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Abstract: 
In this research, we used the new integral transformation 

𝐻𝐴[𝑓(𝑔)] =  
( )

!
 ∫ (𝑙𝑛 𝑔)  𝑓(𝑔) 𝑑𝑔 ; n∈ 𝑧  

Which we called the Albazy Altememe transformation in solving some types of ordinary 
differential equations, and in it we reviewed the transformation rules for derivatives with proof 
for each . 
1. Introduction: 

Recently, a lot of integral transformations have conducted for the researcher  Ali Hassan 
Mohammad, including the AL-tememe transformation [1], as well as the  transformation of Al-
Zughair [2]  , the expansion of Al-Zughair [3], and the extension of Al-Zughair transformation 
[4], in addition to the transformation of Batoor Al-Tememe ,Batoor Al-Zaghair, Kuffi Al-
Tememe, and Kuffi Al-Zughair[5]. 
 In our study, we discovered a new transformation that we named Albazy Altememe 
transformation, which  formulated: 

𝐻𝐴[𝑓(𝑔)]= 
(  )

!
 ∫ (𝑙𝑛 𝑔)  𝑓(𝑔)𝑑𝑔 ; n ∈  𝑧  

All these transfers are used to solve different types of ordinary and partial differential 
equations, as well as integral equations. 
2. The Preliminaries: 

In this section, we will present some of claims and calculation for transformation. Albazy 
Altememe in [6] introduced type of transformation, we will present it in the following. 
Definition 1.1 [6] 
Albazy Altememe transformation for the function 𝑓(𝑔), is defined by  

𝐻𝐴[𝑓(𝑔)] =  
( )

!
 ∫ (𝑙𝑛 𝑔)  𝑓(𝑔)𝑑𝑔 ; n ∈  𝑧  

𝑤ℎ𝑒𝑟𝑒 −
( )

!
(𝑙𝑛 𝑔)  .  is kernel of Albazy Altememe transformation such that  this integral 

is converge. 
Theorem 1.2 [6] 
Suppose 𝑓(𝑔) is a function . The following table lists some basic functions for which the 
Albazy Altememe transformation is provided : 

Function , f(𝑔) 𝐻𝐴[𝑓(𝑔)] =
( )

!
 ∫ (𝑙𝑛 𝑔) 𝑓(𝑔)𝑑𝑔, n ∈  𝑧   

1 1  
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(ln 𝑔) −(𝑛 + 1)  

(ln 𝑔)   
  

  

(ln 𝑔)  
 (−1)

𝑛!
(𝑛 + 𝑤)! 𝑤 ∈  𝑧  

(ln 𝑔)  
(−1)

𝑛!
(𝑛 − 𝑤)! 𝑤 ∈  𝑧  

𝑠𝑖𝑛ℎ 𝑙𝑛 𝑙𝑛 𝑔 
−(𝑛 + 1)

2
+

1

2𝑛  
  

cosh ln ln 𝑔 
−(𝑛 + 1)

2
−

1

2𝑛  
  

sinhw ln ln 𝑔 
(−1)

2𝑛!
(𝑛 + 𝑤)! −  

(−1)

2𝑛!
(𝑛 − 𝑤)! 𝑤 ∈  𝑧  

coshw ln ln 𝑔 
(−1)

2𝑛!
(𝑛 + 𝑤)! +  

(−1)

2𝑛!
(𝑛 − 𝑤)! 𝑤 ∈  𝑧  

𝑔 
1

2
  

𝑔  
1

3
  

𝑔  
1

(𝑞 + 1)
 𝑞 ∈  𝑧  

𝑔  
(𝑞)

(𝑞 + 1)
 𝑞 ∈  𝑧  

𝑔  
(𝑏)

(𝑤 + 𝑏)
 𝑤&𝑏 ∈ 𝑧  

 
Definition (1.2) [7] 
The equation 

𝑎 (𝑙𝑛𝑔)  
𝑑 𝑦(𝑙𝑛𝑔)

𝑑𝑔
+ 𝑎 (𝑙𝑛𝑔)  

𝑑 𝑦(𝑙𝑛𝑔)

