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Abstract:  
In this paper we establish a fixed point results using compatibility and weakly compatibility of 
six self-maps in fuzzy metric spaces. We will extend the result of Singh and Chouhan[13] for 
common fixed points in fuzzy metric space. 
        
Introduction  

The concept of Fuzzy sets was given by Zadeh [17]. Subsequently, several researchers in 
Analysis and Topology used it. The paper is dealt with the Fuzzy metric space defined by 
Kramosil and Michalek [11] and modified by George and Veeramani [5]. Grebiec [6] has 
proved fixed point results for Fuzzy metric space. In this connection, Singh and Chouhan [13] 
introduced the concept of compatible mappings in Fuzzy metric space and proved the common 
fixed point theorem. Vasuki [15] proved the fixed point theorems using the concept of R-weak 
commutativity of mappings for Fuzzy metric space.  

Recently, Jungck and Rhoades [10] introduced the concept of weak compatible maps. The 
concept is most general among all the commutativity maps. For this, every pair of R-weakly 
commuting self maps is compatible and each pair of compatible self maps is weakly compatible 
but the converse is not true.  

A fixed-point theorem for six self maps using the concept of weak compatibility and 
compatibility of pairs of self-maps in fuzzy metric space has been proved in this paper. The 
result of Singh and Chouhan [13] has been generalized.  

For this, we need the following definitions and Lemmas. 
     2. Preliminaries  

Definition 2.1[2] A binary operation *: [0, 1] x [0, 1]   [0, 1] is called a t-norm if    *1,0  

is an abelian topological monoid with unit 1 such that   a * b  c *d whenever a  c and b  d 
for a, b, c, d [0, 1].  

Examples of t-norms are a * b = ab and a * b = min b,a .  

Definition 2.2 [9] The 3-tuple (X, M, *) is said to be a fuzzy metric space if X is an arbitrary 

set, * is a continuous t-norm and M is a Fuzzy set in   ,0X 2  satisfying the following 

conditions:  

 (FM-1) M (x, y, 0) = 0,  

(FM-2)  M (x; y, t) = 1 for all t > 0 if and only if x = y,  
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(FM-3)  M (x, y, t) = M (y, x, t),  

(FM-4)  M (x, y, t) * M (y, z, s)  M (x, z, t + s),  

(FM-5)  M (x, y,.):  ,0  [0, 1] is left continuous,  

(FM-6)  
t

lim  M (x, y, t) = 1.  

for all x, y, z  X     and    s, t > 0. 

Note that M (x, y, t) can be considered as the degree of nearness between x and y with respect 
to t. We identify x = y with M (x, y, t) = 1 for all t > 0. The following example shows that every 
metric space induces a Fuzzy metric space.  

Example 2.1 [2] Let (X, d) be a metric space. Define a * b = min   {a, b} and M (x, y, t) = 

 y,xdt

t


 for all x, y  X and all t > 0. Then (X, M, *) is a Fuzzy metric space. It is called 

the Fuzzy metric space induced by d.  

 

Definition 2.3 [3] A sequence  nx  in a Fuzzy metric space   (X, M, *) is said to be a Cauchy 

sequence if and only if for each   > 0, t > 0, there exists Nn 0  such that  

   1t,x,xM mn   for all n, m 0n .  

The sequence   nx   is said to converge to a point x in X if and only if for each    > 0, t > 0 

there exists  Nn 0    such that     1t,x,xM n  for all n, m 0n .  

A Fuzzy metric space (X, M, *) is said to be complete if every Cauchy sequence in it converges 
to a point in it. 

Proposition 2.1 [13]Self mappings A and S of a Fuzzy metric space     (X, M, *) are compatible 
then they are weakly compatible.  

Proof. Suppose Ap = Sp, for some p in X. Consider a constant sequence  np  = p. Now, 

  ApApn   and   ApSpSpn  .  

