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Abstract - Recently, the infrastructure of cloud computing has gained most importance due to 
Internet of Things' (IoT) ongoing advances, which produce massive amounts of data. For 
satisfying the demands by the IoT device network. The proposed Fog computing system is 
expected to represent the upcoming stage of cloud-based computing. One of the difficulties fog 
computing faces is the proper allocation of computing power to decrease processing times and 
operational costs. In this research paper a novel method for reducing operational costs and 
optimizing task scheduling s in a cloud-fog environment is discussed. This paper proposes an 
IBEA algorithm to assign service requests with the objective to minimize completing time and 
operating cost.  
Keywords--- Cloud computing, IoT things, IBEA algorithm, optimization, Quality of Service 
 
1. Introduction  
A significant advancement in information and communication technologies sector recently has 
been the Internet of Things (IoT). With IoT, Internet connectivity is extended to a wide range 
of objects and devices (devices, machineries, automobiles, etc.), in addition to conventional 
smart gadgets, such as handsets and laptops. To implement a variety of applications and 
services, including: energy management, vehicle networks, traffic control, health care, and 
medical treatment. This generates an enormous amount of data that must be processed, stored, 
and evaluated in order to produce useful data that will fulfill the objectives and goals of users. 
Additionally, the quantity and scope of apps and services are expanding quickly, necessitating 
processing power that even the most advanced smart devices cannot now provide. The cloud 
infrastructure is recognized as an important computing hub that enables dynamic resource 
sharing and distribution among users using virtualization technologies. It is an exciting 
opportunity to promote IoT enhancements. Limitations of present smart gadgets (battery life, 
processing speed, storage space, and networking bandwidth) can be decreased by shifting 
labor- and resource-intensive processes to a dependable computing platform like the Cloud and 
allowing basic tasks to be handled by smart gadgets.  
But when IoT and cloud computing are combined, other issues appear. Information Handling 
Services (IHS) Arcade predicts that the number of installed IoT devices will increase from 15.4 
billion in 2015 to 30.7 billion in 2020 and 75.4 billion in 2025. The traditional centralized 
processing elements of the Cloud architecture (where computing and storage resources are 
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pooled and kept in many data centers) would not be able to satisfy the needs of IoT applications 
given this sharp increase in the number of connected devices. The main cause is the significant 
distance between IoT devices and the cloud. Massive amounts of data being transmitted from 
Latency will result from IoT devices communicating to the cloud via the Internet, especially 
near barriers, as well as put a strain on network bandwidth and performance. Since latency 
sensitivity is one of the characteristics of IoT applications, the transmission delay results in a 
reduced Quality of Service (QoS), which negatively impacts the user experience. Furthermore, 
because it is so expensive, IoT devices may not always have access to a continual connection 
to the Cloud. On the other hand, many network edge devices (such as routers, gateways, 
workstations, personal computers, etc.) now have an increasing number of processing, storage, 
and communication capabilities as a result of advancements in both hardware and software 
technology.  
A novel concept of cloud computing called fog computing [1], first put forth by Cisco, can turn 
A networked interface into a distributed computing environment that can support Internet of 
Things applications. Fog computing's purpose is to bring capabilities for processing and storage 
closer to users by extending cloud computing to Internet of Things (IoT) devices that generate 
and consume data. 
The Cloud-Fog computing architecture has many benefits, such as decreased latency, less 
network traffic, and better energy efficiency, but it also has certain drawbacks. Resource 
allocation and task scheduling are two of them. In the Cloud-Fog system, job scheduling is 
done to the advantage or service suppliers, respectively. Several criteria are causing user's 
concern, including timeline, price, deadline, security, and cost. On the other hand, load 
balancing, resource usage, and energy efficiency are the goals of the service providers. 
Response time is essential when determining the QoS because it has a direct impact on the 
user's experience. Users are also very concerned in the cost of implementation as another factor. 
A task schedule that cuts down on completion time and costs will fulfill the SLA (Service Level 
Agreement) reached with users. 
We concentrate on the scheduler in this investigation.  issue to address this issue, a Time-Cost 
aware Scheduling (TCaS) method is suggested. The TCaS technique's fundamental goal is to 
effectively manage implementation time with costs in order to complete a range of jobs in the 
Cloud-Fog environment. Furthermore, this technique is adaptable enough to satisfy various 
users' expectations, such as those who want to emphasize job completion now against those 
who want to accomplish their duties on a limited income. The following is the structure of the 
remainder of the essay: The works are shown in the pertinent Unit 2. In the context of cloud-
fog computing, the problem of job scheduling is represented mathematically described in Unit 
3. Our suggested IBEA algorithm job scheduling problem is presented in full in Unit 4. Unit 5 
presents Crossover operator. Unit 6 presents the experimental findings. Unit 7 brings the article 
to a close and discusses potential future efforts. 
 
