

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3634

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.98549859

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING
ENVIRONMENT USING EAS (IBEA ALGORITHM)

Syed Mutiullah Hussaini

Part-time Research Scholar, Jamal Mohammed College, Baharathidasan University, Trichy,
Tamil Nadu State, India

Dr.T.Abdul Razzak

Associate Prof. in Computer Science Dept., Jamal Mohammed College, Baharathidasan
University, Trichy, Tamil Nadu State, India

Abstract - Recently, the infrastructure of cloud computing has gained most importance due to
Internet of Things' (IoT) ongoing advances, which produce massive amounts of data. For
satisfying the demands by the IoT device network. The proposed Fog computing system is
expected to represent the upcoming stage of cloud-based computing. One of the difficulties fog
computing faces is the proper allocation of computing power to decrease processing times and
operational costs. In this research paper a novel method for reducing operational costs and
optimizing task scheduling s in a cloud-fog environment is discussed. This paper proposes an
IBEA algorithm to assign service requests with the objective to minimize completing time and
operating cost.
Keywords--- Cloud computing, IoT things, IBEA algorithm, optimization, Quality of Service

1. Introduction
A significant advancement in information and communication technologies sector recently has
been the Internet of Things (IoT). With IoT, Internet connectivity is extended to a wide range
of objects and devices (devices, machineries, automobiles, etc.), in addition to conventional
smart gadgets, such as handsets and laptops. To implement a variety of applications and
services, including: energy management, vehicle networks, traffic control, health care, and
medical treatment. This generates an enormous amount of data that must be processed, stored,
and evaluated in order to produce useful data that will fulfill the objectives and goals of users.
Additionally, the quantity and scope of apps and services are expanding quickly, necessitating
processing power that even the most advanced smart devices cannot now provide. The cloud
infrastructure is recognized as an important computing hub that enables dynamic resource
sharing and distribution among users using virtualization technologies. It is an exciting
opportunity to promote IoT enhancements. Limitations of present smart gadgets (battery life,
processing speed, storage space, and networking bandwidth) can be decreased by shifting
labor- and resource-intensive processes to a dependable computing platform like the Cloud and
allowing basic tasks to be handled by smart gadgets.
But when IoT and cloud computing are combined, other issues appear. Information Handling
Services (IHS) Arcade predicts that the number of installed IoT devices will increase from 15.4
billion in 2015 to 30.7 billion in 2020 and 75.4 billion in 2025. The traditional centralized
processing elements of the Cloud architecture (where computing and storage resources are

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3635

pooled and kept in many data centers) would not be able to satisfy the needs of IoT applications
given this sharp increase in the number of connected devices. The main cause is the significant
distance between IoT devices and the cloud. Massive amounts of data being transmitted from
Latency will result from IoT devices communicating to the cloud via the Internet, especially
near barriers, as well as put a strain on network bandwidth and performance. Since latency
sensitivity is one of the characteristics of IoT applications, the transmission delay results in a
reduced Quality of Service (QoS), which negatively impacts the user experience. Furthermore,
because it is so expensive, IoT devices may not always have access to a continual connection
to the Cloud. On the other hand, many network edge devices (such as routers, gateways,
workstations, personal computers, etc.) now have an increasing number of processing, storage,
and communication capabilities as a result of advancements in both hardware and software
technology.
A novel concept of cloud computing called fog computing [1], first put forth by Cisco, can turn
A networked interface into a distributed computing environment that can support Internet of
Things applications. Fog computing's purpose is to bring capabilities for processing and storage
closer to users by extending cloud computing to Internet of Things (IoT) devices that generate
and consume data.
The Cloud-Fog computing architecture has many benefits, such as decreased latency, less
network traffic, and better energy efficiency, but it also has certain drawbacks. Resource
allocation and task scheduling are two of them. In the Cloud-Fog system, job scheduling is
done to the advantage or service suppliers, respectively. Several criteria are causing user's
concern, including timeline, price, deadline, security, and cost. On the other hand, load
balancing, resource usage, and energy efficiency are the goals of the service providers.
Response time is essential when determining the QoS because it has a direct impact on the
user's experience. Users are also very concerned in the cost of implementation as another factor.
A task schedule that cuts down on completion time and costs will fulfill the SLA (Service Level
Agreement) reached with users.
We concentrate on the scheduler in this investigation. issue to address this issue, a Time-Cost
aware Scheduling (TCaS) method is suggested. The TCaS technique's fundamental goal is to
effectively manage implementation time with costs in order to complete a range of jobs in the
Cloud-Fog environment. Furthermore, this technique is adaptable enough to satisfy various
users' expectations, such as those who want to emphasize job completion now against those
who want to accomplish their duties on a limited income. The following is the structure of the
remainder of the essay: The works are shown in the pertinent Unit 2. In the context of cloud-
fog computing, the problem of job scheduling is represented mathematically described in Unit
3. Our suggested IBEA algorithm job scheduling problem is presented in full in Unit 4. Unit 5
presents Crossover operator. Unit 6 presents the experimental findings. Unit 7 brings the article
to a close and discusses potential future efforts.

