{j=1}^{m}-\left[b_{j}^{p(i)}, b_{j}^{n(i)}\right]+\left[b_{j}^{p(i)}, b_{j}^{n(i)}\right]\right) \\
& =\left(\left[b_{j}^{p(1)}+b_{j}^{p(2)}+\cdots+b_{j}^{p(r)}, b_{j}^{n(1)}+b_{j}^{n(2)}+\cdots+b_{j}^{n(r)}\right]_{j=1}^{m}\right) \text { for } i=1,2, \cdots, r .
\end{aligned}
$$

As a result, Z is totally edge regular because all of the edges have the same total number of degree.

Conclusions

We introduce and investigate the idea of SEIR and SETIR m-BPFGs. SETIR and SEIR mBPFGs are described. Researchers have looked into a number of their crucial characteristics.

References

[1]Akram M. Bipolar fuzzy graphs, Information Sciences, 181(2011)5548-5564.
[2] Bhutani, K.R., Moderson, J., Rosenfeld, A.: On degrees of end nodes and cut nodes in fuzzy graphs. Iran. J. Fuzzy Syst. 1(1), 57-64 (2004).
[3] Ghorai G. and Pal M. Some isomorphic properties of m-polar fuzzy graphs with Applications, Springer plus, 5(2016) 1-21.
[4]Ghorai G. and Pal M,"Novel Concepts of SEIR m-Polar Fuzzy Graphs"
International Journal of Applied and Computational Mathematics, Vol. 3, 2017, 3321-3332.
[5] Ramakrishna Mankena, T.V. Pradeep Kumar, Ch. Ramprasad and J. VijayaKumar,"Edge Regularity on m-BPFG", Annals of Pure and Applied Mathematics Vol. 23, No. 1, 2021, 2736.
[6] Ramakrishna Mankena, T.V. Pradeep Kumar, Ch. Ramprasad and K. V. RangaRao , "Neighborhood Degrees Of m-Bipolar Fuzzy Graph", J. Math. Comput. Sci. 11 (2021), No. 5, 5614-5628.
[7] R. Bose, Strongly regular graphs, partial geometries and partially balanced de signs, Pacific Journal of Mathematics, 13(2) 389-419 (1963).
[8] A. Nagoorgani and K. Radha, On regular fuzzy graphs, Journal of Physical Sci ences, 12 33-40 (2008).
[9] A. Nagoorgani and A. Latha, On irregular fuzzy graphs, Applied Mathematical Sciences, 6(11) 517-523 (2012).
[10] K. Radha and N. Kumaravel, On edge regular fuzzy graphs, International Jour nal of Mathematical Archive, 5(9) 100-112 (2014).

