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Abstract 

In combinatory and theoretical computer science, irregular graphs are crucial. Strongly 
irregular graphs belong to a significant class of highly organised graphs. We define SETIR m-
BPFG and SEIR m-BPFG in this study. We establish equivalence between SEIR m-BPFG and 
SETIR m-BPFG and investigate a few features of the former and the latter. 
Keywords: m-BPFG, SEIR m-BPFG, SETIR m-BPFG, irregular m-BPFG 
1. Introduction 

Each of the nodes and edges of an m-polar fuzzy graph includes components, but those 
features are fixed. However, these elements could be bipolar. An m-BPFG has been presented 
based on this concept.  

Bose [7] was the first to define a strongly regular graph. Regular and irregular fuzzy 
graphs were first proposed by Nagoorgani et al. [8, 9]. Radha and Kumaravel [10] were the 
ones who initially proposed the idea of a substantially regular fuzzy graph. The paper 
introduces the notion of strongly edge irregular and strongly edge entirely irregular m-BPFGs.  
Bose [7] was the first to define a strongly regular graph. Regular and irregular fuzzy graphs 
were first proposed by Nagoorgani et al. [8, 9]. The idea of SEIR and SETIR m-BPFGs is 

Nomenclature 

m-bipolar fuzzy graph m-BPFG 

Strongly edge irregular SEIR 

Strongly edge totally irregular SETIR 

Neighbourly edge irregular NEIR 

Neighbourly edge totally 
irregular 

NETIR 

Highly irregular HIR 
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introduced in this study. Additionally, certain aspects of them are investigated to define it and 
explored some of their characteristics. 
2. Preliminaries 
Prior to creating the m-BPFG, we presumptively consider: 

Define an equivalency relation   , , :N N r r r N      on the basis of the following 

  2211 ,),(    either  2211 ,),(   or 2121 ,    for a given set  N . 

In this case, the Quotient Set is indicated by  2.N


 

Definition 2.1: [5] A 3-tuple   , ,Z N A B  is an m-BPFG of a graph  * , ,Z N E  where 

 
1

Ψ , Ψ , Ψ : 0,1A

mp n p
j jA jjAA p p p N


       and  Ψ : 1,0n

Ajp V    is an m-BPFS on 

N  and  2

1
Ψ , Ψ , Ψ : 0,1

mp n p
j jB BjjBB p p Np


   


   and  2Ψ : 1,0n

j Bp N  





  is an m-

BPFS in 2N


 such that       Ψ , min Ψ , Ψp p p
j j A jB Ap p p      , 

      Ψ , max Ψ , Ψn n n
j j A jB Ap p p      for all   2, N  


, 𝑗 = 1,2, ⋯ , 𝑚 and 

   Ψ , Ψ , 0p n
B Bj jp p       for all   2, EN   


. 

Definition 2.2: An m-BPFG node's N   neighbourhood degree in   , ,Z N A B  is 

described as          
( )

1
) (

d , d Ψ , Ψn
A

mp n p
Nb j Nb j N

t
b j j

b Nb
j A

N t

d tp p p pt
 

  
 



 
  


 


     

. 
Definition 2.3:The open neighbourhood degree of a node N    in an m-BPFG 

  , ,Z N A B  is defined as 

     
 

 
 

 
1

, , 1

d , d Ψ , , Ψ ,Z Z Z

m

mp n p n
j j j jB Bj

E E j

d p p p p
   
   

      


 



 
 

     
 
 

    

ò ò

  

 
Definition 2.4: The closed neighbourhood degree of a node N   in an m-BPFG 

  , ,Z N A B  is defined as 

     
 

 
 

     
1 1

, , 1

d , d Ψ , , Ψ , Ψ , Ψ

m

m mp n p n p n
j G j

j

Z B B AG j j Aj jj j

E E

d p p p p p p
   
   

        
 

 



 
 

         
 
 

      

ò ò

   

  Definition 2.5: If all of the nodes have the same open neighbourhood degree〈ൣ𝜂௝
௣

, 𝜂௝
௡ ൧

௝ୀଵ

௠
〉, 

then an m-BPFG Z   of *Z  is said to be 〈ൣ𝜂௝
௣

, 𝜂௝
௡ ൧

௝ୀଵ

௠
〉-regular. 

