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Abstract 
The quasi-linear fractional-order ordinary differential equations(FODEs) have been examined 
in this study. The collocation approach takes into account a numerical solution of this kind. For 
solving FODEs, the B-spline basis has been taken into consideration. To compare the numerical 
and analytical answers for the test examples, several of the implementations examples are used. 
They have shown that the recently developed approach’s numerical results and analytical 
solutions are in good agreement, showing the effectiveness and accuracy of the collection 
method and B- cubic spline combination. 
Keyword: Quasi-linear, Fractional order, Ordinary Differential Equations; Order; DEs; ODEs, 
FDEs 
 
Introduction 
One of the most significant subfields of applied mathematics is differential equation (DE), 
which finds use in both science and engineering. Numerous forms of DEs are used in the 
majority of mathematical modeling in science and engineering. Additionally, DEs play a 
significant role in a number of applications of mathematics, including those in physics, 
engineering, biology, medicine, chemistry, and economics. The tools of differential equations 
(DEs), in particular frac- tional differential equations (FDEs), are used to describe the 
mathematical representations of the real situations in applied science and engineering. 
Numerous traditional or contemporary analyt- ical and numerical techniques have been 
investigated for a very long time to solve DEs Farlow (2012). Significant researches on 
fractional calculus(FC) was published in applied scientific and engineering fields in the 20th 
century. Numerous applications in the various fields of biologi- cal models, mathematical 
models of fluid mechanics and electrochemistry have been described by using the 
advancements in fractional calculus. For many types of DEs, either analytically or numerically, 
it had been challenging for mathematicians to apply their imagination and find the answers. 
The researchers of engineers or Scientists can currently use several kinds of powerful classical 
and modern numerical and analytical approaches. Following is a collection of the lit- erature 
review that covers numerous modern approaches for solving mathematical models that contain 
DEs: Bhrawy et al. (2014) introduced a new Jacobi spectral collocation method(CM) for 
solving 1+1 Schrödinger FDEs and fractional-coupled Schrödinger systems, while Awoyemi 
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(2005) introduced an algorithmic CM for direct solutions of IVPs of fourth-order. The 
fractional Fokker-Planck equations were solved by Hafez et al. (2015) using the Jacobi Gauss-
Lobatto and Gauss-Radau collocation algorithms, and the fractional optimum control issues 
have been solved by Yousefi et al. (2011) using the Legendre multiwavelet CM. For literature 
review of the spline researches, spline regression is a method that Marsh & Cormier (2001) 
proposed for smoothing out and fitting timeline kinks while Zhang et al. (2019) introduced a 
generalized cubic exponential B-spline technique that can produce a variety of curves. The 
cubic spline interpolation pooling approach, which Huang et al. (2020) proposed and is suitable 
for processing one-dimensional signals, was described. By utilizing the excellent fitting effects 
of the cubic spline interpolation method that Balestriero et al. (2018) used to construct the 
fitting function, the proposed method can convert the pooling problem into a linear fitting 
problem. Lastly, spline functions and oper- ators were used by Balestriero et al. (2018) to firmly 
connect deep networks (DNs) and approxi- mation theory. 
Finally, Tirmizi et al. (2008) developed a non-polynomial splines method for solving 6th-order 
BVPs. Not all DEs may be directly or indirectly solved using analytical methods, whether they 
be solved directly or indirectly. We are forced to examine the suggested numerical methods by 
this proposition. Numerous researchers, including Mechee & Senu (2012), presented a numer- 
ical study for fractional Lane-Emden differential equations using the collocation method. For 
nonlinear FDEs, while Chen et al. (2012) looked at the error analysis for the numerical solution 
of FDEs using the Haar wavelets(HWs) approach, Saeed & ur Rehman (2013) used the (HWs) 
quasi-linearization methodology and, Li & Hu (2010) and Saeedi et al. (2011) investigated and 
applied the operational HWs method for fractional Volterra integral equations. 
The quasi-linear fractional-order ODEs have been investigated in this study. This type of DE 
is solved using the CM with a fractional B-cubic spline basis. The proposed method’s exact 
solutions have been used to compare the solutions for the test examples. This comparison 
demonstrated the created method’s effectiveness and precision. 
 