2. Related Works 
2.1 IoT with Fog Computing 
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IoT applications are generating a number of challenges for the centralized Cloud architecture. 
IoT, for instance, cannot handle real-time and low latency applications like linked vehicles [1], 
intelligent traffic signals [5], etc. These problems can be resolved through fog computing. the 
distinctions between cloud computing and fog computing. 
 
Fog computing, in the opinion of Chiang and Zhang [6], can aid in addressing issues with the 
Internet of Things. 
. 
Survey papers have been written about several facets of fog computing. Shi et al. [7], for 
instance, looked at the crucial components for healthcare applications of fog computing. In 
addition, Yi et al[8].'s research on fog computing included a discussion of different fog 
computing application scenarios and potential issues that might occur while putting these 
systems into place. 
 
The suggested architecture places central Fog services under a software-defined resource 
management layer [9]. This offers a cloud-based interface to stop Fog colony colonies from 
acting on their own. Fog cells are instead analyzed, controlled, and monitored by cloud-based 
infrastructure. Additionally, Bonomi et al. [10] explored the integration of IoT with Fog 
computing by evaluating essential elements of Fog computing and how Fog complements and 
extends Cloud computing. A hierarchically distributed Fog design was also suggested. To 
evaluate the qualities of their design, they offered examples for a wind generator and an 
automated traffic signal system. 
 
A paradigm for comprehending, assessing, and modeling delays in IoT-Fog-Cloud systems was 
put forth by Yousefpour et al. [11]. They suggested a delay-minimizing Fog nodes policy to 
reduce service delay for IoT nodes. By sharing the burden, the suggested method adopts 
communication across Fog to reduce service delays. For computation dumping, the strategy 
takes into account queue lengths, as well as a variety of request kinds and processing durations. 
Furthermore, in order to analyze service delays in IoT-Fog-Cloud situations, the authors 
developed a mathematical model, which was supported by accurate simulation testing 
suggested regulations. 
 
The security and privacy concerns brought on by combining fog computing with the IoT were 
examined by Lee et al. [12]. They claimed that implementing the IoT with fog creates a number 
of security risks. The requirement for creating a safe Fog computing platform employing 
several safety technologies was also emphasized. They also reviewed existing security methods 
that can be effective to secure the IoT with Fog. 
 
In addition, Hong et al. [13] developed a Modular Fog (MF) in an organizational computing 
framework that can deploy applications for the Internet of Things across a variety of devices, 
from edge devices to the Cloud. The MF blends components in parent-child connections, where 
parent nodes manage data from child nodes, using a dynamic node discovery mechanism. MFs 
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are great for Web of Things applications since they can gather and assess information locally 
on end-client gadgets.  
 
A framework for the classification of the fog computing context and information were supplied 
by Mahmud et al. [14] on its difficulties and distinguishing characteristics. They highlighted 
the variations between Mobile cloud computing, Mobile edge computing, Cloud computing, 
Fog computing, and Edge computing. They looked at networking setups, different Fog 
computing metrics, and Fog node settings. 
 
Job scheduling utilizing adjusted PSO calculation in distributed computing climate by Abdi et 
al. [21] fostered a modified particle swarm optimization (MPSO). They differentiated it to two 
notable heuristic strategies, specifically PSO and GA, to decide the effectiveness of occupation 
planning for the setting of distributed computing. They concentrated on speeding up task 
completion. To improve the initial population, the PSO and the smallest job to fastest processor 
method (SJFP) were combined. Although it has only been evaluated in a cloud context, the 
MPSO algorithm outperforms both regular PSO and GA in terms of results. 
 
