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ABSTRACT 

The present study proposes and explores a food chain model to study about the dynamical 
behavior of two preys and a predator ecosystem where the preys having competitive interaction 
among themselves. A Holling type-II functional response has been adopted for first prey and a 
predator of the proposed model. The boundedness, stability, existence condition of equilibrium 
of the model is investigated both from analytical and numerical point of view. Hopf bifurcation 
analysis is also discussed at the positive equilibrium point and a global property of dynamical 
system is one of the parts of the study. Here, the presented work also utilized to calculate the 
instability of the population throughout the co-existence’s state of steady because of the white 
noise. At last, the study is hold up by performing the numerical illustrations. 

Keywords:Holling type-II response function; Two Preys –Predator;Local stability;Numerical 
Simulations; Global stability. 

1. INTRODUCTION 

In daily routine life, various equations are playing a significant role to calculate the 
implementation of new methods and ideas. The development of these calculations is really 
applied to give the direction for various phenomena which can able to demonstrate the various 
equation that is in the form of equation language. Based on the physical phenomena and the 
conditions given many of the models are converted as a system of nonlinear differential 
equations. Later finding the solutions of those models are very difficult by following the 
analytic techniques so that such complications can be avoidby using either qualitative or 
numerical techniques which are more effective than analytical techniques. Many biological 
models have been modeled in terms of nonlinear differential equations. After the pioneer work 
from the Lotka and Volterra most of the biologists and mathematicians together extended their 
work under certain conditions around to different types interactions among two species [3, 9, 
17, 18, 21] and the multi species [4, 20].Stability analysis of prey-predator models and their 
role in environment can observe in [2, 13]. Later many authors have been introduced time delay 
effect to the species.The general discussions on delayed biological systems had in the articles 
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of Cushing [1], May [12], Gopalsamy [5, 6], Martin and Ruan [11], Kunal Chakraborty et. al 
[8] and recently Papa Rao [15] with three species system. Hopf bifurcation analysis of three 
species with or without time delay can be found in [10, 22, 23]. Three species ecological models 
with different types of functional response among species can see in [7, 14, 16, 19]. 

The dynamical interaction between three species with Holling type-II response function is 
included for the first prey and a predator species for the logistical model, whereas the predator 
species is going to extent is discussed. In this paper we studied the local and global stability of 
the system at each existing equilibrium points by perturbed technique. Further in the last section 
we have given the numerical solutions of the system at particular parameter values in the model 
which interns shows how the system transformed to stability to unstable or vice versa. 

2. MATHEMATICAL MODEL 

)(tx , )(ty  are the two prey species populations (in thousands, or millions, or whatever) and 

)(tz  denotes the density of the predators at any instant of time t . Based on the response of 

Holling type-II functional, the first prey species x is intake by the hunter z  and furthermore, 
both the preys’ species ( x , y ) are competing each other. 

2.1 Assumptions 

 The parameters r and sare intrinsic growth rates of the prey species x and y respectively 

 The prey specie’s development is considered as a logistic. 

 The parameters k  and l are the carrying capacities of two prey species x and y  

respectively. 

 The competing participants for prey species x are defined as the parameter   

 Also, the for-prey species y  is defined as the parameter  . 

 Here, the participants are decided based on the competition interaction between both of 
them. 

 The single hunter z ’s attack rate which is hunt for the single prey species is considered 

as theparameter 1 . 

 This action is performedwhenever the hunter is not currently consuming any prey 
species.  

 The hunter z ’s half saturation level is defined as the parameter 𝑟ଵwhich is over the first 
prey species x . 

 The hunter z ’s coefficient of natural death rate is denoted as the parameter 0 .  

 The first prey x ’s grazing functional response is represented by the condition of 2

1

xz

r x




and it is performed by the hunter. 

 The Holling type-II functional response is known by this grazing functional response. 

 Which is representing the consumption rate of the prey species x  by the hunter z . 

 Here, Holling type-II’s half saturation constant is denoted as 1r . 
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Here, two preys are aggressively interacted each other where the multi-interaction’s model 
equation is performed between three preys. According to the Holling type-II functional 
response, the first prey is consumed by the mortal hunter which is derived in the below given 
formula that is denoting the non-linear decoupled variational equation. 

1

1

2
0

1

1

1

xzdx x
rx xy

dt k r x

dy y
sy xy

dt l

xzdz
z

dt r x





 

       

    
 

 


    (2.1) 

3. BOUNDED AND DISSIPATIVENESS OF THE MODEL 

Consider   0 , , / , , 0x y z x y z   . The model equation (2.1) is studied in 0 or in 0 for the 

biological meaning of practical. From the first two equations of the system (2.1), it is easy to 

derive lim ( )tp tus x k  and lim ( )tp tu lys   . 

Lemma 3.1The model equation (2.1)’s result  ( ), ( ), ( )x t y t z t that have the initial values 

(0) 0, (0) 0, (0) 0x y z    which is bounded, dissipative and positive for entire 0t   and it is 

provided as 2 1  . 

Proof:Obviously, the solution  ( ), ( ), ( )x t y t z t of the system (2.1) with initial conditions

(0) 0, (0) 0, (0) 0x y z   is positive for all 0t  . Define the function ( , , )W x y z x y z    then 

from system (2.1), it follows that 

2 2
1 1

0
1 1

2 2

1 2 0
1

( ) ( )

dW dx dy dz

dt dt dt dt

xz xzdW rx sy
rx xy sy xy z

dt k r x l r x

rx sy xz
rx xy sy z

k l r x

 
  

    

  

    
                 

        


 

Assume that 2 1  , then the above equation becomes 

   
2 2

2 22 2
dW rx sy r s

rx sy kx x ly y
dt k l k l

         

By introducing positive constant  min , ,k l  The aforementioned mathematical formula can 

derive as given below:  
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   2 2 2 2( ) ( )
dW r s

W k x k l y l rk sl u
dt k l

         
 

tdW u
W u W me

dt



     , where (0)

u
m W


   

 ( ), ( ), ( ) (1 ) (0)t tu
W x t y t z t e W e 


      

Therefore 0 ( )
u

W t


   , for t sufficiently large, provided 2 1  .  

Therefore, 
3R are confined in the region 3

0 ( , , ) :
u

x y z R W x y z


 
       

 
 which is 

initiated by the entire results of the model equation (2.1).  

