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Abstract: Cloud computing is an on-demand model of computing that utilizes virtualization 
expertise to offer cloud resources such as CPU, memory, storage, and network to customers in 
the usage of virtual machines. As a result, most big data analytics in many modern enterprise 
applications are run from the cloud. Since resources in these private clouds are limited, getting 
the most out of resource applications and providing guaranteed service to users is the ultimate 
goal by efficiently scheduling tasks and resources. However, existing schedulers in big data 
processing systems do not consider both application performance and resource utilization when 
performing allocations. Therefore, it is difficult to design workflows to accomplish low 
turnaround time and high resource consumption in big data systems. In this paper, we propose 
a resource management system for efficient job scheduling, called RMS, which dynamically 
schedules big data jobs in Kubernetes cluster nodes for Spark applications, and autonomously 
adjusts scheduling policies in heterogeneous node clusters to enhance application execution 
and resource consumption. The RMS mechanism will ensure that there is sufficient guidance 
and resources available in its planning objectives and a satisfactory level of resource utilization. 
The experimental analysis of different RMS and performance preferences using different 
methods depends on the predicted completion time and the benchmark statistical result of 
different big data performance indicators traces. The results show that RMS decreases the cost 
and scheduling overhead and improves job execution performance. 

Keywords:  Cloud computing, Big Data, Job Scheduling, Resource Management, Kubernetes, 
Spark. 

1. Introduction 

Cloud computing is an innovative, cost-effective form of underwriting that is rapidly 
becoming a transformational technology for many organizations due to its flexibility and use 
of virtual resources as online services [1]. Here, computing power and memory are provided 
to users in the form of virtual machines to provide virtual servers with predefined 
configurations [2-3]. With the rise of big data analytics and artificial intelligence, big data 
analysis (BDA) has played an important role in today's business [4]. Therefore, minimizing the 
underutilization of underlying resources is critical to ensuring effective efficiency through 
efficient resource management and scheduling. However, a major scheduling challenge in a 
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cloud environment is efficiently allocating resources to improve the performance of the overall 
cloud computing environment. 

Currently, most cloud service providers rely on simple resource allocation, such as fast 
and optimal deployment [5]. Advanced scheduling methodology is a well-studied phenomenon 
in network environments, but due to the dynamic nature of incoming requests, fast best effort 
is preferred in public clouds [6]. The main reason cloud applications lack predictable or 
predetermined usage patterns is their dynamic nature. Therefore, modern scheduling 
techniques continue to be limited to the grid and are not considered suitable for public clouds. 
However, this scenario is somewhat different for enterprise clouds, where usage patterns are at 
least somewhat predictable. This can be attributed to the fact that the private cloud is owned 
by an organization and managed and used primarily by employees and other stakeholders [6-
7]. We, therefore, believe that in a private cloud with predictable availability, scheduling with 
different rules will improve resource utilization and ensure services. 

The job scheduler is also an important part of BDA, where multiple tasks are performed 
by multiple users and applications compete for resources in a collective environment. Many 
BDAs are often limited as the volume of data increases and the need for analytics increases. 
Consequently, effective resource management becomes an important function task of the 
cluster scheduler [8]. Incoming job requests from various applications require heterogeneous 
resources. The usual resources for a virtual machine are the number of cores, CPU, memory, 
and bandwidth required to operate. Therefore, before scheduling can be done effectively, 
incoming tasks must be classified. Many research works highlight the need to explore avenues 
for dynamic resource scheduling methods in the cloud. In this case, the resource utilization of 
nodes can be maximized and better service guarantees can be provided for incoming requests 
[9]. In this paper, we propose a resource management system (RMS) for efficient job 
scheduling in heterogeneous node clusters according to resource heterogeneity requirements. 
Incoming requests are submitted by a Spark application in a GC platform virtual machine 
running a Kubernetes cluster node [10]. Each node in the cluster is configured with 
heterogeneous resources to assign different jobs. In this case, proper resource allocation is very 
important to achieve cost efficiency. RMS considers job requirements, assigns jobs to 
appropriate nodes first, and adjusts scheduling strategies in heterogeneous node clusters to 
increase application performance and resource consumption. It incorporates work demand and 
resource availability in its scheduling decisions while maintaining a satisfactory level of 
resource utilization.  The main contribution of our proposed work is as follows: 

(i) Identify the resource utilization of cluster nodes through resource monitoring, 
(ii) An Efficient Job Scheduling Algorithm Based on Classification of Job Resource 

Requirements of Heterogeneous Cluster Nodes. 
(iii) Increase the cost-effectiveness of your RMS through the optimal distribution of work. 

An efficient scheduling program will achieve higher results but use more resources. The 
number of cores and the amount of memory allocated to the application task are considered as 
per the node capacity for the scheduling algorithm. It is important to allocate products to 
specific projects as quickly as possible, based on customer and service provider satisfaction. 
The rest of the paper is organized as follows. It gives a brief introduction to the related works 
in Section-2. Section-3 it presents our proposed RMS and scheduling algorithm. Section-4 
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provides the experimental setup and results analysis of our work using a big data benchmark 
dataset and Section-5 discusses the conclusion of our proposal. 