Oueis et al. [20] addressed load balancing in fog computing with a focus on enhancing user 
experience (QoE). First, they divided up available computer power into little cells. Following 
that, fog computing configures clusters based on a set optimization target for arrival time, 
delay, and other characteristics for each user's requests. With a simple computer architecture, 
they were able to produce good results, however, if the Fog computing system is greatly 
enlarged, the strategy may become challenging. 
. 
In a Cloud-Fog computing environment, Huynh Thi Thanh Binh [15] suggested a job 
scheduling technique based on Genetic Algorithms (GA). This approach seeks to achieve a 
favorable time/cost trade-off.  
 
3. Problems with Job Scheduling 
3.1. System Architecture Design 
The definition of the cloud job scheduling problem is the scheduling and practical allocation 
of diverse jobs to numerous virtual machines (VMs) so that all jobs are completed in a brief 
execution period. Consider the cloud system (CS), which is made up of Npm physical machines 
(PM) and Nvm virtual machines (VMs) on each PM [7]. 
  
3.2. Description of the Problem 
Requests from BoJ applications are broken down into manageable, independent jobs, whenever 
the Cloud-Fog computing framework transmits them to the Fog layer for being handled. The 
number of instructions, the amount that is needed for memory, and the size of the input and 
output files are the characteristics of each job. 
Assuming that Jk stands for the kth  job , the system receives a collection of n distinct jobs each 
time, as follows: 

J= {J1, J2, J3, ..., Jn}   ……… (1) 
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The Cloud-Fog computing framework is made up of Cloud networks and Foggy nodes, which 
are processors with the same CPU frequency, CPU usage charge, memory usage cost, and 
consumption of bandwidth price as each other. Although cloud nodes often have higher power 
than fog nodes, their use is more expensive. The collection of n processors known as the 
system's c Cloud nodes and f Fog nodes includes these nodes.  

K (K = Kcloud KFog), which is expressed as  
K = {K1, K2, K3,..., Kn} ,  ……(2) 

where the ith   processing node is displayed by Ki. 
Every Job Jk 
The processor Ki(Ki ∈Nodes) is given (Jj∈Jj jobs), which is denoted as Mj

i. 
                KiJobs = { Ji 

x , Ji
y , ..., Ji

z}   ………..   (3) 
In a Cloud-Fog computing system, the job scheduling issue could be stated as set searching. 
 
           NodeJobs = {Ja

1 , Jb
2 , Jc

3 , ..., Jp
n}          ………..(4) 

 
The execution time (EXT) required by a node Ki to perform all jobs assigned for a collection 
of jobs is:  (objective -1) 
where ExeTime(Ti) 

                        EXT (Ki) =  ∑ ExeTime(Ji
k )  =   ∈         

∑Ji
k∈  (J

k)

(Ki)  
             (5) 

Where ExeTime(Ji
k) is the time at which node Ki processed Jk. which is determined by: 

ExeTime(Ji
k )=

length(Ji
k )

CPUrate(Ki)
             -----------(6) 

, where length(Jk) is the amount of instructions in task Jk and CPU rate(Ki) is the node Ki's 
CPU rate. This is  
reliant upon clock rate, center count, parallelism at the direction/instruction level, and so 
forth. 
Make-span is the whole period of time required for the framework to play out each work, 
determined from the time a solicitation is gotten until the last undertaking has been done or 
the last machine is utilized. The formula determines Make-span. 
Make-span = Max  [EXT (Ki)]              (7) 
     1≤i≤m 
Let Minimum Makespan represent the shortest amount of time necessary for the system to 
complete all jobs or the shorter limit of Makespan. Minimal Makespan will be found and 
calculated by assuming that all nodes do their allocated tasks concurrently. 
MinimalMakespan = EXT (K1) = ... = EXT (Km) 

thus,                     
MinimalMakespan =   

∑1≤k≤n length(Jk) 
  ∑1≤i≤n CPUrate(Ki) 

 
(8) 

Payment is required for processing, memory, and bandwidth costs each time a task is completed 
in the Cloud-Fog system. The projected cost for node Ki processing task Jk is given as follows: 
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Cost(Jk i) = cp(Jk i) + cm(Jk i) + cb(Jk i) (9) 