2. Related Works
2.1 IoT with Fog Computing

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3636

IoT applications are generating a number of challenges for the centralized Cloud architecture.
IoT, for instance, cannot handle real-time and low latency applications like linked vehicles [1],
intelligent traffic signals [5], etc. These problems can be resolved through fog computing. the
distinctions between cloud computing and fog computing.

Fog computing, in the opinion of Chiang and Zhang [6], can aid in addressing issues with the
Internet of Things.
.
Survey papers have been written about several facets of fog computing. Shi et al. [7], for
instance, looked at the crucial components for healthcare applications of fog computing. In
addition, Yi et al[8].'s research on fog computing included a discussion of different fog
computing application scenarios and potential issues that might occur while putting these
systems into place.

The suggested architecture places central Fog services under a software-defined resource
management layer [9]. This offers a cloud-based interface to stop Fog colony colonies from
acting on their own. Fog cells are instead analyzed, controlled, and monitored by cloud-based
infrastructure. Additionally, Bonomi et al. [10] explored the integration of IoT with Fog
computing by evaluating essential elements of Fog computing and how Fog complements and
extends Cloud computing. A hierarchically distributed Fog design was also suggested. To
evaluate the qualities of their design, they offered examples for a wind generator and an
automated traffic signal system.

A paradigm for comprehending, assessing, and modeling delays in IoT-Fog-Cloud systems was
put forth by Yousefpour et al. [11]. They suggested a delay-minimizing Fog nodes policy to
reduce service delay for IoT nodes. By sharing the burden, the suggested method adopts
communication across Fog to reduce service delays. For computation dumping, the strategy
takes into account queue lengths, as well as a variety of request kinds and processing durations.
Furthermore, in order to analyze service delays in IoT-Fog-Cloud situations, the authors
developed a mathematical model, which was supported by accurate simulation testing
suggested regulations.

The security and privacy concerns brought on by combining fog computing with the IoT were
examined by Lee et al. [12]. They claimed that implementing the IoT with fog creates a number
of security risks. The requirement for creating a safe Fog computing platform employing
several safety technologies was also emphasized. They also reviewed existing security methods
that can be effective to secure the IoT with Fog.

In addition, Hong et al. [13] developed a Modular Fog (MF) in an organizational computing
framework that can deploy applications for the Internet of Things across a variety of devices,
from edge devices to the Cloud. The MF blends components in parent-child connections, where
parent nodes manage data from child nodes, using a dynamic node discovery mechanism. MFs

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3637

are great for Web of Things applications since they can gather and assess information locally
on end-client gadgets.

A framework for the classification of the fog computing context and information were supplied
by Mahmud et al. [14] on its difficulties and distinguishing characteristics. They highlighted
the variations between Mobile cloud computing, Mobile edge computing, Cloud computing,
Fog computing, and Edge computing. They looked at networking setups, different Fog
computing metrics, and Fog node settings.