II. Related Works 

Many activities have been investigated in cloud computing to reduce the request 
rejection rate, maximize revenue, and improve resource utilization [13, 23, 27, 34, 35]. To 
achieve these objectives, scheduling algorithms often focus on group requests or potential 
resources using heuristic methods. Much research has focused on scheduling in cloud 
environments, where advanced resource booking techniques are well considered. The 
scheduling function of BDA has received much attention from various domains and academic 
studies.  In terms of scheduling objectives, previous studies can be classified into two 
categories: performance-based and fairness-based scheduling. 
A. Scheduling based on Performance 

The scheduler's performance is determined by the number of jobs completed within a 
specified deadline compared to the number of job requests during a specified time interval. 
Many methods have been proposed in the past to predict the performance of schedulers based 
on generic and procedural models to achieve an accurate assessment of the accomplishment 
time of big data analytics jobs. 

Dinn et al. [11] presented an improvised solution for multi-object scheduling known as 
“Harris hawks optimizer (HHO)” for solving the issue of allocation of multi-objects. Khan et 
al. [12] suggest an efficient scheduling approach to reduce the job waiting time by utilizing a 
hybrid optimization algorithm.  Meyer et al. [13] with support of a defined taxonomy, illustrate 
that resource scheduling based on workload variation presents a machine, learning-based 
classification model. Its objective is to assign jobs dynamically with interfering job resource 
requirements. Chen et al. [14] utilize a heterogeneous environment for efficient scheduling for 
data centers by considering the VM cores and energy utilizations based on variations in the 
resource occurrence needs.      

The growing demand for cloud resources of data centers increases the challenges to 
meet the demand performance in real time. It very much needs new solutions to handle such a 
huge inflow of requests. Cheng et al. [15] provide a learning method for real-time job 
scheduling using Deep Reinforcement Learning to mitigate the server workload and smoothly 
execute jobs. Fan et al. [16] suggest a methodology for diverse workloads utilizing an 
intelligent scheduling system for job scheduling based on hardware resources for different 
kinds of machines. Zheng et al. [17] developed a method for the online user to avail SaaS and 
IaaS optimally to manage their required jobs efficiently or execute the jobs in parallel to resolve 
the requirements. Shao et al. [18] suggest a greedy method to reduce the time of execution and 
resource consumption in terms of power for allocating jobs in a fine-grained manner. So, to 
have a modest enhancement in performance in job execution a continuous observation of the 
demand with the least resource and cost is essential [19].  

To meet the job execution scheduling and estimation of its performance different 
approaches are explored [23], and also it is very much important to know the deadline before 
scheduling the jobs. Hou et al. [20] present a method to reduce the average time of job 
execution to meet the deadline of jobs. It provides a deadline-aware scheduling method by 



EFFICIENT RESOURCE MANAGING AND JOB SCHEDULING IN A HETEROGENEOUS KUBERNETES CLUSTER FOR BIG DATA 

 
Journal of Data Acquisition and Processing Vol. 38 (3) 2023      5084 

monitoring the job resource requirement and estimation of job completion time. Wang et al. 
[21] also suggest a method with the understanding of the job workflow model and deadline 
restrictions to meet cost-effectiveness. Yao et al. [22] exploit the resource utilization for 
different types of jobs and their dependency to enhance the availability of the resource for jobs 
and meet the deadline of jobs.  
B.. Scheduling based on Fairness 

Fairness is another important element of a scheduling framework for modifying the 
behavior of long-waiting tasks by dynamically balancing the performance of diverse jobs for 
rational and fast accomplishment. An adjustment of the appropriate scheduling policies based 
on the workloads to run for better and fairer performance is essential. A generic meta-scheduler 
based on Hadoop YARN's [24] is implemented to achieve the fairness trade-off of the 
schedulers. 
Wang et al. [25] use multiple metrics to effectively balance efficiency and fairness by reducing 
the runtime cost of MapReduce jobs. Zaharia et al. [26] offer a delayed scheduling policy in 
Hadoop to increase the data space and improve the performance of the Fair Scheduler. Work 
to demonstrate minimum-to-maximum fairness over multiple resources using a Hadoop YARN 
clustering for resource fairness is given as DRF [27].  Tang et al. [28] to enhance schedule 
fairness present a slot allocation process in the Hadoop framework to dynamically allot the 
workload.  

Selvarani et al. [29] present an improved cost-based scheduling approach for efficient 
resource allocation by grouping projects according to the most profitable projects. The purpose 
of this calculation is based on the profitability of the service provider rather than the satisfaction 
of the users. Li et al. [30] proposed a feedback preemptive task scheduling approach for 
scheduling a project with the shortest mean run time. However, the proposed algorithm can 
lead to starvation because longer-running tasks are held in a high-latency queue. Huang et al. 
[31] maximized the client-specified utility concerning max-min fairness by calculating an 
approximate total workload based on the run-time distribution of tasks and performing resource 
allocation accordingly. 