Each cost is computed using Equation (5) as follows. 
As determined by processing cost: 
cp(Ji

k) = c1 ∗ ExeTime(Ji
k)  (10) 

where ExeTime(Ji
k) is defined as Equation and c1 is the cost of CPU consumption per time 

unit in node Ki (6). 
Given that Mem(Jk) is the amount of memory needed by task Jk and c2 is the cost of memory 
usage per data unit in node Ki, the following is the memory usage cost: 
cm(Ji

k) = c2 ∗ Mem(Ji
k)        (11) 

Processed task Jk in node The total of the input and output file sizes, or Bw(Jk), is the amount 
of bandwidth that Ki requires. Let c3 represent the price of bandwidth usage per data unit; it 
is defined as follows: 
cb(Ji

k) = c3 ∗ Bw(Ji
k)  (12) 

 
The following is a calculation of the total cost for all jobs to be completed in the Cloud-Fog 
system: 
TotalCost =∑Cost(Ji

k)  (13)   
        Ji

k ∈NodeTasks 
 
When each work is given to the least expensive node, MinTotalCost—the least amount 
necessary to perform a set of jobs J—can be calculated. It is simple to discover which node 
completes job Jk at the lowest cost, or MinCost, given the information of each node (Jk). As a 
result, MinTotalCost is particular to a certain collection of jobs J and is defined as: 
 
4. IBEA for Job Scheduling Problem 
4.1 Population Initialization 
Assuming that a population of N particles exists, each particle's position in the initial population 
is initially produced at random, ensuring that particles are dispersed throughout the search 
space. Additionally, enabling dynamic exploration, the velocity matrices of the particles are 
initialized stochastically. 
Fig. 1 IBEA 
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Figure 1: IBEA Workflow 

 
IBEA_Step by Step Process_Algorithm 
Input: ᵞ,N,β 

1Describe preliminary population X of size ᵞ 

2Set the unit counter k to 0 

3 while population size X docs not exceed ᵞ do 

4 foreach Population Discrete do 

5  Compute fitness values of Discrete 

6 endforeach 

7 Select an discrete x ε X with the tiniest fitness value 

8 Eradicate x from the population X 

9 Update the fitness values of the remaining discrete’s 

10 if  k ≥ N or another ending norm is satisfied   

              then 
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11 Consider discrete’s not dominated in X as the 

              conclusion path 

12 else 

13  Execute dual event collection with  

                replacement on X in order to plug the provisional  

                coupling pool X’ 

14  Mark re-combination and change operatives  

                to the coupling pool X’ and increase the resultant   

                descendants to X 

15  Raise the unit counter k and go to line 5 

16 end if 

17 end while 

 
A function that measures fitness is used to evaluate a particle; its value of fitness displays the 
quality of the outcome that the element represents as well as its impact on the population. 
Higher fitness values result in better solutions. 
 
5. Genetic Operators 
Using chromosome encoding as an array of integers, the dual-point crossover process is used 
to generate youngsters that inherit advantageous genetic factors from parents. In Figure 2, this 
process is illustrated. A new person is produced by randomly selecting two crossover locations, 
where the first parent exchanges the middle gene segment with the second parent while leaving 
the other genes intact. 
 
Parental selection affects the algorithm's effectiveness in the crossover process over the 
population. Everyone has a crossover frequency. The population's second parent is then chosen 
at random to participate in the crossover procedure after each member of the population is told 
of their likelihood of becoming the population's first parent. Each individual has a crossover 
rate. The population's second parent is then chosen at random to take part in the crossover 
procedure after each person is told of their likelihood of being the population's first parent. 
With this kind of selection, superior individuals with higher fitness values are more likely to 
be chosen as parents, ensuring that superior gene segments are more likely to be kept in the 
following generation. 
 
          J1    J2    …      Ja ↓  Jb    Jc    Jd    Je   ↓   Jf  …   …   Jn 

 1 2 … 2 4 2 3 1 3   3 

 1st Parent  
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1 2 … 2 4 2 3 1 3   3 

2nd Parent        ↑                                ↑  

1st crossover pint                2nd crossover point 

                        ↓                               ↓ 

1 2 … 2 4 2 3 1 3   3 

Youngsters (Offspring) 

Figure 2: Chromosome Encoding 
 
6. Performance Assessment 
 In this section, we present the assessment of the proposed IBEA algorithm based on the 
results data sets. 
 