𝑑𝑔
+ ⋯ + 𝑎  𝑙𝑛𝑔 

𝑑𝑦(𝑙𝑛𝑔)

𝑑𝑔
+ 𝑎  𝑦 = 𝑓(𝑔) 

Is defined Ali's Equation : where 𝑎 , 𝑎 … , 𝑎  are constants and  𝑓(𝑔) is a function of 𝑔.  
3. Main Results: 

In this section we will introduce a new definition for a new equation . 
Defintion 1.3. 
Albazy Altememe equation ,is defined by the following equation  
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𝑎
(ln 𝑔)

𝑔
∙  

𝑑 𝑦(𝑙𝑛𝑔)

𝑑𝑔
+ 𝑎

(ln 𝑔)

𝑔
∙  

𝑑 𝑦(𝑙𝑛𝑔)

𝑑𝑔
+ ⋯ + 𝑎

(𝑙𝑛𝑔)

𝑔
 ∙

𝑑𝑦(𝑙𝑛𝑔)

𝑑𝑔
+ 𝑎  

𝑦

𝑔

= 𝑓(𝑔) 
     such  that    𝑎 ,𝑎 , … , 𝑎   are constants. 
Theorem 2.3. 
  If 𝑔 ∈ (0,1] has the function [y(lng)] defined for it , the derivatives corresponding to 

( )( ) 
,

( )( )
 , … ,

( )( )
 are exist then: 

𝐻𝐴 (𝑙𝑛𝑔)
( )( )

 =
( )

!
(𝑚 + 𝑛)!  𝐻𝐴 

 
  

                                                     =
( )

!
    ∫ (𝑙𝑛 𝑔)  𝑦

 ( )
 𝑑𝑔 

                                                        =
( )

!
(𝑚 + 𝑛)!  𝐻𝐴 

 
  ; 𝑚 ∈ 𝑧  

 ; 𝑦(−∞) = 𝑦 (−∞) = 𝑦′ (−∞) = ⋯ = 𝑦 (− ∞) = 0 
Proof : 

Let  𝐻𝐴( 
( ) 

) =  
( )

!
 ∫ (ln 𝑔)   

( ) 
𝑑𝑔  

Case (1), If  m=1, then     

  HA(
( )

 ) = −(𝑛 + 1)𝐻𝐴( ) 

𝐻𝐴((𝑙𝑛 𝑔) 
𝑦 ( 𝑙𝑛 𝑔)

𝑔
 ) =  

(−1)

𝑛!
 (𝑙𝑛 𝑔)  

𝑦 ( 𝑙𝑛 𝑔)

𝑔
𝑑𝑔  

  = 
( )

!
 [(ln 𝑔)  𝑦(ln 𝑔) | − ∫ (𝑛 + 1)( ln 𝑔)  

( ) 
 𝑑𝑔] 

                                                           =  
(−1)

𝑛!
   (𝑛 + 1)( 𝑙𝑛 𝑔)   

𝑦

𝑔
𝑑𝑔  

                                              = (−1)  (−1) 
( )

!
∫ (ln 𝑔)   𝑑𝑔 

                                                = −(𝑛 + 1) 𝐻𝐴(
 
)  

Case 2, If m=2, then  

𝐻𝐴 (
( )  

 𝑦 (ln 𝑔) )  = (𝑛 + 2)(𝑛 + 1) 𝐻𝐴( ) 

( )

!
 ∫ (ln 𝑔)  𝑦

( ) 
 𝑑𝑔 𝐻𝐴 ( 

( )  

  𝑦 (ln 𝑔)  ) =       

= 
( )

!
  [ (ln 𝑔)  𝑦 (ln 𝑔) |  − ∫ (𝑙𝑛 𝑔)  (𝑛 + 2)

( )
 𝑑𝑔] 

= 
( )

!
 (𝑛 + 2) ∫ (ln 𝑔)  

( )
 𝑑𝑔 

= 
( )

!
 (−1)(𝑛 + 2) ∫ (𝑙𝑛 𝑔)  

( )
𝑑𝑔  

= (𝑛 + 2)(𝑛 + 1)𝐻𝐴  ( by using the previous case )  

Case (3), If m=3, then 

𝐻𝐴(
(𝑙𝑛 𝑔)