Preliminary 
We have provided some background details and RK technique history in this section which is 
related to the study’s challenges. 
 
Fractional Calculus 
Applications of fractional calculus(FCs) have significance in a variety fields of engineering, 
sci- entific, and mathematical modeling. The class of FDEs of various types plays important 
roles and tools in both of physics, and mathematics. Many studies on FCs and FDEs, involving 
different operators such as Caputo, and Riemann-Liouville operators have appeared during the 
past three decades. Applications of fractional calculus (FCs) have significance in many areas 
of mathemat- ical, scientific, and engineering modeling. The benefits of fractional derivatives 
can be demon- strated by modeling the mechanical and electrical properties of actual materials 
as well as by explaining the properties of gases, liquids, and rocks. Various types of FDEs play 
significant roles and serve as useful tools in both physics and mathematics. Over the past three 
decades, a number of studies on FCs and FDEs utilizing different operators, including Caputo 
and Riemann-Liouville operators, have been published. 
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Types of Quasi-Linear FDEs of nth-Order 

The following form is the general class of quasi-linear nth-order FDEs: 

Dn w(ς) = Φ(ς, w(ς), wJ (ς), wJJ (ς), wJJJ (ς),... , w(n)(ς )); a < ς < b, 0 < α < 1, (1) 

From the general class of quasi linear FDEs of nth-order in the Equation (1), we 
have the special class of quasi-linear, third-order FDEs in case n=3. 

 
A Class of Quasi-Linear FDEs of Third-Order 

D3 w(ς) = Φ(ς, w(ς), wJ (ς), wJJ (ς), wJJJ (ς )); 0 < ς < b, 0 < α < 1, (2) 
On the other hand, the general class of quasi-linear nth-order FDE in Equation (1), when n=2, 
we have a particular class of quasi-linear, second-order FDEs. 
  
A Class of Quasi-Linear Second-Order FDEs 
Consider the following quasi-linear second-order FDE: 

D2 u(ς) = Φ(t, w(ς), wJ (ς), wJJ (ς )); 0 < ς < b, 0 < α < 1, (3) 
Also, from the general class of quasi linear nth-order fractional ordinary differential equation 
in the Equation (1), we have the special class of quasi-linear, first-order fractional ODEs in 
case n=1. 
 
A Class of Quasi-Linear First-Order Fractional ODEs 
A quasi-linear first-order FDE is as follows: 

D w(ς) = Φ(ς, w(ς), wJ (ς )); 0 < ς < b, 0 < α < 1, (4) 
 
Boundary Second-Order, Quasi-Linear Fractional Differential Equations(FRDEs) 
The following is the form of quasi-linear FDE of second-order: 

D2 w(ς) = Φ(ς, w(ς), wJ (ς), wJJ (ς )); 0 < ς < 1, 0 < α < 1, (5)  

with the boundary conditions 

w(0) = ξ0; w(1) = ξ1.(6) 
 
Numerical Solutions of FDEs Using B-Cubic Spline 
Spline Functions 
Spline functions for interpolation are often chosen as minimizers of relevant roughness 
measures under the limitations of interpolation. The functions of smoothing splines are chosen 
to minimize a weighted combination of the average squared approximation error over observed 
data and the roughness measure, which can be thought of as generalizations of interpolation 
splines. The spline functions have been shown to be finite-dimensional in nature for a variety 
of significant definitions of the roughness measure, which is the primary explanation for their 
usefulness in computations and representation. The cubic B-spline basis uses in solving ODEs 
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were addressed in this section. In situations in which data interpolation is necessary, the 
expression "spline" is used to signify a large class of smooth functions (Faires & Burden 
(2003)). The next part of this section only addresses one-dimensional polynomial splines and 
uses the term "spline" in a 
particular manner. If the basis functions satisfy ϕi(ς) ∈ Cn−1(−∞, ∞) for i = 1, 2,... , n., ϕ(ς) = 
{ϕ1(ς), ϕ2(ς),..., ϕn(ς)} is referred to as a spline base of order n. Firstly, we partition the interval 
[0, 1] to n subintervals with the norm of partition h = n 1 . However, for each i = 0, 1,... , n + 
1, we 
have the equally-spaced nodes ςi = ih, and then,the spline basis functions {ϕ(ς)}n+1 are defined 
on the interval [0, 1] 
  
B-Cubic Spline 
The B-cubic spline basis, which is defined as follows, was employed by several researchers. 