Definition 2.6: If all of the nodes have the same closed neighbourhood degree 

〈ൣ𝛾௝
௣

, 𝛾௝
௡ ൧

௝ୀଵ

௠
〉, then an m-BPFG Z   of *Z  is said to be 〈ൣ𝛾௝

௣
, 𝛾௝

௡ ൧
௝ୀଵ

௠
〉-totally regular. 
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Definition 2.7: An m-BPFG Z   of *Z  is said to be irregular if there exists a node which is 
adjacent to node with different degree. 
3. Irregular graphs 

In this section some irregular graphs are discussed. 

Definition 3.1: Let Z   of *Z  be an m- BPFG. Then  Z  is said to be HIR m-BPFG if each 
node of Z  is adjacent to nodes with different degrees. 
Definition 3.2: Let Z  be an m-BPFG. Then Z  is said to be NEIR m-BPFG if each pair of 
adjacent edges have different degrees. 
Definition 3.3: Let Z  be an m- BPFG. Then Z is said to be NETIR m-BPFG if each pair of 
adjacent edges have different total degrees. 
Definition 3.4: Let Z  be an m-BPFG. Then  
(i) If each pair of edges has a different degree, then Z  is called SEIR m-BPFG. (i.e. no two 
edges have the equal degree) [5]. 
(ii) If each pair of edges has a different total degree, then Z  called SETIR m-BPFG. (i.e. no 
two edges have the equal degree) [5]. 

Theorem 3.1: Let   , ,Z N A B  be an m-BPFG of *Z  where B  is constant. Then Z  is 

SEIR m-BPFG if and only if Z  is SETIR m-BPFG. 

Proof: Let      
1 1

, , , , ,
m mp n p n

j B j B j jj j
B p p k k       

 
          for all   E ,

,where  1,0p
jk   and   0,1n

jk . 

Let Z  be SEIR m-BPFG. 

   1 2 1 2, ,Z Zd d     for all     E2121 ,,,   

   1 2 1 21 1
, , , ,

m mp n p n
Z j j Z j jj j

d k k d k k   
 

          for all     E2121 ,,,   

       1 2 1 2 1 2 1 2, , , ,Z Zd B d B           for all     E2121 ,,,   

   1 2 1 2, ,Z Ztd td     for all     E2121 ,,,   
Z is SETIR m-BPFG. 

Remark 3.1: B  might not be a be a constant function if   , ,Z N A B   is both  SEIR and 

SETIR m-BPFG. 
Theorem 3.2: If Z  is SEIR m-BPFG, then Z  is NEIR m-BPFG.  
Proof: As Z  is SEIR m-BPFG, therefore each pair of edges in Z  have different degrees. 
Hence each pair of adjacent edges have different degrees. 
So, Z  is NEIR m-BPFG. 
Theorem 3.3:If Z  is SETIR-BPFG, then Z  is NETIR m-BPFG.  
Proof: Let Z  be an m-BPFG and SETIR.  
Each pair of edges in Z  has a different total degree, hence each pair of adjacent edges also 
has a different total degree, making Z  a NETIR m-BPFG. 

Theorem 3.4: Let   , ,Z N A B  be an m-BPFG of *Z  where B   is constant. If Z  is SEIR 

m-BPFG, then Z  is an irregular m-BPFG.  

Proof: Let      
1 1

, , , , ,
m mp n p n

j B j B j jj j
B p p k k       

 
           for all  , E  
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,where  0, 1p
jk   and  1, 0n

jk   . As Z  is SEIR, we have each pair of edges will have 

different degrees. Assume that the two adjacent edges  1 1,  and  1 1,  having distinct 

degrees. 

This provides that    1 1 1 1, ,Z Zd d      

       1 1 1 1 1 1 1
2 , , ,

mp n
Z Z j B j B j

d d p p       


        

       1 1 1 1 1 1 1
2 , , ,

mp n
Z Z j B j B j

d d p p       


       

       1 1 1 11 1
2 , 2 ,

m mp n p n
Z Z j j Z Z j jj j

d d k k d d k k   
 

            

   1 1 .Z Zd d    

 

This indicates that the node 1 that is adjacent to the nodes 1  and 1  have different degrees. 