6.1 Experimental Settings & Results 
Cloud and fog nodes have different resource use costs and processing parameters. We probably 
considered each node's processing rate with CPU, memory, and bandwidth consumption costs 
to be a representation of its individual processing capabilities. In the following Table 1 shows 
the characteristics of different processing nodes built the Cloud-Fog Structure. Fog layer nodes 
with minimal computing capacity include routers, gateways, workstations, and personal PCs. 
In the cloud layer, jobs are handled by servers or virtual machines in high performance data 
centers. As a result, Cloud nodes process information significantly more quickly than Fog 
nodes. The cost of consuming resources, however, is higher in the Cloud than in the Fog. 

 
Table 1: Cloud-Fog Structure’s characteristics. 
Parameter(s) Fog Setting 

Number of Nodes 10 

CPU rate [400,1200] 

CPU usage cost [0.09,0.3] 

Memory Usage Cost [0.01,0.03] 

Bandwidth usage cost [0.09,0.02] 

 
The Cloud-Fog structure is accountable for performing all requirements from the users. Every 
request is separated apart into a list of jobs, which are then reviewed and their expected amount 
of resources are determined. The number of jobs in the collection may be very different in size 
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depending on the workload of each request. As a result, 10 datasets containing between 40 and 
500 jobs were made to take part in our experiment. 
 

Table 2: IBEA Parameter settings 
Parameter(s) Values 

Crossover rate 70% 

Mutation rate 70% 

Number of generations 500 

Population size 200 

 
Table 2 shows the best parameters setting for the proposed problem. Meanwhile our suggested 
IBEA algorithm is based on Genetic Algorithm. 
 
6.2 Testing Results 
Numerous tests were carried out with two separate objectives to evaluate our processes. In the 
first stage, a range of jobs were carried out locally in a network of linked Fog nodes; in the 
second, the Fog layer cooperated with a number of cloud nodes to process user requests. 
 
6.2.1 objective 1: Job Scheduling in Fog system environment  
 To accommodate user requirements in a particular area, we initially configured a Fog 
layer made up of 10 Fog nodes that were connected to one another. 
The IBEA algorithm's scheduling time and processing costs are shown in the following Table 
3. Make-span and total costs were the two key factors that contributed to the function of fitness. 
As a result, the IBEA algorithm showed superiority on practically all datasets in terms of both 
time and cost. 
The schedule of the IBEA algorithm was beaten by our suggested solution in terms of execution 
time. 
 

Table 3 Make-span and total cost for IBEA 
 Make-Span 

(s) 

Cost 

Number of 

Jobs 

IBEA IBEA 

40 192.40* 735.58 
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80 395.55 1545.32 

120 609.65 2365.47 

160 822.67 3275.15 

200 945.85 3835.35 

250 1,285.95 4988.95 

 
6.2.2. Objective 2 : Job scheduling in Cloud Fog-System 
In this instance, studies were carried out on the entire Cloud-Fog system, which included 10 
Fog nodes and 3 distant Cloud nodes. In contrast with objective 1, Fog nodes' attribute values 
were identical, and duties appeared to be divided among them evenly. The processing nodes in 
this instance were split into two groups. More jobs were processed by cloud nodes than by Fog 
nodes since they were significantly more powerful. Therefore, it was more challenging to 
identify the best answer. 
 
7. Conclusions and Next Steps 
In the present study, we focused on the job scheduling challenge for IoT applications in the 
Cloud-Fog computing paradigm. How well the IBEA algorithm performs, which is based on 
an evolutionary process, was assessed with respect to two objectives minimization. The 
proposed IBEA algorithm generates the trade-off between time and cost execution, particularly 
in getting substantially lower scheduling duration also discussed in [15]. Also, the suggested 
algorithm might adapt to users' needs for cost effectiveness or high performance processing. 
In order to solve scheduling issues, we will continue to research, improve, and use additional 
algorithms, notably evolutionary algorithms. In order to satisfy users, we also intend to broaden 
the scheduling problem by concentrating on maximizing a variety of other objectives, including 
time, transmission costs, computing resources, and energy use. For increased practicality, the 
limitations of budget, deadline, and resources might be included. 
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