As A and S are compatible we have   1t,SAp,ASpM nn    for all t > 0 as n .  Thus 

ASp = SAp and we get that (A, S) is weakly compatible.  

The following is an example of pair of self maps in a Fuzzy metric space which are weakly 
compatible but not compatible.  

Example 2.2 [9] Let (X, M, *) be a Fuzzy metric space where X= [0, 2]. t-norm is defined by 

a * b = min   b,a  for all  b,a  [0, 1] and     t

yx

et,y,xM



  for all x, y  X. Define 

self maps A and S on X as follows:  
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2x1if2

1x0ifx2
Ax     And  









2x1if2

1x0ifx
Sx  

Taking  ...,32,1n;
n

1
1xn    

Then   1x2and1x,1x nnn   for all n. 

Also    nas1Sx,Ax nn .  Now  

  1eet,SAx,ASxM 2

1

t

SAxASx

nn

nn






  as n . 

Hence the pair (A, S) is not compatible. Also set of coincident points of A and S is [1, 2].  

Now for any x  [1, 2], Ax = 8x = 2 and AS(x) = A (2) = 2 = S (2) = SA(x). Thus A and S are 
weakly compatible but not compatible.  

From the above example, it is obvious that the concept of weak compatibility is more general 
than that of compatibility.  

Lemma 2.1 [1] Let  nx  be a sequence in a Fuzzy metric space   (X, M, *).  If there exists a 

number k  (0, 1) such that    t,x,xMkt,x,xM n1n1n2n      for all and  Nn . 

Then  nx  is a Cauchy sequence in X.  

Lemma 2.2 [13] Let (X, M, *) be a Fuzzy metric space. If there exists    1,0k  such that 

for all Xy,x  .  

   t,y,xMkt,y,xM   for all 0t  ,  then  x = y.  

Theorem 2.1 [13] Let A, B, S, T, P and Q is self maps on a complete Fuzzy metric space (X, 
M, *) with * is a continuous t-norm for all t > 0 satisfying the following conditions 

(a)  P(X)   ST(X),  Q(X)   AB(X);  

(b)  AB = BA, ST = TS, PB = BP, QT = TQ;   

(c)  (P, AB) is compatible and (Q, ST) is weakly compatible;  

(d)  Either AB or P is continuous;  

(e)  There exists k  (0, 1) such that  

         ,t,Qy,STyM,t,Px,ABxMminkt,Qy,PxM   

                     t2,Qy,ABxM,t,Px,STyM   
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               t,STy,ABxM ,  

For all x, y  X,  (0, 2) and t > 0.  Then A, B, S, T, P and Q have a unique common fixed 

point in X. 

   

3. Main Result.   

Theorem 3.1 Let A, B, S, T, P and Q be self-maps of a complete fuzzy metric space (X, M, *) 
with * is a continuous t-norm  0tallfor   satisfying the following conditions 

(a)         xABxQ,xSTxP    

(b)  AB = BA, ST = TS, PB = BP, QT = TQ. 

(c)  (P, AB) is compatible, and (Q, ST) is weakly compatible  

(d)  Either AB or P is continuous.  

(e)  There exists   1,0K   such that  

        ,t,STy,ABxM,t,STy,QyMminkt,Qy,PxM   

                     
   

   




t,ABx,PxM,
t,Qy,PxM

t,STy,QyM,t,ABx,PxM
 

For all 0tandxy,x  . Then A, B, S, T, P and Q have a unique common fixed Point 

in X.   

Proof. Let  Xx 0   from (a)  Xx,x 21   such that   

    121010 yABxQxandySTxPx   

Inductively, we can contract seq    nn yandx  in X such that  

n21n2n2 ySTxPx    and 1n22n21n2 yABxQx          n = 0, 1, 2, ..... 