𝑔
𝑦 (𝑙𝑛 𝑔)  )    = −(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝐻𝐴(

𝑦

𝑔
) 
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𝐻𝐴(
(𝑙𝑛 𝑔)

𝑔
 𝑦 (𝑙𝑛 𝑔) ) =

(−1)

𝑛!
 (𝑙𝑛 𝑔)   

𝑦 (𝑙𝑛 𝑔)

𝑔
 𝑑𝑔 

=
( )

!
 [( ln 𝑔)   𝑦  ( ln 𝑔 ) |  − ∫ (𝑛 + 3)(ln 𝑔)   ( )  

 𝑑𝑔] 

=  
( )

!
(𝑛 + 3) ∫ (ln 𝑔)   ( )  

 𝑑𝑔  

=  
( )

!
 (−1)(𝑛 + 3) ∫ (ln 𝑔)  ( )  

 𝑑𝑔 

= −(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝐻𝐴   ( by using the previous case ) 

 
Case (4), If  m= 4, then 

𝐻𝐴(
( )

  𝑦  (ln 𝑔))=(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝐻𝐴  

𝐻𝐴(
( )

  𝑦  (ln 𝑔)) =  
( )

!
 ∫ (ln 𝑔)  

 ( )
  𝑑𝑔 

=  
( )

!
 [(𝑙𝑛 𝑔)  𝑦  (ln 𝑔)|  − ∫  (𝑛 + 4)(ln 𝑔)  

( )
 𝑑𝑔] 

=  
( )

!
 (𝑛 + 4) ∫ (ln 𝑔)  

( )
 𝑑𝑔 

=  
( )

!
 (−1)(𝑛 + 4) ) ∫ (ln 𝑔)    

( )
 𝑑𝑔 

= (𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝐻𝐴  ( by using the previous case ) 

: 
So, 

𝐻𝐴(
(𝑙𝑛 𝑔)

𝑔
𝑦 (ln 𝑔) ) =

(−1)

𝑛!
(𝑚 + 𝑛)!  𝐻𝐴

𝑦

𝑔
 

𝐻𝐴( 
(𝑙𝑛 𝑔)

𝑔
 𝑦 (ln 𝑔)  ) =  

(−1)

𝑛!
 (𝑙𝑛 𝑔) ( 𝑙𝑛 𝑔) 𝑦( )

 

  
(𝑙𝑛 𝑔)

𝑔
  𝑑𝑔 

=
( )

!
  ∫ (𝑙𝑛 𝑔)

 
 

( )
 𝑑𝑔  

=
(−1)

𝑛!
(𝑚 + 𝑛)!  𝐻𝐴 

𝑦

 𝑔
  ; 𝑚 ∈ 𝑧  

transformation for Solving a New Type of L.O.D.E. Albazy Altememe  
     One of the most important uses of  Albazy Altememe transformation is solving L.O.D.E. 
An order linear ordinary differential equation's generic form (n) 
with variable coefficients is as follows: 

𝑠
( )

∙  
( )

+ 𝑠
( )

∙  
( )

+ ⋯ + 𝑠  ∙  
( )

+ 𝑠  = 𝑓(𝑔) … (1.1)  

When  𝑠 , 𝑠 , … , 𝑠  are constants, 𝑦( ) is the 𝑛th an derivative of the function 𝑦(𝑙𝑛𝑔) , 𝑓(𝑔) is a 
continuous function with a known Albazy Altememe transformation, where y(-∞),..., and 

𝑦( ) (-∞) are all zero. Albazy Altememe transformation (HA) can be used to both sides of 
D.E. (1.1) to find a solution; after simplification, we obtain 𝐻𝐴(𝑦/𝑔) as follows: 
 

𝐻𝐴
𝑦

𝑝
=

𝑟(𝑛)

𝑞(𝑛)
 ; 𝑞(𝑛) ≠ 0                                                                  … (1.2) 
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where 𝑟 , 𝑞 are polynomials of n, By taking (𝐻𝐴)  to both sides of equation (1.2) we will 
obtain: 

𝑦 = (𝐻𝐴)
𝑟(𝑛)

𝑞(𝑛)
                                                                                    … (1.3) 