Job scheduling utilizing adjusted PSO calculation in distributed computing climate by Abdi et
al. [21] fostered a modified particle swarm optimization (MPSO). They differentiated it to two
notable heuristic strategies, specifically PSO and GA, to decide the effectiveness of occupation
planning for the setting of distributed computing. They concentrated on speeding up task
completion. To improve the initial population, the PSO and the smallest job to fastest processor
method (SJFP) were combined. Although it has only been evaluated in a cloud context, the
MPSO algorithm outperforms both regular PSO and GA in terms of results.

Oueis et al. [20] addressed load balancing in fog computing with a focus on enhancing user
experience (QoE). First, they divided up available computer power into little cells. Following
that, fog computing configures clusters based on a set optimization target for arrival time,
delay, and other characteristics for each user's requests. With a simple computer architecture,
they were able to produce good results, however, if the Fog computing system is greatly
enlarged, the strategy may become challenging.
.
In a Cloud-Fog computing environment, Huynh Thi Thanh Binh [15] suggested a job
scheduling technique based on Genetic Algorithms (GA). This approach seeks to achieve a
favorable time/cost trade-off.

3. Problems with Job Scheduling
3.1. System Architecture Design
The definition of the cloud job scheduling problem is the scheduling and practical allocation
of diverse jobs to numerous virtual machines (VMs) so that all jobs are completed in a brief
execution period. Consider the cloud system (CS), which is made up of Npm physical machines
(PM) and Nvm virtual machines (VMs) on each PM [7].

3.2. Description of the Problem
Requests from BoJ applications are broken down into manageable, independent jobs, whenever
the Cloud-Fog computing framework transmits them to the Fog layer for being handled. The
number of instructions, the amount that is needed for memory, and the size of the input and
output files are the characteristics of each job.
Assuming that Jk stands for the kth job , the system receives a collection of n distinct jobs each
time, as follows:

J= {J1, J2, J3, ..., Jn} ……… (1)

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3638

The Cloud-Fog computing framework is made up of Cloud networks and Foggy nodes, which
are processors with the same CPU frequency, CPU usage charge, memory usage cost, and
consumption of bandwidth price as each other. Although cloud nodes often have higher power
than fog nodes, their use is more expensive. The collection of n processors known as the
system's c Cloud nodes and f Fog nodes includes these nodes.

K (K = Kcloud KFog), which is expressed as
K = {K1, K2, K3,..., Kn} , ……(2)

where the ith processing node is displayed by Ki.
Every Job Jk
The processor Ki(Ki ∈Nodes) is given (Jj∈Jj jobs), which is denoted as Mj

i.
 KiJobs = { Ji

x , Ji
y , ..., Ji

z} ……….. (3)
In a Cloud-Fog computing system, the job scheduling issue could be stated as set searching.

 NodeJobs = {Ja

1 , Jb
2 , Jc

3 , ..., Jp
n} ………..(4)

The execution time (EXT) required by a node Ki to perform all jobs assigned for a collection
of jobs is: (objective -1)
where ExeTime(Ti)

 EXT (Ki) = ∑ ExeTime(Ji
k) = ∈

∑Ji
k∈ (J

k)

(Ki)
 (5)

Where ExeTime(Ji
k) is the time at which node Ki processed Jk. which is determined by:

ExeTime(Ji
k)=

length(Ji
k)

CPUrate(Ki)
 -----------(6)

, where length(Jk) is the amount of instructions in task Jk and CPU rate(Ki) is the node Ki's
CPU rate. This is
reliant upon clock rate, center count, parallelism at the direction/instruction level, and so
forth.
Make-span is the whole period of time required for the framework to play out each work,
determined from the time a solicitation is gotten until the last undertaking has been done or
the last machine is utilized. The formula determines Make-span.
Make-span = Max [EXT (Ki)] (7)
 1≤i≤m
Let Minimum Makespan represent the shortest amount of time necessary for the system to
complete all jobs or the shorter limit of Makespan. Minimal Makespan will be found and
calculated by assuming that all nodes do their allocated tasks concurrently.
MinimalMakespan = EXT (K1) = ... = EXT (Km)

thus,
MinimalMakespan =

∑1≤k≤n length(Jk)
 ∑1≤i≤n CPUrate(Ki)