I.  put  1n2n2 xy,xx   for t > 0 in (e) we get  

     ,t,STx,QxMminkt,Qx,PxM 1n21n21n2n2  
 ,t,STx,ABxM 1n2n2   

                       
   

  ,
t,Qx,PxM

t,STx,QxM,t,ABx,PxM

1n2n2

1n21n2n2n2





 t,ABx,PxM n2n2  

     ,t,y,yMminkt,y,yM 1n2n21n2n2    t,y,yM n21n2   
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  ,
t,y,yM

t,y,yM,t,y,yM

1n2n2

n21n21n2n2





 t,y,yM 1n2n2          By  (FM 3) 

    ,t,y,yMminkt,y,yM n21n21n2n2    t,y,yM n21n2   

               
   

  ,
t,y,yM

t,y,yM,t,y,yM

n21n2

n21n21n2n2



  

 t,y,yM n21n2   

        ,t,y,yM,t,y,yMmin n21n21n2n2   

   t,y,yM,t,y,yM n21n2n21n2   

    t,y,yM,t,y,yMmin n21n21n2n2   

      ,t,y,yMminkt,y,yM n21n21n2n2     t,y,yM 1n2n2    

Similarly  

    ,t,y,yMminkt,y,yM 1n2n22n21n2     t,y,yM 2n21n2    

Therefore for all n even or odd, we have 

    ,t,y,yMminkt,y,yM n1n1nn      t,y,yM 1nn    

    ,kt,y,yMmint,y,yM n1n1nn     kt,y,yM 1nn    

Be repeating the above inequality, we have  

    ,kt,y,yMmint,y,yM n1n1nn    m
1nn kt,y,yM    

Since        mas1kt,y,yM m
1nn , it follows that  

                 kt,y,yMt,y,yM n1n1nn     

i.e.            t,y,yMkt,y,yM n1n1nn     Nnallfor    t > 0  

By lemma 2.1, this implies that   ny  is Cauchy sequence in x. Since x is complete

  Xzyn  . Also its subsequences converge to the same point i.e. Xz . 

    zSTxandzxQ 1n21n2     

    zABxandzxP n2n2   

Firstly, suppose AB is continuous. 

As AB is continuous,   ABzxAB n2
2   and    ABzPxAB n2   
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As  AB,P  is continuous pair, we have   ABzxABP n2   

II. Putting  1n2n2 xy,ABxx   in (e), we have  

         ,t,STx,QxMminkt,Qx,PABxM 1n21n21n2n2  
 t,STx,ABABxM 1n2n2  , 

                              
   

  ,
t,Qx,PABxM

t,ST,QxM,t,ABABx,PABxM

1n2n2

1n21n2n2n2



  

       t,ABABx,PABxM n2n2  

Letting n , we get  

    ,t,z,ABzM,t,z,zMmin  

   
   





t,ABz,ABzM,
t,z,ABzM

t,z,zM,t,ABz,ABzM
 

    








t,z,ABzM

1
,t,z,ABzMmin  

                          t,z,ABzMkt,z,ABzM   

Therefore by lemma 2.2   ABz = z 

(III)  Putting x = z, y = 1n2x   in (e) we get  

    ,t,STx,QxMminkt,Qx,PzM 1n21n21n2    t,STx,ABzM 1n2   

         
   

  ,
t,Qx,PzM

t,STx,QxM,t,ABz,PzM

1n2

1n21n2



  t,ABz,PzM  

Letting n , we get  

    ,t,z,zMminkt,z,PzM   t,z,ABzM  
   

  ,
t,z,PzM

t,z,zM,t,ABz,PzM
 

 t,ABz,PzM  

    ,t,z,zMminkt,z,PzM   t,z,zM   
   

  ,
t,z,PzM

t,z,zM,t,z,PzM
   t,z,PzM  

   t,z,PzMkt,z,PzM   

Hence by lemma 2.2  Pz = z 

therefore ABz = Pz = z 

IV.   Put x = Bz, y = 1n2x   in (e) we get  
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    ,t,STx,QxMminkt,Qx,PBzM 1n21n21n2      t,STx,BzABM 1n2   

            
   