Hence the system is dissipative, provided 2 1  , which completes the proof. 

4. EQUILIBRIUM POINTS 
The following are the possible equilibrium points which will useful to know the stability of the 
system (2.1).  

 All species extinct state  0,0,0:1E  

 The equilibrium point  0,,0:2 lE on the boundary of second octant.  

 The equilibrium point  0,0,:3 kE on the boundary of first octant. 

 The planner equilibrium  4 : , , 0E x y on the plane x y , where
( )ks r l

x
rs kl








 and

( )rl s k

s k
y

r l







 . 

 The equilibrium points of the boundary  5 : , 0,E x z on the axis plane x z , here 

1 0

2 0

r
x


 




 and 1 01 2

1 2 0 2 0

1
( )

krrr
z


    

 
    

. 

 The positive equilibrium point  6 : , ,E x y z , where 1 0

2 0

r
x


 




,

1 0

2 0

1
( )

r
y l

s

 
 

 
   

and 1 01 2

1 2 0 2 0( )

rr l r
z r l

s k

 
    

           
 

Now we will see the behavior of the species based on the solutions and nature of the phase 
plane by computing the eigen values of the 3 X 3 coefficient matrix around each equilibrium 
of the nonlinear system after reducing into linear system. The three-dimensional linear system 
have three eigen values at every particular equilibrium point, so by observing the nature of the 
eigen values we can identify the species behavior near the equilibrium point. i.e. the local 
stability of the system can have based on the eigen values. 
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5. EXISTENCE AND STABILITY OF EQUILIBRIUM POINTS 

The matrix representation of the linearized system of equations by introducing the small 

perturbation U such that UXX  over the equilibrium state is as follows 

JU
dt

dU
  

where TuuuU ),,( 321 , ( , , )TX x y z  and  

1 1
1 2

1 1

1 2 2
02

1 1

2

( )

2
0

0
( )

r xrx
r y z x

k r x r x

sy
J y s x

l
r z x

r x r x

  

 

  

  
         

 
    
 
 

    

 

Theorem: 1At the extent point of the equilibrium, the model equation is always unbalanced. 

In this case, the variational matrix for linearized system at  1 : 0,0,0E is given by  




















000

00

00

1


s

r

J E  

The corresponding eigen values are 0,, sr . The extinct equilibrium region becomes saddle 

point and hence the given system is unstable always. 

Theorem: 2If
r

l
  , thendynamical system is stable at the equilibrium point 2E  otherwise is 

unstable. 

Proof:The corresponding variational matrix at 2E is  























000

0

00

2





sl

lr

J E  

The eigen values for this matrix are l r , s , 0 . All three eigen values arenegative if 

r

l
  and hence the system becomes stable state,otherwise the equilibrium region becomes 

saddle point and so the system is unstable. 
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Theorem:3If 
s

k


 and 0 1

2 0

r
k


 




, then the system is stable at 3E otherwise is unstable. 

Proof: The coefficient matrix for linearized system at this point  0,0,:3 kE  is  































0
1

2

1

1

00

00
3






kr

k
ks

kr

k
kr

J E  

The characteristic equation for this matrix is  

    2
0

1

( ) 0
k

r s k
r k

    
  

          
. 

r , ks  and 0
1

2 



 kr

k
are represents the eigen values of the system. The system is stable 

if 
s

k


 and 0 1

2 0

r
k


 




in all other cases the system is unstable.
 

Theorem: 4 If 0

2

( )

( ) ( )

ks r l

r rs kl ks r l

 
  




  
, the boundary steady state  4 , ,0E x y  is 

stable. 

Proof:Equation to calculate the corresponding Jacobin matrix under theequilibrium region 

)0,,(4 yxE  is derived below: 

4

11 12 13

21 22

33

0

0 0
E

S S S

J S S

S

 
   
  

 

where 1
11 12 13 21 22

1

2 2
, , , ,

xrx sy
S r y S x S S y S s x

k r x l

              


and

2
33 0

x
S

r x

  


.  

The characteristic expression for the above matrix is represented below: 

  2
11 22 11 22 12 21 33( ) ( ) 0S S S S S S S        . 
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If 33 0S  , 11 22 0
rx sy

S S
k l

      
 

and 11 22 12 21 0
rs

S S S S x y
lk

     
 

which implies 

that 0

2

( )

( ) ( )

ks r l

r rs kl ks r l

 
  




  
, the equilibrium point )0,,(4 yxE is stable otherwise is 

unstable. 

Theorem:5The equilibrium region )0,,(4 yxE  becomes  asymptotically stabilized globally at 

the interior portion 2R of the plane x y along with the term which is defined in Theorem 4. 

Proof:The system becomes reduced to obtain the subsystem in the interior portion ofthe x y  

planewhich is represented below  

11 ( , )
dx x

rx xy f x y
dt k

     
 

and
 

21 ( , )
dy y

sy xy f x y
dt l

     
 

 

Here, consider 𝑁(𝑥, 𝑦) is equal to 
ଵ

௫௬
 and it is describes ( , ) 0, ( , )N x y x y   in interior portion 

of 2R . 2

2

1( , )1
.[ ( , )]. . . 1 1

( , )

0, ( , )

dx
f x y r x s ydtN x y
f x ydy xy x y k y x l

dt

r s
x y R

yk xl

 



 
                                         
  

 
     

 

 

Therefore, no time wise result is obtaining in the plane x y ’s interior 2R which is based on 

the criteria of Bendixson-Dulac.Meanwhile, the entire model equation’s results are bonded 

with each other and the equilibrium point of unique point is considered as 4E which is placed 

in the plane x y ’s interior 2R . Therefore, the equilibrium point )0,,(4 yxE  is 

asymptotically stabilized in worldwide which is in the interior 2R  based on Poincare 

Bendixson-Dulac theorem.  

Theorem: 6The equilibrium region )0,,(4 yxE becomes asymptotically stabilized in 

worldwide in the interior 2R  with the consideration of term which is derived in Theorem 4.  

Proof:The nonlinear system’s Lyapunov function is derived as,  

1 1 2( , , ) log log
x y

V x y z l x x x l y y y
x y

              
     
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The following equations are obtained in the basis of variations with respect to t  and the 
replacing results of zyx ,, . 