(8)

Payment is required for processing, memory, and bandwidth costs each time a task is completed
in the Cloud-Fog system. The projected cost for node Ki processing task Jk is given as follows:

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3639

Cost(Jk i) = cp(Jk i) + cm(Jk i) + cb(Jk i) (9)

Each cost is computed using Equation (5) as follows.
As determined by processing cost:
cp(Ji

k) = c1 ∗ ExeTime(Ji
k) (10)

where ExeTime(Ji
k) is defined as Equation and c1 is the cost of CPU consumption per time

unit in node Ki (6).
Given that Mem(Jk) is the amount of memory needed by task Jk and c2 is the cost of memory
usage per data unit in node Ki, the following is the memory usage cost:
cm(Ji

k) = c2 ∗ Mem(Ji
k) (11)

Processed task Jk in node The total of the input and output file sizes, or Bw(Jk), is the amount
of bandwidth that Ki requires. Let c3 represent the price of bandwidth usage per data unit; it
is defined as follows:
cb(Ji

k) = c3 ∗ Bw(Ji
k) (12)

The following is a calculation of the total cost for all jobs to be completed in the Cloud-Fog
system:
TotalCost =∑Cost(Ji

k) (13)
 Ji

k ∈NodeTasks

When each work is given to the least expensive node, MinTotalCost—the least amount
necessary to perform a set of jobs J—can be calculated. It is simple to discover which node
completes job Jk at the lowest cost, or MinCost, given the information of each node (Jk). As a
result, MinTotalCost is particular to a certain collection of jobs J and is defined as:

4. IBEA for Job Scheduling Problem
4.1 Population Initialization
Assuming that a population of N particles exists, each particle's position in the initial population
is initially produced at random, ensuring that particles are dispersed throughout the search
space. Additionally, enabling dynamic exploration, the velocity matrices of the particles are
initialized stochastically.
Fig. 1 IBEA

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3640

Figure 1: IBEA Workflow

IBEA_Step by Step Process_Algorithm
Input: ᵞ,N,β

1Describe preliminary population X of size ᵞ

2Set the unit counter k to 0

3 while population size X docs not exceed ᵞ do

4 foreach Population Discrete do

5 Compute fitness values of Discrete

6 endforeach

7 Select an discrete x ε X with the tiniest fitness value

8 Eradicate x from the population X

9 Update the fitness values of the remaining discrete’s

10 if k ≥ N or another ending norm is satisfied

 then

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3641

11 Consider discrete’s not dominated in X as the

 conclusion path

12 else

13 Execute dual event collection with

 replacement on X in order to plug the provisional

 coupling pool X’

14 Mark re-combination and change operatives

 to the coupling pool X’ and increase the resultant

 descendants to X

15 Raise the unit counter k and go to line 5

16 end if

17 end while

A function that measures fitness is used to evaluate a particle; its value of fitness displays the
quality of the outcome that the element represents as well as its impact on the population.
Higher fitness values result in better solutions.

5. Genetic Operators
Using chromosome encoding as an array of integers, the dual-point crossover process is used
to generate youngsters that inherit advantageous genetic factors from parents. In Figure 2, this
process is illustrated. A new person is produced by randomly selecting two crossover locations,
where the first parent exchanges the middle gene segment with the second parent while leaving
the other genes intact.

Parental selection affects the algorithm's effectiveness in the crossover process over the
population. Everyone has a crossover frequency. The population's second parent is then chosen
at random to participate in the crossover procedure after each member of the population is told
of their likelihood of becoming the population's first parent. Each individual has a crossover
rate. The population's second parent is then chosen at random to take part in the crossover
procedure after each person is told of their likelihood of being the population's first parent.
With this kind of selection, superior individuals with higher fitness values are more likely to
be chosen as parents, ensuring that superior gene segments are more likely to be kept in the
following generation.