4. Applications. 
In this section, we will present some of application about our work, and we can see the our 
transformation how our conversion has helped easy some difficult problems. 
Example 1.4. 
For the following differential equation to be resolved 
( )

 𝑦 + = 1 where y function of (ln 𝑔) 𝑎𝑛𝑑  𝑦(−∞) = 0 

When both sides of the aforementioned equation undergo the Albazy Altememe 
transformation, we obtain : 

𝐻𝐴(
( )

 𝑦 )+𝐻𝐴( ) = 1 

-(n+1) 𝐻𝐴( ) + 𝐻𝐴( ) =𝐻𝐴(1) 

(−𝑛 − 1 + 1)𝐻𝐴( ) = 1 

𝐻𝐴(  ) = −  

We obtain the following by applying the ( 𝐻𝐴)  transformation to above solution : 

(𝐻𝐴)  𝐻𝐴(  ) =(𝐻𝐴) (− ) 

 = (ln 𝑔)  

𝑦= 𝑔(ln 𝑔)  
Example 2.4.  
To solve the following  differential equation 
( )

𝑦  + = ( ln 𝑔) − (ln 𝑔)  ; 𝑦(−∞) = 0 

Albazy Altememe transformation is taken  to both sides of above equation we obtain:  

𝐻𝐴(
( )

𝑦 ) +𝐻𝐴( 
 
)= 𝐻𝐴(( ln 𝑔)  )  −  𝐻𝐴((ln 𝑔) )         

        −(𝑛 + 1)𝐻𝐴  
 

+ 𝐻𝐴  
 

=  
( )

− −   

(−𝑛)𝐻𝐴  
𝑦 

𝑔
=

1

(𝑛 − 1)
 

𝐻𝐴  
𝑦 

𝑔
= −

1

n(n − 1)
 

 By taking (𝐻𝐴)  transformation to above solution we obtain: 

 (𝐻𝐴) 𝐻𝐴   =−𝐻𝐴 ( 
( )

  ) ⟹  = −(ln 𝑔)  

𝑦 = −𝑔(𝑙𝑛 𝑔)  
 
Example 3.4. 
 To solve the following  differential equation 
( )

 𝑦 +
( )

𝑦 − 4 = 1 − 3(ln 𝑔) ;𝑦(−∞) = 0 
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Albazy Altememe  transformation is taken  to both sides of above equation we obtain:  

𝐻𝐴( 
( )

 𝑦  ) + 𝐻𝐴(
( )

 𝑦  ) −4𝐻𝐴 = 𝐻𝐴(1) − 3𝐻𝐴((𝑙𝑛 𝑔) )  

(𝑛 + 2)(𝑛 + 1)𝐻𝐴 − (𝑛 + 1)𝐻𝐴 − 4𝐻𝐴( )= 1 +  

(𝑛 +3n+2-n-1-4) 𝐻𝐴 =
( )

 

(𝑛 + 2𝑛 − 3) 𝐻𝐴
𝑦

𝑔
=

(𝑛 + 3)

𝑛
 

𝐻𝐴  
𝑦

𝑔
 =

(𝑛 + 3)

𝑛
.

1

(𝑛 + 3)(𝑛 − 1)
=

1

𝑛(𝑛 − 1)
 

 By taking (𝐻𝐴)  transformation to above  : 

(𝐻𝐴) 𝐻𝐴
𝑦

𝑔
= (𝐻𝐴)  

1

𝑛(𝑛 − 1)
  

𝑦

𝑔
= (𝑙𝑛 𝑔)  

 𝑦 = 𝑔 (𝑙𝑛 𝑔)   
Example 4.4. 
 For the following differential equation to be resolved 

 
( )

𝑦 + 3(
( )  

𝑦 ) + 
( )

𝑦 + = (ln 𝑔) + 1;𝑦(−∞) = 0 

 Albazy Altememe  transformation is taken  to above : 

𝐻𝐴  
( )

𝑦 + 3𝐻𝐴(
( )  

𝑦 )+𝐻𝐴(
( )

𝑦 ) + 𝐻𝐴 = 𝐻𝐴((𝑙𝑛 𝑔) ) + 𝐻𝐴(1) 