1
1 2

1
1 2

1

( ) 1 ( )

dV x x dx y y dy
l l

dt x dt y dt

zx sy
l x x r y l y y s x

k r x l


 

       
   

                    

 

By proper selection of
xr

z
y

k

xr
r




1

1 , x
l

ys
s   the above equation becomes

 

2 21 1 2
1 1 1

1 1

2

2 21 2
1 2

2
1 1 1 1

1 1 1
1 1 1 1

( ) ( )( ) ( ) ( )

( )( )

( ) ( ) ( )( )( )

( ) (( )( )

( )( ) ( )( )

dV rl slz z
x x l x x y y l x x y y

dt k r x r x l

l x x y y

rl sl
x x y y l l x x y y

k l

l z x x l x xx x z z
l r

r x r x r x r x

 



 

 


 
             
  

        

     
           1 1

2 21 1 1 2
1 2

1 1

1 1
1

)( )

( )( )

( ) ( ) ( )( )( )
( )( )

( )( )

( )

x z z

r x r x

rl l z sl
x x y y l l x x y y

k r x r x l

x x z z
l

r x


 



 
   

 
            

  
   

Choose 1
1 2

1

, 1
r x

l l



  , the above equation becomes

 

2 21 1 1

1 1 1

21 1

1 1 1

2 21

1

( ) ( )
( ) ( ) ( )( )( )

( )

( )( )

( ) ( )1 1
( )

( ) 2 2

( )1 1
( ) ( )

2 2

dV r r x r xz s
x x y y x x y y

dt k r x l

x x z z

r r x r xz
x x

k r x

r xs
y y z z

l




 




 






  
          

 
  

   
            

  
       
   

 

21 1 1

1 1 1

2 21

1

( ) ( )1 1
( )

( ) 2 2

( )1 1
( ) ( )

2 2

dV r r x r xz
x x

dt k r x

r xs
y y z z

l




 






   
            

  
       
   
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If 1 1

1 1 1

( ) ( )1 1

2 2 ( )

r r x r x z

k r x




 
  

    
 

then 1 0
dV

dt
 and hence by known theorem, At the 

equilibrium region the system becomes globally stable )0,,(4 yxE . 

Theorem: 7 If 
s

x


 and 2
1

1

( )
r

z r x
k

   then the boundary steady state  5 , 0,E x z becomes 

stable in x z  plane. 

Proof:For this Theorem, the equivalent Jacobin matrix expression is given below  

5

11 12 13

22

31

0 0

0 0
E

a a a

J a

a

 
   
  

 

where 1 1 1
11 12 13 222

1 1

2
, , ,

( )

r z xrx
a r a x a a s x

k r x r x

          
 

and

2
31 2

1( )

r z
a

r x





. 

The characteristic equation of
5EJ is    2

11 13 31 22) 0a a a a      .One can observe that 

22 0a   and 11 0a  , 13 31 0a a  which implies that 
s

x


  and 2
1

1

( )
r

z r x
k

  , the equilibrium 

region  5 , 0,E x z becomes unstable when it is not lying on the plane x z . 

Theorem: 8The equilibrium region 5 ( , 0, )E x z  is asymptotically stabilized in 

worldwideaccording to theTheorem-7 and 1( )x r k   which is lying on the plane x z ’s 

interior 2R . 

Proof:The model equation (2.1) is decreases to following sub equation for any value in the 

x z  plane’s interior 2R  which is placed in the same plane’s interior 2R . 

ௗ௫

ௗ௧
= 𝑟𝑥 ቀ1 −

௫

௞
ቁ −

ఉభ௫௭

௥భା௫
= 𝑓ଷ(𝑥, 𝑧)and

ௗ௭

ௗ௧
=

ఉమ௫௭

௥భା௫
− 𝛽଴𝑧 = 𝑓ସ(𝑥, 𝑧)

 
Now, let𝑀(𝑥, 𝑧) =

௥భା௫

௫௭
, then𝑀(𝑥, 𝑧) > 0, ∀(𝑥, 𝑧) in the interior of 2R .  

𝛻. [𝑀(𝑥, 𝑧)]. ൦

𝑑𝑥

𝑑𝑡
𝑑𝑧

𝑑𝑡

൪ = 𝛻. ൤൬
𝑟ଵ + 𝑥

𝑥𝑧
൰ ൬

𝑓ଷ(𝑥, 𝑧)

𝑓ସ(𝑥, 𝑧)
൰൨ 

=
𝜕

𝜕𝑥
൤𝑟 ൬

𝑟ଵ + 𝑥

𝑧
൰ ቀ1 −

𝑥

𝑘
ቁ − 𝛽ଵ൨ +

𝜕

𝜕𝑧
൤𝛽ଶ − 𝛽଴ ൬

𝑟ଵ + 𝑥

𝑥
൰൨ 



MATHEMATICAL STUDY OF COMPETITIVE PREYS - A PREDATOR WITH HOLLING TYPE-II FUNCTIONAL RESPONSE 

 
Journal of Data Acquisition and Processing Vol. 38 (3) 2023      377 

= −
𝑟

𝑧
ቀ

𝑥

𝑘
− 1ቁ −

𝑟

𝑘
൬

𝑟ଵ + 𝑥

𝑧
൰ 

= −
𝑟

𝑘
൬

𝑥 − (𝑟ଵ + 𝑘)

𝑧
൰ < 0, ∀(𝑥, 𝑧) ∈ 𝑅ା

ଶ

 
According to the Bendixson-Dulac conditions, In the interior portion of  2R of plane x z does 

not consists of periodic results.  Meanwhile, the entire model equation’s results are bonded 
with each other and the equilibrium point of unique point is considered as 𝐸ହ which is placed 

in the plane 𝑥 − 𝑧’s interior 2R . Therefore, the equilibrium region 5 ( , 0, )E x z becomes 

asymptotically stabilized in worldwide which is in the interior 2R  based on Poincare 

Bendixson-Dulac theorem. 

Theorem: 9When 1

1 1

2

2 ( )( )

zr

k r x r x

 


 
 the equilibrium point 5 ( , 0, )E x z  is asymptotically 

stabilized in worldwide in the interior 3R  with the consideration of term which is derived in 

Theorem 7. 

Proof:The positive definite function is considered as  

2 1 2( , ) log log
x z

V x z m x x x m z z z
x z

                       
 

Here, the positive constants are described as 1 2,m m . 