S(ς) =      
ଵ

ସ
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⎪
⎪
⎨

⎪
⎪
⎧

0                                   , ς <  −2  

(2 + ς)ଷ                     , 2 ≤  ς ≤  −1

(2 + ς)ଷ − 4(1 + ς)ଷ     , −1 <  ς ≤  0

(2 + ς)ଷ − 4(1 + ς)ଷ    , 0 <  ς ≤  1
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0                                        ,          ς >  2

                                           (7) 

Consequently, S(ς) ∈ C2(−∞, ∞). To create a cubic spline basis that complies 
with the bound- ary requirements ϕi(0) = ϕi(1) for i = 1, 2,... , n Following are the 
cubic spline functions we have created as elements: 
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In the following Figure 1 represents the cubic spline functions. 
 
Table 1: Values at node points Cubic B-Spline 
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 B-Cubic Spline 
This subsection introduced the cubic B-spline operational matrix FSα of integration of the frac- 
tional order as follows: 
The B-cubic spline operational FSal pha of integration of the fractional order was introduced 
in this subsection as follows: 

𝐽த
α (τ) =

1

Γ(α+4)
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(9) 
  

where τ1 = τ − 1, τ2 = τ − 2 and τ3 = τ − 3 

 
(1) 

 

 
(2) 

Figure 1: (2) B-Cubic Spline Function and (b) Compound B-Cubic Spline Function 
 
The Collection Method Analysis 
Establish the node points τi = a + ih for i = 0, 1,... , n . Discretizing the functions 

ϕ(τ) = {ϕ1(τ), ϕ2(τ), ϕ3(τ),... , ϕn(τ)}. 
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Table 2: Absolute Errors of Solution of Quasi Numerical Linear F.D.E using compound 

method of spline and Collocation for Example 6.1 
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x Numerical Solution Absolute Errors 
0.0 1.000000000000000 0 
0.1 0.904817594804227 0.000019823231732 
0.2 0.818712946229494 0.000017806848488 
0.3 0.740814348309344 0.000003872372374 
0.4 0.670318191658916 0.000001854376724 
0.5 0.606530023335270 0.000000636377363 
0.6 0.548811387721292 0.000000248372735 
0.7 0.496585292067633 0.000000011723776 
0.8 0.449328926293987 0.000000037823235 
0.9 0.406569644002910 0.000000015737689 
1 0.367879386715949 0.000000054455493 

  
Table 3: Absolute Errors of Solution of Quasi Numerical Linear F.D.E using compound 

method of spline and Collocation for Example 6.2 

x Numerical Solution Absolute Error 
0.0 0 0 
0.1 -0.090018337710736 0.000018337710736 
0.2 -0.160017806158730 0.000017806158730 
0.3 -0.210003859587736 0.000003859587736 
0.4 -0.240001894719564 0.000001894719564 
0.5 -0.250000639080207 0.000000639080207 
0.6 -0.240000256003756 0.000000256003756 
0.7 -0.210000010121801 0.000000010121801 
0.8 -0.160000038465631 0.000000038465631 
0.9 -0.090000015863977 0.000000015863977 
1 0 0 
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Figure 2: The Comparisons Curves of Collection Method Against the Analytical 

Solutions for Exam- ples (a) 6.1, and (b) 6.2 
 
Discussion and Conclusion 
In this paper, we have studied the several classes of FDEs and B-cubic spline base. Then, the 
CM has been introduced. The main contribution of this paper is to propose a numerical method 
for 
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solving the quasi-linear FDEs. The collocation approach takes into account a numerical 
solution of this type. Some of the examples in the implementations are used to compare the 
numerical and analytical solutions for the test examples. From these numerical results which 
show in Figure 2 and Tables 2-3, we conclude that the proposed method is agree well with the 
analytical solutions for Examples 6.1-6.2. However, the proposed method is efficient and 
accurate. 
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