As a result, Z  is irregular. 

Theorem 3.5: Let   , ,Z N A B  be an m-BPFG of *Z  where B  is constant. If Z is 

SEIR m-BPFG then Z is HIR m-BPFG.  

Proof: Let      
1 1

, , , , ,
m mp n p n

j B j B j jj j
B p p k k       

 
           for all 

 , ,E    where  0, 1p
jk   and  1, 0 .n

jk    Assume that 2  be any node 

adjacent with the nodes 1 , 3  and 4. Thus    1 2 2 3, , ,    ,  2 4,   are 

adjacent edges in Z . Let us consider that Z  is SEIR m-BPFG. Thus each pair of 
edges in Z  have different degrees. Hence, each pair of adjacent edges in Z  have 
different degrees. 

Hence,      1 2 2 3 2 4, , ,Z Z Zd d d         

       

       

       

1 2 1 2 1 2 1

2 3 2 3 2 3 1

2 4 2 4 2 4 1

2 , , ,

2 , , ,

2 , , ,

mp n
Z Z j B j B j

mp n
Z Z j B j B j

mp n
Z Z j B j B j

d d p p

d d p p

d d p p

       

       

       







     

    

    

 

 

 

 

       

   

1 2 2 31 1

2 4 1

2 , 2 ,

2 ,

m mp n p n
Z Z j j Z Z j jj j

mp n
Z Z j j j

d d k k d d k k

d d k k

   

 

 



            

    

 

     1 3 4 .Z Z Zd d d      

 

Hence the node 2  is adjacent to the nodes 1 , 3 and 4 with different degrees. 

As a result, Z  is HIR. 
4. Some Properties of Neighbourly Edge Totally Irregular m-BPFGs 

In this part, we look at a few SETIR m-BPFG and NETIR m-BPFG features. 
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Definition 4.1: A walk in a directed graph ),  ( Z N E
 

 is a series of steps  𝑤 =

𝑣ଵ𝑒ଵሬሬሬ⃗ 𝑣ଶ𝑒ଶሬሬሬ⃗ ⋯ 𝑣௞ିଵ𝑒௞ିଵሬሬሬሬሬሬሬሬ⃗  𝑣௞ of nodes  𝑣௜  and arcs 𝑒పሬሬ⃗  of Z


 such that the head and tail of 𝑒పሬሬ⃗  are 𝑣௜  
and 𝑣௜ାଵ  for all 𝑖 = 1, 2, ⋯ , 𝑘 − 1 respectively. If    𝑣ଵ= 𝑣௞,  then a   walk is said to be closed. 
A walk with different arcs is called a trail. A walk with different nodes is called a path. If    𝑣ଵ 
= 𝑣௞, then the path    𝑣ଵ,   𝑣ଶ,⋯    𝑣௞ with 𝑘 ≥ 3 is a cycle. The number of edges on a path or 
cycle determines its length. 

 Definition 4.2: If every edge of an m-BPFG   , ,Z N A B   of *Z   is having the equal total 

degree 〈ൣ𝛿 ௝
௣

, 𝛿 ௝
௡ ൧

௝ୀଵ

௠
〉 , thus Z  is said to be totally edge regular m-BPFG. 

Property 4.1: Let   , ,Z N A B   be an m-BPFG of *Z   and B  is constant. If Z  is SETIR 

m-BPFG, thus Z  is HIR m-BPFG.  

Property 4.2: Let   , ,Z N A B   be an m-BPFG of *Z   that  is a path of 2𝑟 (𝑟 > 1) nodes. 

If the membership value of the edges  1 2 2 1, , , rf f f 
 are 

     (1) (1) (2) (2) (2 1) (2 1)

1 1 1
, , , , , ,

m m mp n p n p r n r
j j j j j jj j j

b b b b b b 

  
          

 respectively such that
(1) (2) (2 1)p p p r

j j jb b b    and 
(1) (2) (2 1)n n n r

j j jb b b    , then Z  is both SEIR and SETIR. 

(Here, 1i i if v v  for 1, 2, , (2 1)i r  ). 