The following equations are obtained in the basis of variations with respect to t  and the 
replacing results of 𝑥, 𝑧. 

2
1 2

1 2
1 2 0

1 1

( ) 1 ( )

dV x x dx z z dz
m m

dt x dt z dt

z xx
m x x r y m z z

k r x r x

 
 

        
   

                     
 

By proper selection of
xr

z
y

k

xr
r




1

1 ,
xr

x




1

2
0

 , the above equation becomes 
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22 1
1 1 1

1 1

2 2
1 1

21 1 1
1 1 1

1 1 1

2 2 1
1 1

( ) ( )( ) ( )

( )

( )( )
( ) ( )( )

( )( ) ( )

( )( )

( )( )

dV rm z z
x x m x x y y m x x

dt k r x r x

x x
m z z

r x r x

rm m z x x z z
x x m x x y y m

k r x r x r x

x x z z
m r

r x r x

 



  



 
           

 
     
    

               
  

    

 

The aforementioned equation is modified as given below equation by selecting the non-

negative constants 1 1m   and 1 1
2

2 1

( )r x
m

r





 .  

22 1

1 1

2 21

1 1

( ) ( )( )
( )( )

( ) ( )
( )( ) 2 2

dV zr
x x x x y y

dt k r x r x

zr
x x y y

k r x r x

 

  

 
         

 
         

 

1 0
dV

dt
   , if 1

1 1

2

2 ( )( )

zr

k r x r x

 


 
 

Therefore, if 1

1 1

2

2 ( )( )

zr

k r x r x

 


 
, the equilibrium point 5 ( , 0, )E x z  is asymptotically 

stabilized in worldwide with the help of the theorem of Lyapunov. 

Theorem: 10 The equilibrium region in interior portion  6 : , ,E x y z  exists if 02   , lr 

and rskl  . 

Proof:assume that x , y , z are the positive results for the following expression 

1

1

1 0, 1 0
zx y

r y s x
k r x l

                
and 2

0
1

0
x

r x

  


. By solving above expression 

we obtain 1 0

2 0

r
x


 




, 1 0

2 0

1
( )

r
y l

s

 
 

 
   

 and 

1 01 2

1 2 0 2 0( )

rr l r
z r l

s k

 
    

           
. Hence the equilibrium region at interior portion 

 6 , ,E x y z exists if 02   , lr  and rskl  . 

Theorem: 11If 1 30, 0B B   and 1 2 3B B B , the interior equilibrium region  6 , ,E x y z  is 

asymptotically stabilized in local wise. 
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Proof: Jacobian matrix is given below for the equilibrium region condition. 

6

11 12 13

21 22

31

0

0 0
E

a a a

J a a

a

 
   
    

here 1 1
11 12 13 21 222

1 1

, , , ,
( )

xz xrx sy
a a x a a y a

r x k r x l

           
 

and

1 2
31 2

1( )

r z
a

r x





. 

The characteristic equation of
6EJ is 3 2

1 2 3 0B B B      .  

Here  2
1 11 12 2

1

( )
N

B a a
klN

     

2 11 22 12 21 13 31B a a a a a a    

1 1 2
3 13 31 22 3

1

r s x y z
B a a a

lN

 
  and

2 2
1 1 2 1 1 1( ) 0, 0N r x N rxlN sykN kl xz       , when

2
1

1

( )rlx ksy N

klxz
 

 . 

If 
2

1
1

( )rlx ksy N

klxz
 

  the coefficients of characteristic equation 1 0B  and 3 0B  . 

Now 1 2 3 11 12 11 22 12 21 11 13 31( )( )B B B a a a a a a a a a         

1 2 2 1 1 2 1
2 4 2 3 2

1 1 1 1

sx y z N x y N r x z x zrs rx

kl N klN kl N k N

   
          

   
 

If
3

1 2 1 2
2 2 2 2

1 1 1 1 1

( )
( )

N N y sz N
kl rs

l r xz rN k z N k

 
 

 
     

then 0 .  

The necessary and sufficient conditions for the stability of the system by Routh-Hurwitz 

criterion is 1 30, 0B B  and 1 2 3B B B . It is clear from above that it holds the conditions of 

Routh-Hurwitz criterion at the satisfied conditions and hence the system is locally stable at this 
equilibrium point otherwise is unstable in all other cases.  
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Theorem: 12 Along with the conditions stated in the Theorem-11 and if 

1

1 1 1

2 ( )

2 ( )( )

r k z

k r x r x

 


 


 
, the interior equilibrium point  6 , ,E x y z  is globally 

asymptotically stable. 

Proof: Let the Lyapunov function for the nonlinear system be 

3 1 1 3( , , ) log log log
x y z

V x y z n x x x n y y y n z z z
x y z

                                
 

The following equations are obtained in the basis of variations with respect to t  and the 
replacing results of zyx ,, . 

3
1 2 3

1
1 2

1

2
3 0

1

( ) 1 ( )

( )

dV x x dx y y dy z z dz
n n n

dt x dt y dt z dt

zx sy
n x x r y n y y s x

k r x l

x
n z z

r x

 

 

            
    

                    
 

    

 

By proper selection of
xr

z
y

k

xr
r




1

1 , x
l

ys
s  ,

xr

x




1

2
0

 , the above 

equation becomes
 

3
1 1

1 1

2 3 2
1 1

2 21 2
1 2

1
1 1

1 1

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )( )

( ) ( ) ( )
( )

( )( )

dV r z z
n x x x x y y

dt k r x r x

s x x
n y y y y x x n z z

l r x r x

rn sn
x x y y n n x x y y

k l

r z z x z z z x x
n x x

r x r x

 

 

 



  
            

                 

        

     
    

1 2 3r n

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2 23 1 2
1 2

2

1 1 1 1 1 2 3
1 1 1 1 1

2 21 1 1 2
1 2

1 1

( ) ( ) ( )( )( )

( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

( ) ( ) ( )(
( )( )

dV rn sn
x x y y n n x x y y

dt k l

x x z z x x x x z z
n n z r n

r x r x r x r x r x

rn n z sn
x x y y n n x

k r x r x l

 

  

  

        

         
                
 

           

1 1 1 2 3
1 1 1

)( )

( )( ) ( )( )

( ) ( )( )

x y y

x x z z x x z z
n r n

r x r x r x
 



      
         

By 

choosing 1 2
1

1
, 1n n


  and 1

3
2 1

r x
n

r


 , the above equation becomes,

 
2 23

1 1 1 1

2 2

1 1 1 1 1

( ) ( ) ( )( )
( )( )

1 1
( ) ( )

( )( ) 2 2

dV r z s
x x y y x x y y

dt k r x r x l

r z s
x x y y

k r x r x l

 
 

  
  

   
               

      
                         

If 1

1 1 1

2 ( )

2 ( )( )

r k z

k r x r x

 


 


 
then 3 0

dV

dt
  and hence from known according to the 

theorem, equilibrium region in interior portion 𝐸଺(𝑥̄, 𝑦̄, 𝑧̄) is on globally asymptotically stable 
state.