 J1 J2 … Ja ↓ Jb Jc Jd Je ↓ Jf … … Jn

 1 2 … 2 4 2 3 1 3 3

 1st Parent

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3642

1 2 … 2 4 2 3 1 3 3

2nd Parent ↑ ↑

1st crossover pint 2nd crossover point

 ↓ ↓

1 2 … 2 4 2 3 1 3 3

Youngsters (Offspring)

Figure 2: Chromosome Encoding

6. Performance Assessment
 In this section, we present the assessment of the proposed IBEA algorithm based on the
results data sets.

6.1 Experimental Settings & Results
Cloud and fog nodes have different resource use costs and processing parameters. We probably
considered each node's processing rate with CPU, memory, and bandwidth consumption costs
to be a representation of its individual processing capabilities. In the following Table 1 shows
the characteristics of different processing nodes built the Cloud-Fog Structure. Fog layer nodes
with minimal computing capacity include routers, gateways, workstations, and personal PCs.
In the cloud layer, jobs are handled by servers or virtual machines in high performance data
centers. As a result, Cloud nodes process information significantly more quickly than Fog
nodes. The cost of consuming resources, however, is higher in the Cloud than in the Fog.

Table 1: Cloud-Fog Structure’s characteristics.
Parameter(s) Fog Setting

Number of Nodes 10

CPU rate [400,1200]

CPU usage cost [0.09,0.3]

Memory Usage Cost [0.01,0.03]

Bandwidth usage cost [0.09,0.02]

The Cloud-Fog structure is accountable for performing all requirements from the users. Every
request is separated apart into a list of jobs, which are then reviewed and their expected amount
of resources are determined. The number of jobs in the collection may be very different in size

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3643

depending on the workload of each request. As a result, 10 datasets containing between 40 and
500 jobs were made to take part in our experiment.

Table 2: IBEA Parameter settings
Parameter(s) Values

Crossover rate 70%

Mutation rate 70%

Number of generations 500

Population size 200

Table 2 shows the best parameters setting for the proposed problem. Meanwhile our suggested
IBEA algorithm is based on Genetic Algorithm.

6.2 Testing Results
Numerous tests were carried out with two separate objectives to evaluate our processes. In the
first stage, a range of jobs were carried out locally in a network of linked Fog nodes; in the
second, the Fog layer cooperated with a number of cloud nodes to process user requests.

6.2.1 objective 1: Job Scheduling in Fog system environment
 To accommodate user requirements in a particular area, we initially configured a Fog
layer made up of 10 Fog nodes that were connected to one another.
The IBEA algorithm's scheduling time and processing costs are shown in the following Table
3. Make-span and total costs were the two key factors that contributed to the function of fitness.
As a result, the IBEA algorithm showed superiority on practically all datasets in terms of both
time and cost.
The schedule of the IBEA algorithm was beaten by our suggested solution in terms of execution
time.

Table 3 Make-span and total cost for IBEA
 Make-Span

(s)

Cost

Number of

Jobs

IBEA IBEA

40 192.40* 735.58

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3644

80 395.55 1545.32

120 609.65 2365.47

160 822.67 3275.15

200 945.85 3835.35

250 1,285.95 4988.95

6.2.2. Objective 2 : Job scheduling in Cloud Fog-System
In this instance, studies were carried out on the entire Cloud-Fog system, which included 10
Fog nodes and 3 distant Cloud nodes. In contrast with objective 1, Fog nodes' attribute values
were identical, and duties appeared to be divided among them evenly. The processing nodes in
this instance were split into two groups. More jobs were processed by cloud nodes than by Fog
nodes since they were significantly more powerful. Therefore, it was more challenging to
identify the best answer.