Theorem 4.1: Let   , ,Z N A B   be an m-BPFG of *Z   that is a path of cycle 

𝑟 (𝑟 ≥ 4)nodes. If the membership value of the edges 1 2, , , rf f f are 

     (1) (1) (2) (2) ( ) ( )

1 1 1
, , , , , ,

m m mp n p n p r n r
j j j j j jj j j

b b b b b b
  

             respectively such that

(1) (2) ( ) (1) (2) ( ), ,p p p r n n n r
j j j j j jb b b b b b       then Z  is both SEIR and SETIR. 

Proof: Let 1 2, , , rf f f  be the edges of the cycle *Z    in that order. 
Thus, we get 

   ( 1) ( ) ( 1) ( )

1
,

mp i p i n i n i
Z i j j j j j

d v b b b b 


     for 2, 3, ,i r   and  

   (1) ( ) (1) ( )
1 1

, ,
mp p r n n r

Z j j j j j
d v b b b b


      

   ( 1) ( 1) ( 1) ( 1)

1
,

mp i p i n i n i
Z i j j j j j

d f b b b b   


     for 2, 3, , ( 1),i r   

   (2) ( ) (2) ( )
1 1

, ,
mp p r n n r

Z j j j j j
d f b b b b


      

   (1) ( 1) (1) ( 1)

1
,

mp p r n n r
Z r j j j j j

d f b b b b 


      

 
So, Z  is SEIR m-BPFG. 
Again, since  

   ( 1) ( 1) ( ) ( 1) ( 1) ( )

1
,

mp i p i p i n i n i n i
Z i j j j j j j j

td f b b b b b b   


       for 2, 3, , ( 1),i r   
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   (2) (1) ( ) (2) (1) ( )
1 1

, ,
mp p p r n n n r

Z j j j j j j j
td f b b b b b b


        

   (1) ( ) ( 1) (1) ( ) ( 1)

1
, ,

mp p r p r n n r n r
Z r j j j j j j j

td f b b b b b b 


        

as a result, Z  is SETIR m-BPFG. 

Theorem 4.2: Let   , ,Z N A B   be an m-BPFG of *Z   that is a star 𝐾ଵ,௥ If There are no 

two edges with the same membership values,   thus Z  is both SEIR and totally edge regular 
m-BPFG. 

Proof: Let the nodes adjacent to the node 𝑙଴ be  𝑙ଵ, 𝑙ଶ, ⋯ , 𝑙௥ .Let the edges of the star *Z   be 
𝑓ଵ, 𝑓ଶ, ⋯ , 𝑓௥ , with the membership values  

     (1) (1) (2) (2) ( ) ( )

1 1 1
, , , , , ,

m m mp n p n p r n r
j j j j j jj j j

b b b b b b
  

            such that 

     (1) (1) (2) (2) ( ) ( )

1 1 1
, , ,

m m mp n p n p r n r
j j j j j jj j j

b b b b b b
  

            
. Then  

        0 0 0, 2 ,Z i i Z Z i id f l l d l d l B l l     

 

 (1) (2) ( ) (1) (2) ( ) ( ) ( ) ( ) ( )

1
, , 2 ,

mp p p r n n n r p i n i p i n i
j j j j j j j j j jj

b b b b b b b b b b


                   
 

 (1) (2) ( ) (1) (2) ( ) ( ) ( )

1
, ,

mp p p r n n n r p i n i
j j j j j j j jj

b b b b b b b b


              
 for 1, 2, ,i r  . 

All of the edges' degrees can be seen to vary. Z  is hence SEIR.  

Also   0 ,Z i itd f l l  

 (1) (2) ( ) (1) (2) ( ) ( ) ( ) ( ) ( )

1
, , ,

mp p p r n n n r p i n i p i n i
j j j j j j j j j jj

b b b b b b b b b b


                   
 

 (1) (2) ( ) (1) (2) ( )

1
,

mp p p r n n n r
j j j j j j j

b b b b b b


         
for 1, 2, ,i r  .  

As a result, Z  is totally edge regular because all of the edges have the same total number of 
degree. 
 
Conclusions 
We introduce and investigate the idea of SEIR and SETIR m-BPFGs. SETIR and SEIR m-
BPFGs are described. Researchers have looked into a number of their crucial characteristics. 
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