 6. HOPF BIFURCATION 

In this study, performance of the dynamic system is showcased by utilizing many parameters. 
Whenever the species are co-existing in equilibrium state, the constant prey-predator 
parameters are often established on steady state. Even though, if any changes are takes place 
in the parameter of the model the entire performance of the system can be changed. Bifurcation 
points is a transition which is occurs due to the condemnatory parameter values.  Whenever, a 
system has significant periodic results at that time Hopf bifurcation occurs.  In this portion 
discussed about Hopf bifurcation occurs at the point of condemnatory value 𝛽ଶ = 𝛽ଶ

∗ 

Theorem 6.1 consider that 
2

1
1

( )rlx ksy N

klxz
 

 , at the point of condemnatory value a 

uncomplicated Hopf bifurcation occurs for the system. the condemnatory value is 𝛽ଶ = 𝛽ଶ
∗. 

Proof: Liu technique is utilized for examine the model of the Hopf bifurcation. 

Consider that local stability constraints are taken for the Hopf bifurcation model  

3
1 2 1 2

2 2 2 2
1 1 1 1 1

( )
( )

N N y sz N
kl rs

l r xz rN k z N k

 
 

  
     

, then  
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2 2

2
1 2

1

0
N

B
klN  

   

2 2

2
2 1 2

3 3 2 2
1 1 1

( ) 0
( )

N sy sz N
B kl rs

l rN k z N k 

 


 
      

 

2 2

2
21

1 15
2 1

( ) 0
r x zd

rN k z
d kN

 

 
 


    

Therefore 
2 2

2

0
d

d
 

 


 . Thus, uncomplicated Hopf Bifurcation occurs at the point of the 

condemnatory value of  2 2    is proved  

7. STOCHASTIC ANALYSIS 

In this portion, developed the stochastic type of framework (2.1) which is utilized for identify 
the impact of the noise. By the stochastic type of framework, enumerated the variances 
occupied on the positive equilibrium state owing to the noise.  The additive gaussian white 
noise occurs at the model due to the irregular noise of the model and their disturbances 
described below: 

1
1 1

1

2 2

2
0 3 3

1

1 ( )

1 ( )

( )

xzdx x
rx xy k t

dt k r x

dy y
sy xy k t

dt l

xzdz
z k t

dt r x


 

 


 

        

     
 

  


   (7.1) 

Here two preys terms are denoted as x(t), y(t) and hunter terms are z(t).  

1 2 3, ,k k k are assumed as a real constant.  1 2 3( ) ( ), ( ), ( )t t t t    represents the three-dimension 

procedure of the Gaussian white noise which is utilized for satisfying  ( ) 0, 1,2,3iE t i   . 
' '( ) ( ) ( ) , 1, 2,3i j ijE t t t t i j          . Kronecker symbol is denoted as ij , Dirac operation 

is denoted as  . 

Let 1 2 3( ) , ( ) , ( )x t u T y t u S z t u R         

The species processing time derivatives are given below  

31 2, ,
dudu dudx dy dz

dt dt dt dt dt dt
    
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Then, replacing the above derivatives in expression (7.1)
 

𝑑𝑢ଵ

𝑑𝑡
= 𝑟(𝑢ଵ + 𝑇∗) ൬1 −

𝑢ଵ + 𝑇∗

𝑘
൰ − 𝛼(𝑢ଵ + 𝑇∗)(𝑢ଶ + 𝑆∗) −

𝛽ଵ(𝑢ଵ + 𝑇∗)(𝑢ଷ + 𝑅∗)

𝑟ଵ + (𝑢ଵ + 𝑇∗)

+ 𝑘ଵ𝜉ଵ(𝑡) 
𝑑𝑢ଶ

𝑑𝑡
= 𝑠(𝑢ଶ + 𝑆∗) ൬1 −

𝑢ଶ + 𝑆∗

𝑙
൰ − 𝛿(𝑢ଵ + 𝑇∗)(𝑢ଶ + 𝑆∗) + 𝑘ଶ𝜉ଶ(𝑡) 

ௗ௨య

ௗ௧
=

ఉమ(௨భା்∗)(௨యାோ∗)

௥భା(௨భା்∗)
− 𝛽଴(𝑢ଷ + 𝑅∗) + 𝑘ଷ𝜉ଷ(𝑡)

     
 (7.2)  

Linear part of the above equation is 

𝑑𝑢ଵ

𝑑𝑡
= −

𝑟

𝑘
𝑢ଵ𝑇∗ − 𝛼𝑢ଶ𝑇∗ −

𝛽ଵ

𝑟ଵ
𝑢ଷ𝑇∗ + 𝑘ଵ𝜉ଵ(𝑡) 

𝑑𝑢ଶ

𝑑𝑡
= −𝛿𝑢ଵ𝑆∗ −

𝑠

𝑙
𝑢ଶ𝑆∗ + 𝑘ଶ𝜉ଶ(𝑡) 

ௗ௨య

ௗ௧
=

ఉమ

௥భ
𝑢ଵ𝑅∗ + 𝑘ଷ𝜉ଷ(𝑡)

        

 
(7.3) 

By taking fourier transform to the expression of (7.3) on the both sides, we obtain 

𝑘ଵ𝜉ሚଵ(𝜔) = ቀ𝑖𝜔 +
𝑟

𝑘
𝑇∗ቁ 𝑢෤ଵ(𝜔) + 𝛼𝑇∗𝑢෤ଶ(𝜔) +

𝛽ଵ

𝑟ଵ
𝑇∗𝑢෤ଷ(𝜔) 