  ,
t,Qx,PBzM

t,STx,QxM,t,ABBz,PBzM

1n2

1n21n2



   t,ABBz,PBzM  

As AB = BA, PB = BP, Letting n , we get  

    ,t,z,zMminkt,z,PBzM    t,z,zABBM  

             
    
  ,

t,z,BzM

t,z,zM,t,zABB,BPzM
   t,Bz,BzM  

       








t,z,BzM

1
,t,z,BzMminkt,z,BzM       t,z,BzMkt,z,BzM   

From by lemma 2.2 Bz = z   As ABz = z   Az = z 

Therefore Az = Bz = Pz = z 

V.  As     Xvexistthere,XSTXP    such that z = Pz = STv 

Putting n2xx  , y = v in (e) we get  

    ,t,STv,QvMminkt,Qv,PxM n2   t,STv,ABxM n2  

                 
   

  ,
t,Qv,PxM

t,STv,QvM,t,ABx,PxM

n2

n2n2  

 t,ABx,PxM n2n2  

Letting n   we get 

      ,t,z,QvMminkt,Qv,zM   t,z,zM
   

  ,
t,Qv,zM

t,z,QvM,t,z,zM  t,z,zM   (by 

FM3) 

     t,Qv,zMkt,Qv,zM   

By lemma 2.2 zQv  . Hence STv = z = Qv 

As (Q, ST) is weakly compatible we have STQv=QSTv 

Thus  STz = Qz 

VI. Put n2xx  , y = z in (e) we get  

    ,t,STz,QzMminkt,Qz,PxM n2   t,STz,ABxM n2  
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  ,
t,Qz,PxM

t,STz,QzM,t,ABx,PxM

n2

n2n2   

 t,ABx,PxM n2n2  

Letting n   we get 

    ,t,Qz,QzMminkt,Qz,zM   t,Qz,zM  , 
   

  ,
t,Qz,zM

t,Qz,QzM,t,z,zM
  

 t,,z,zM  

     








t,Qz,zM

1
,t,Qz,zMminkt,Qz,zM  

   t,Qz,zMkt,Qz,zM   

By Lemma 2.2 Qz = z  = STz 

VII. Put n2xx  , y = Tz in (e) we get  

    ,t,STz,QzMminkt,QTz,PxM n2   t,STTz,ABxM n2  

                
   

  ,
t,QTz,PxM

t,STTz,QTzM,t,ABx,PxM

n2

n2n2  t,ABx,PxM n2n2  

Letting n   and using condition (b) we get 

    ,t,z,zMminkt,QTz,PxM n2   t,Tz,zM ,  
   

  ,
t,Tz,zM

t,Tz,TzM,t,z,zM
  

 t,z,zM  

                 








t,Tz,zM

1
,t,Tz,zMminkt,Tz,zM  

             t,Tz,zMkt,Tz,zM   

From Lemma 2.2 Tz = z     As STz = z        Sz = z 

    Qz = Sz = Tz = z    ... (B) 

 From (A) and (B) Az = Bz = Sz = Tz = Qz = Pz = z  

Hence z is a common fixed point of A, B, S, T, P and Q.   

Uniqueness.  

Let u be another common fixed pt of A, B, S. T, P and Q Then  

Au = Bu = Pu = Qu = Su = Tu = u 

Put x = z, y = u in (e) 
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    ,t,STu,QuMminkt,Qu,PzM     t,STu,ABzM  

              
   

  ,
t,Qu,PzM

t,STu,QuM,t,ABz,PzM
   t,ABz,PzM  

       ,t,u,uMminkt,u,zM   t,u,zM  
   

  ,
t,u,zM

t,u,uM,t,z,zM  t,z,zM  

                                  








t,u,zM

1
,t,u,zMminkt,u,zM  

     t,u,zMkt,u,zM   

By Lemma 2.2 z = u  

Hence z is a unique common fixed pt of self-maps A, B, S, T, P and Q.  
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