7. Conclusions and Next Steps
In the present study, we focused on the job scheduling challenge for IoT applications in the
Cloud-Fog computing paradigm. How well the IBEA algorithm performs, which is based on
an evolutionary process, was assessed with respect to two objectives minimization. The
proposed IBEA algorithm generates the trade-off between time and cost execution, particularly
in getting substantially lower scheduling duration also discussed in [15]. Also, the suggested
algorithm might adapt to users' needs for cost effectiveness or high performance processing.
In order to solve scheduling issues, we will continue to research, improve, and use additional
algorithms, notably evolutionary algorithms. In order to satisfy users, we also intend to broaden
the scheduling problem by concentrating on maximizing a variety of other objectives, including
time, transmission costs, computing resources, and energy use. For increased practicality, the
limitations of budget, deadline, and resources might be included.

Acknowledgement
The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry
of Education in Saudi Arabia for funding this research work through the project number:
IFP22UQU4320619DSR113.

References
Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are; Cisco
White Paper; 2015.
Peter, N. Fog computing and its real time applications. Int. J. Emerg. Technol. Adv. Eng. 2015,
5, 266–269.

OPTIMIZING SCHEDULING PROBLEM IOT BASED CLOUD COMPUTING ENVIRONMENT USING EAS (IBEA ALGORITHM)

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 3645

Chiang, M.; Zhang, T. Fog and IoT: An overview of research opportunities. IEEE Internet
Things J. 2016, 3, 854–864.
Shi, Y.; Ding, G.; Wang, H.; Roman, H.E.; Lu, S. The fog computing service for healthcare.
In Proceedings of the 2015 2nd International Symposium on Future Information and
Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech), IEEE, Beijing,
China, 28–30 May 2015; pp. 1–5.
Yi, S.; Li, C.; Li, Q. A survey of fog computing: Concepts, applications and issues. In
Proceedings of the 2015 Workshop on Mobile Big Data, Santa Clara, CA, USA, 29 October–
1 November 2015; pp. 37–42.
Suárez-Albela, M.; Fernández-Caramés, T.; Fraga-Lamas, P.; Castedo, L. A practical
evaluation of a high-security energy-efficient gateway for IoT fog computing applications.
Sensors 2017, 17, 1978.
Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. Fog computing: A platform for internet of things
and analytics. In Big Data and Internet of Things: A Roadmap for Smart Environments;
Springer: Berlin, Germany, 2014; pp. 169–186.
Yousefpour, A.; Ishigaki, G.; Jue, J.P. Fog computing: Towards minimizing delay in the
internet of things. In Proceedings of the 2017 IEEE International Conference on Edge
Computing (EDGE), Honolulu, HI, USA, 25–30 June 2017; pp. 17–24.
Lee, K.; Kim, D.; Ha, D.; Rajput, U.; Oh, H. On security and privacy issues of fog computing
supported Internet of Things environment. In Proceedings of the 2015 6th International
Conference on the Network of the Future (NOF), Montreal, QC, Canada, 30 September–2
October 2015; pp. 1–3.
Hong, K.; Lillethun, D.; Ramachandran, U.; Ottenwälder, B.; Koldehofe, B. Mobile fog: A
programming model for large-scale applications on the internet of things. In Proceedings of the
Second ACM SIGCOMM Workshop on Mobile Cloud Computing, Hong Kong, China, 2013;
pp. 15–20.
Mahmud, R.; Kotagiri, R.; Buyya, R. Fog computing: A taxonomy, survey and future
directions. In Internet of Everything; Springer: Singapore, 2018; pp. 103–130.
Abdi, S.; Motamedi, S.A.; Sharifian, S. Task scheduling using modified PSO algorithm in
cloud computing environment. In Proceedings of the International Conference on Machine
Learning, Electrical and Mechanical Engineering, Dubai, UAE, 8–9 January 2014; pp. 8–9.
He, J.; Cheng, P.; Shi, L.; Chen, J.; Sun, Y. Time synchronization in WSNs: A maximum-
value-based consensus approach. IEEE Trans. Autom. Control 2014, 59, 660–675.
Li, D.; Sun, X. Nonlinear Integer Programming; Springer Science & Business Media: Berlin,
Germany, 2006; Volume 84.
M. Abid Jamil and M. K. Nour, "Managing software testing technical debt using evolutionary
algorithms," Computers, Materials & Continua, vol. 73, no.1, pp. 735–747, 2022.