𝑘ଶ𝜉ሚଶ(𝜔) = 𝛿𝑆∗𝑢෤ଵ(𝜔) + ቀ𝑖𝜔 +
𝑠

𝑙
𝑆∗ቁ 𝑢෤ଶ(𝜔) 

𝑘ଷ𝜉ሚଷ(𝜔) = −
ఉమ

௥భ
𝑅∗𝑢෤ଵ(𝜔) + 𝑖𝜔𝑢෤ଷ(𝜔)      (7.4) 

The following expression (7.5) represents the matrix form of the above expression (7.4) 

𝑀(𝜔)𝑢෤(𝜔) = 𝜉ሚ(𝜔)      (7.5) 

where 𝑀(𝜔) = ቎

𝐴(𝜔) 𝐵(𝜔) 𝐶(𝜔)

𝐷(𝜔) 𝐸(𝜔) 𝐹(𝜔)
𝐺(𝜔) 𝐻(𝜔) 𝐼(𝜔)

቏ ; 𝑢෤(𝜔) = ቎

𝑢෤ଵ(𝜔)

𝑢෤ଶ(𝜔)
𝑢෤ଷ(𝜔)

቏ ; 𝜉ሚ(𝜔) = ቎

𝜉ሚଵ(𝜔)

𝜉ሚଶ(𝜔)

𝜉ሚଷ(𝜔)

቏ 

and 𝐴(𝜔) = 𝑖𝜔 +
௥

௞
𝑇∗; 𝐵(𝜔) = 𝛼𝑇∗; 𝐶(𝜔) =

ఉభ

௥భ
𝑇∗ 

𝐷(𝜔) = 𝛿𝑆∗; 𝐸(𝜔) = 𝑖𝜔 +
𝑠

𝑙
𝑆∗; 𝐹(𝜔) = 0

 

𝐺(𝜔) = −
𝛽ଶ

𝑟ଵ
𝑅∗; 𝐻(𝜔) = 0; 𝐼(𝜔) = 𝑖𝜔 

From the expression (7.5), we obtain  
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𝑢෤(𝜔) = [𝑀(𝜔)]ିଵ𝜉ሚ(𝜔)     (7.6) 

Let   1
( ) ( )M L 

 , where  

𝐿(𝜔) =
஺ௗ௝ெ(ఠ)

|ெ(ఠ)|
      

(7.7) 

Therefore𝑢෤(𝜔) = 𝐿(𝜔)𝜉ሚ(𝜔)       (7.8) 

Whether Y(t) function contains a mean value of zero then the variances that is fluctuation 
intensity of the function components with the ranges of frequency (𝜔, 𝜔 + 𝑑𝜔) is considered 
as 𝑆௒(𝜔)𝑑𝜔. Where 𝑆௒(𝜔 denotes the function Y spectral density and which is expressed 
mathematical by the following expression  

𝑆௒(𝜔) = 𝐿𝑡
෨் →ஶ

|௒෨(ఠ)|మ

෨்
     (7.9) 

Whether the function Y contains a mean value of zero then the invertible transform of 𝑆௒(𝜔) 
becomes auto covariance operation  

𝐶௒(𝜏) =
ଵ

ଶగ
∫ 𝑆௒(𝜔)𝑒௜ఠఛ𝑑𝜔

ஶ

ିஶ
     

(7.10) 

The fluctuation intensity of the function Y(t) is described in mathematical expression which is 
given below  

𝜎௒
ଶ = 𝐶௒(0) =

ଵ

ଶగ
∫ 𝑆௒(𝜔)𝑑𝜔

ஶ

ିஶ
     

(7.11) 

Next,auto correlation operation is transformed into function named auto variance  

𝑃௒(𝜏) =
஼ೊ(ఛ)

஼ೊ(଴)
      

(7.12) 

The mathematical expression for the Gaussian White noise procedure is expressed below  

𝑆క೔కೕ
= 𝐿𝑡

෠்→ାஶ

𝐸ൣ𝜉௜(𝜔)𝜉௝(𝜔)൧

𝑇෠
= 𝐿𝑡

෠்→ାஶ

1

𝑇෠
න න 𝐸ൣ𝜉௜(𝜔)𝜉௝(𝜔)൧

෠்
ଶ

ି ෠்

ଶ

෠்
ଶ

ି ෠்

ଶ

𝑒ି௜ఠ(௧ି௧ᇲ)𝑑𝑡𝑑𝑡ᇱ = 𝛿௜௝

 

(7.13) 

By the expression (7.6), we obtain  

𝑢෤(𝜔) = ∑ 𝐿௜௝(𝜔)𝜉௝(𝜔); 𝑖 = 1,2,3ଷ
௝ୀଵ

    
(7.14) 

By (7.9), we have 
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𝑆௨೔
(𝜔) = ෍ 𝛼௝(𝜔)ห𝐿௜௝(𝜔)ห

ଷ

௝ୀଵ

ଶ

; 𝑖 = 1,2,3 

By (7.7), we obtain 

𝜎௨భ
ଶ =

1

2𝜋
ቊන 𝑘ଵ ฬ

𝐴ଵ

|𝑀(𝜔)|
ฬ

ଶ

𝑑𝜔 + න 𝑘ଶ ฬ
𝐵ଵ

|𝑀(𝜔)|
ฬ

ଶ

𝑑𝜔 +
ஶ

ିஶ

න 𝑘ଷ ฬ
𝐶ଵ

|𝑀(𝜔)|
ฬ

ଶ

𝑑𝜔
ஶ

ିஶ

ஶ

ିஶ

ቋ 

 

𝜎௨మ
ଶ =

1

2𝜋
ቊන 𝑘ଵ ฬ

𝐴ଶ

|𝑀(𝜔)|
ฬ

ଶ

𝑑𝜔 + න 𝑘ଶ ฬ
𝐵ଶ

|𝑀(𝜔)|
ฬ

ଶ

𝑑𝜔 +
ஶ

ିஶ

න 𝑘ଷ ฬ
𝐶ଶ

|𝑀(𝜔)|
ฬ

ଶ

𝑑𝜔
ஶ

ିஶ

ஶ

ିஶ

ቋ 

 