−(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)𝐻𝐴
𝑦

𝑔
+ 3(𝑛 + 1)(𝑛 + 2)𝐻𝐴

𝑦

𝑔
− (𝑛 + 1)𝐻𝐴

𝑦

𝑔
+ 𝐻𝐴

𝑦

𝑔
 

= (𝑛 + 2)(𝑛 + 1) + 1 

(−𝑛 − 6𝑛 − 10𝑛 − 6 + 3𝑛 + 9𝑛 + 6 − 𝑛)𝐻𝐴
𝑦

𝑔
= (𝑛 + 3𝑛 + 3) 

−𝑛(𝑛 + 3𝑛 + 3) 𝐻𝐴
𝑦

𝑔
= (𝑛 + 3𝑛 + 3) 

𝐻𝐴
𝑦

𝑔
= −

1

𝑛
 

 
 By taking (HA)  transformation to above : 

(𝐻𝐴) 𝐻𝐴 = 𝐻𝐴 −  ⇒  = (ln 𝑔)  

𝑦 = 𝑔(ln 𝑔)  
 Example 5.4. 
 To solve the following  differential equation 

2
( )

 𝑦 + 2(
( )

𝑦  ) +2( ) = 5(ln 𝑔) + 5(ln 𝑔) + (ln 𝑔) − 3(ln 𝑔) + 1 +

(ln 𝑔)  ;𝑦(−∞) = 0 
Albazy Altememe  transformation is taken  to both sides of above equation we obtain:  

2𝐻𝐴
( )

 𝑦 + 2𝐻𝐴(
( )

𝑦 ) +2HA(  ) 

= 5𝐻𝐴(𝑙𝑛 𝑔) + 5𝐻𝐴(𝑙𝑛 𝑔) 𝐻𝐴(𝑙𝑛 𝑔) − 3𝐻𝐴(𝑙𝑛 𝑔) + 𝐻𝐴(1) + 𝐻𝐴(𝑙𝑛 𝑔)  
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2(𝑛 + 2)(𝑛 + 1)𝐻𝐴
𝑦

𝑔
− 2(𝑛 + 1)𝐻𝐴

𝑦

𝑔
+ 2𝐻𝐴

𝑦

𝑔

= 5(𝑛 + 2)(𝑛 + 1) − 5(𝑛 + 3)(𝑛 + 2)(𝑛 + 1) +
5

𝑛(𝑛 − 1)
+

3

𝑛
+ 1 + (𝑛

+ 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1) 

(2(𝑛 + 2)(𝑛 + 1) − 2(𝑛 + 1) + 2)𝐻𝐴
𝑦

𝑔

= (𝑛 + 2)(𝑛 + 1)(5 − 5(𝑛 + 3) + (𝑛 + 4)(𝑛 + 3) +
5

𝑛(𝑛 − 1)
+

3

𝑛
  

(2𝑛 + 4𝑛 + 4)𝐻𝐴
𝑦

𝑔
= (𝑛 + 2)(𝑛 + 1)(𝑛 + 2𝑛 + 2) +

5 + 3𝑛 − 3 + 𝑛 − 𝑛

𝑛(𝑛 − 1)
 

(2𝑛 + 4𝑛 + 4)𝐻𝐴
𝑦

𝑔
= (𝑛 + 2)(𝑛 + 1)( (𝑛 + 2𝑛 + 2) +

(𝑛 + 2𝑛 + 2)

𝑛(𝑛 − 1)
 

 

(2(𝑛 + 2𝑛 + 2))𝐻𝐴
𝑦

𝑔
=  (𝑛 + 2𝑛 + 2)((𝑛 + 2)(𝑛 + 1) +

1

𝑛(𝑛 − 1)
)  

𝐻𝐴
𝑦

𝑔
=

(𝑛 + 2)(𝑛 + 1)

2
+

1

2𝑛(𝑛 − 1)
 

 
 By taking (𝐻𝐴)  transformation to above : 

 (𝐻𝐴)  𝐻𝐴 = (𝐻𝐴) ( ( )( )
) + (𝐻𝐴) (

( )
) 

=
( )

 + 
( )

 

𝑦 = 𝑔 cosh 2 ln ln 𝑔 
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