𝜎௨య
ଶ =

ଵ

ଶగ
൜∫ 𝑘ଵ ቚ

஺య

|ெ(ఠ)|
ቚ

ଶ
𝑑𝜔 + ∫ 𝑘ଶ ቚ

஻య

|ெ(ఠ)|
ቚ

ଶ
𝑑𝜔 +

ஶ

ିஶ ∫ 𝑘ଷ ቚ
஼య

|ெ(ఠ)|
ቚ

ଶ
𝑑𝜔

ஶ

ିஶ

ஶ

ିஶ
ൠ  

 (7.15)
 

where  

( ) ( ) ( )M R i I    , the real and imaginary parts of ( )M   are 

𝑅ଶ(𝜔) = −
𝜔ଶ𝑠𝑆∗

𝑙
−

𝜔ଶ𝑟𝑇∗

𝑘
+

𝛽ଵ𝛽ଶ𝑠𝑇∗𝑅∗𝑆∗

𝑙𝑟ଵ
ଶ  

𝐼ଶ(𝜔) = −𝜔ଷ +
𝜔𝑟𝑠𝑇∗𝑆∗

𝑘𝑙
− 𝜔𝛼𝛿𝑇∗𝑆∗ +

𝜔𝛽ଵ𝛽ଶ𝑇∗𝑅∗

𝑟ଵ
ଶ  

And 
|𝐴ଵ|ଶ = 𝑋ଵ

ଶ + 𝑌ଵ
ଶ; |𝐵ଵ|ଶ = 𝑋ଶ

ଶ + 𝑌ଶ
ଶ; |𝐶ଵ|ଶ = 𝑋ଷ

ଶ + 𝑌ଷ
ଶ 

|𝐴ଶ|ଶ = 𝑋ସ
ଶ + 𝑌ସ

ଶ; |𝐵ଶ|ଶ = 𝑋ହ
ଶ + 𝑌ହ

ଶ; |𝐶ଶ|ଶ = 𝑋଺
ଶ + 𝑌଺

ଶ 

|𝐴ଷ|ଶ = 𝑋଻
ଶ + 𝑌଻

ଶ; |𝐵ଷ|ଶ = 𝑋଼
ଶ + 𝑌ଶ; |𝐶ଷ|ଶ = 𝑋ଽ

ଶ + 𝑌ଽ
ଶ 

where  

𝑋ଵ = −𝜔ଶ; 𝑌ଵ =
𝜔𝑠𝑆∗

𝑙
; 𝑋ଶ = 0; 𝑌ଶ = 𝜔𝛼𝑇∗; 𝑋ଷ = −

𝛽ଵ𝑠𝑇∗𝑆∗

𝑟ଵ𝑙
; 𝑌ଷ = −

𝜔𝛽ଵ𝑇∗

𝑟ଵ
 

𝑋ସ = 0; 𝑌ସ = 𝜔𝛿𝑆∗; 𝑋ହ = 𝜔ଶ −
𝛽ଵ𝛽ଶ𝑅∗𝑇∗

𝑟ଵ
ଶ ; 𝑌ହ =

𝜔𝑟𝑇∗

𝑘
; 𝑋଺ = −

𝛽ଵ𝛿𝑆∗𝑇∗

𝑟ଵ
; 𝑌଺ = 0 

𝑋଻ =
𝛽ଶ𝑠𝑅∗𝑆∗

𝑟ଵ𝑙
; 𝑌଻ =

𝜔𝛽ଶ𝑅∗

𝑟ଵ
; 𝑋଼ =

𝛽ଶ𝛼𝑅∗𝑇∗

𝑟ଵ
; 𝑌 = 0; 𝑋ଽ = −𝜔ଶ +

𝑟𝑠𝑆∗𝑇∗

𝑘𝑙
− 𝛼𝛿𝑆∗𝑇∗; 

𝑌ଽ =
𝜔𝑠𝑆∗

𝑙
+

𝜔𝑟𝑇∗

𝑘  
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The equation (7.15) becomes 

𝜎௨భ
ଶ =

1

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)
[𝑘ଵ(𝑋ଵ

ଶ + 𝑌ଵ
ଶ) + 𝑘ଶ(𝑋ଶ

ଶ + 𝑌ଶ
ଶ) + 𝑘3(𝑋ଷ

ଶ + 𝑌ଷ
ଶ)]

ஶ

ିஶ

𝑑𝜔ቋ 

𝜎௨మ
ଶ =

1

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)
[𝑘ଵ(𝑋ସ

ଶ + 𝑌ସ
ଶ) + 𝑘ଶ(𝑋ହ

ଶ + 𝑌ହ
ଶ) + 𝑘3(𝑋଺

ଶ + 𝑌଺
ଶ)]

ஶ

ିஶ

𝑑𝜔ቋ
 

𝜎௨య
ଶ =

1

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)
[𝑘ଵ(𝑋଻

ଶ + 𝑌଻
ଶ) + 𝑘ଶ(𝑋଼

ଶ + 𝑌ଶ) + 𝑘3(𝑋ଽ
ଶ + 𝑌ଽ

ଶ)]𝑑𝜔
ஶ

ିஶ

ቋ
 

If replacing the values of 𝑘ଵ, 𝑘ଶ, 𝑘ଷ as zero to obtain the dynamic performance of the system 
for the expression (7.1), then the population of fluctuation intensity becomes  

Case: 1 Here the value of    𝑘ଵand 𝑘ଶis taken as zero, then  

𝜎௨భ
ଶ =

𝑘ଷ(𝑋ଷ
ଶ + 𝑌ଷ

ଶ)

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)
𝑑𝜔

ஶ

ିஶ

ቋ 

𝜎௨మ
ଶ =

𝑘ଷ(𝑋଺
ଶ + 𝑌଺

ଶ)

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)
𝑑𝜔

ஶ

ିஶ

ቋ
 

𝜎௨య
ଶ =

𝑘ଷ(𝑋ଽ
ଶ + 𝑌ଽ

ଶ)

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)
𝑑𝜔

ஶ

ିஶ

ቋ 

Case: 2Here the value of   𝑘ଶ and 𝑘ଷ is taken as zero, then 

𝜎௨భ
ଶ =

𝑘ଵ(𝑋ଵ
ଶ + 𝑌ଵ

ଶ)

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)

ஶ

ିஶ

𝑑𝜔ቋ 

𝜎௨మ
ଶ =

𝑘ଵ(𝑋ସ
ଶ + 𝑌ସ

ଶ)

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)

ஶ

ିஶ

𝑑𝜔ቋ
 

𝜎௨య
ଶ =

𝑘ଵ(𝑋଻
ଶ + 𝑌଻

ଶ)

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)
𝑑𝜔

ஶ

ିஶ

ቋ 

Case: 3Here the value of  𝑘ଵ,  and  𝑘ଷ is taken as zero, then 

𝜎௨భ
ଶ =

𝑘ଶ(𝑋ଶ
ଶ + 𝑌ଶ

ଶ)

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)

ஶ

ିஶ

𝑑𝜔ቋ 

𝜎௨మ
ଶ =

𝑘ଶ(𝑋ହ
ଶ + 𝑌ହ

ଶ)

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)

ஶ

ିஶ

𝑑𝜔ቋ
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𝜎௨య
ଶ =

𝑘ଶ(𝑋଼
ଶ + 𝑌ଶ)

2𝜋
ቊන

1

𝑅ଶ(𝜔) + 𝐼ଶ(𝜔)
𝑑𝜔

ஶ

ିஶ

ቋ 

It is difficult to see the analysis validation for the population of the fluctuation intensity. 
Nevertheless, can evaluate the mathematical expression for the various parameters of the 
function.  The simulation results are represented in the figure 9 to figure 22.  

8. NUMERICAL ILLUSTRATIONS 
In this portion, describes the dynamic performance for the proposed frame work (2.1) through 
the mathematical expression by using the software of MATLAB. Owing to the lack of taking 
the real time data of all the parameters for the proposed framework the inferable data is taken 

for the all parameters. The parameter values are given below:  

r = 0.5, 1r = 0.45, k = 1.9,  = 0.04, 1 = 0.09, s = 0.25, l =1.4,  =0.2 , 2 = 0.7850, 0 = 0.49. 

For these parameter values, it seen that 1B = 0.119068 > 0, 3B = 0.005209 > 0, 1 2 3B B B   = 

0.000852 > 0.  As stated in the theorem 11, the positive equilibrium region 𝐸଺ becomes 
asymptotically stabilized in locally state. Fig.1 represents a positive equilibrium region of 𝐸଺ 
on a asymptotically stabilized in locally state.  
From this figure, it is concluded that the population of all species co-existing concurrently. 

(a)      (b) 
Fig.1: (a) Positive equilibrium region 𝐸଺ Stabilitygraph, (b) Two Preys-Predator stable limit 

cycle 
According to the theorem-6.1, we can define the condemnatory value of 𝛽ଶ. The condemnatory 

value of 𝛽ଶ
∗ is 0.9421. The system is unstable for *

2 2   around the positive equilibrium point 

𝐸଺, taking 2 0.95,1.5,2.5  , the solution of the system (2.1) has been shown in Figs. 4, 6, 8, 

which indicates that at the point of the positiveequilibrium state 𝐸଺ the system becomes 
unstable.  
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(a)      (b) 

Fig.2: Bifurcation diagram for 2 0.95   

 

(a)      (b) 

Fig.3: Bifurcation diagram for 2 1.5   

 

(a)      (b) 

Fig.4: Bifurcation diagram for 2 2.5   
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Case: (a)Consider the parameter values: r = 16.2, 1r = 15.2, k =4.7,  =1.05 , 1 = 20, s = 40.64, 

l =12,  =10.755 , 2 = 50.15, 0 = 3.99, 1k = 0.1, 2k = 0.3, 3k = 0.2,  1( )t = 0.3, 2 ( )t  0.3,

3 ( )t  0.1,  the stochastic diagram is 

 

(a)      (b) 

Fig.5: The fluctuating population growth with high intensity on the irregular surroundings. 

Case: (b)the parameter values are considered as: r =16.2, 1r = 15.2, k =4.7,  =1.05 , 1 = 35, 

s= 40.64, l =12,  =10.755 , 2 = 27.5, 0 = 3.99, 1k = 0.687, 2k = 0.743, 3k = 0.896,  1( )t

=0.643, 2 ( )t  0.653, 3 ( )t  0.757, the relevant stochastic diagram is represented below: 

 

(a)      (b) 

Fig.6: The fluctuating population growth with low intensity on the irregular surroundings. 

Case: (c) the parameter values are considered as r = 16.2, 1r = 7.25, k =4.7,  =1.05 , 1 = 20, 

s= 40.64, l =12,  =10.755 , 2 = 27.5, 0 = 3.99, 1k = 5, 2k = 5, 3k = 5,  1( )t =5, 2 ( )t  3, 

3 ( )t  0.956, the relevant stochastic diagram is represented below: 
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(a)      (b) 

Fig.8: The fluctuating population growth with low 
intensity on the irregular surroundings. 

Case: (d) the parameter values are considered as r = 

16.2, 1r = 16.2, k =4.7,  =1.05 , 1 = 20, s= 40.64, l

=12,  =10.755 , 2 = 27.5, 0 = 3.99, 1k = 6, 2k = 5, 3k = 2,  1( )t =3, 2 ( )t  5, 3 ( )t  0.2, the 

relevant stochastic diagram is represented below: 
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(a)      (b) 

Fig.9: The fluctuating population growth with low intensity on the irregular surroundings. 

Case: (e)Here,manystochastic graphs are given withthe fluctuating population growth under 
the low intensity condition for irregular surroundings. 

 

(a)      (b) 

Fig.10: The fluctuating population growth with low intensity on the irregular surroundings. 

 

(a)      (b) 

Fig.11: The fluctuating population growth with low intensity on the irregular surroundings. 
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(a)      (b) 

Fig.12: The fluctuating population growth with low intensity on the irregular surroundings. 

9. CONCLUSIONS 

In this study represented a food chain framework for two preys – hunter population in the 
ecosystem has been considered. The finite quality of the results and the representing the 
existence of thepoints at the equilibrium state are established in this proposed framework.The 
system performances are analysed in global and local region even at the equilibrium region 
which is represented in expression (2.1).Hopf bifurcation around the positive equilibrium 
region has been established. By using the gaussian white noise approach, we developed the 
proposed stochastic type of framework for the considering the impact of the fluctuating 
surroundings. 
Then we established the behavior of the system with effect of stochastic perturbations. 
By this stochastic process we observed that because of involvement of the stochastic 
perturbations can form the substantial changes in the intensity of our system framework by the 
changes in the diplomatic parameters may create a high fluctuation intensity in the 
surroundings which leads to chaotic behaviour.  
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