Yang et al. [32] suggested a heuristics approach for task assignment that assigns all 
tasks in random order with the minimum completion time of virtualization resources. This 
algorithm only utilizes the allotted time of the VM, not its resource. In this way, VMs on 
different hosts are provisioned and the resources used are reduced. Ghanbari et al. [33] studied 
the statistical methods in cloud computing to analyze the job priority to do accurate job 
scheduling. Each activity requires predetermined resource priority. An association matrix was 
calculated for each task based on resource accessibility to decide the priority. A priority or 
weight vector is computed for each associated matrix, and its resources are allocated relying 
on these priority vectors, but it also shows a limitation in deadline violations in the job 
completion.  
Sharkh et al. [34] proposed a framework for making advanced requests blocking over software-
defined networks (SDN) for distribution job allocation purposes. A greedy algorithm which 
divide the start time in advance, so that it can minimize the job allocation delay. The algorithm 
only considered the pattern of resources to public cloud demand and limited the schedule of 
the demand to the advanced reservation type. 
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An advance scheduling methodology in support of predefined allocation constraints for 
allocating jobs as per their immediate need, best fit meets deadline importance, or advance 
resource booking is presented by Nathani et al. [35]. In this allocation when a request arrives, 
the scheduler will attempt to process the request at one or more locations. If it was unable to 
find any then it tries to reschedule the request by changing the existing schedule and employing 
a swapping and backfilling procedure. During an exchange, two consecutive jobs are 
exchanged only if the first job requires less resource than the second and no timeouts have 
elapsed since the swapping. The backfill procedure is used to reserve best fit and deadline jobs 
by re-booking several idle slots. This procedure is used to boost idle resources during new job 
demand periods. The exchange of best-fit requests with a deadline in this way is starved 
because there is no indication of the number of times this swapping will accomplish the task. 

Inspired by these findings, we outline that the different guidelines and procedures to 
improve starvation eradication for the best-fit job allocation are needed through continuous 
resource monitoring and scheduling. In addition, resource utilization is improved by efficiently 
identifying and scheduling idle resources using the proposed scheduling algorithm. 

III. Proposed System 

The proposed resource management system (RMS) focuses on the job scheduling 
problem through node resource monitoring. We considered heterogeneous nodes in the cluster 
for running BDA jobs. Other scheduling frameworks such as YARN and Mesos are in use, but 
the framework determines possible resource provisioning schemes and provides resources 
based on weights, quotas, or roles. Here, the scheduler is accountable for refusing or accepting 
the resources presented allowing the scheduling policy. RMS minimizes denials and improves 
service by predetermining node resources for tasks to be allocated. RMS implements resource 
management and job scheduling modules for efficient job execution. 
A. Resource Management 

A Kubernetes cluster has standard computing resources such as CPU, memory, storage, 
and network to accommodate the different BDA job requests for execution. For example, jobs 
executing on the YARN scheduler must proclaim the CPU cores and memory required when 
the request is submitted. It is considered as the resource prerequisite of a job denoted as r = {c, 
m}, where c is CPU core counts and m is the memory, and the total resource of a node is 
denoted as R = {C, M}. 
For resource monitoring of cluster node resources, it collects job information running on the 
cluster nodes and prepares a resource availability vector (RAV) from the information obtained 
from the nodes. The RAV contains a set of records having information of {Node-Id; Number 
of Free Core; Free Memory Size}. 
To build RAV, we compute the Job Availability Time (JAT) for a job in comparison to running 
job core and the number of free cores for a period and modify the RAV every time a new job 
is allocated to a node or as soon as a job finishes and free resources. The JAT can be calculated 
using Eq. (1). 

( , , ) (( ), ( ), ( (N )))t t t t t t t tJAT rC rM ET C rc M rm T     (1) 
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where, rCt, rMt, and ETt is denotes the current Core resource, Memory resource, and estimated 
time for the availability of a node Nt at a time interval T. The total count of cores and total 
memory of a node is denoted by Ct and Mt , whereas the current usage of core and memory is 
denoted by rct and rmt . The value of  rct and rmt is computed based on the summation of the 
number of cores underutilize for running the jobs and the quantity of memory under usage.  
In case no free resources are available then it will compute the probable job completion time 
and compute JAT with an additional waiting delay constant as 𝜔 using Eq. (2). 

( , , ) ( ( ) , ( ) , ( ( ) ))t t t i t i t i tJAT rC rM ET C job M job FT job      (2) 

where C(jobi)t and M(jobi)t are denoted by the number of cores and memory utilized and 
FT(jobi)t denotes the completion time by a job jobi.  
Using Eq. (1) and (2) RAVs are created periodically and modified every time variations occur. 
RMS must refer to and use information about resources available in RAV to make job 
assignment decisions. The job scheduler component of RMS learns an appropriate node for a 
receiving request and allocates the request to that node for running. The scheduler takes the 
RAV information and applies Eq. (3) to determine the node to allocate the job. 
 

( ) ( ( ), ( ), ( ( ) ))t t t i tJAT N free rC free rM lowest ET job    (3) 

 
The JAT(N𝑡) gives the node the number of cores free and the amount of memory free for the 
lowest expected time, so it can schedule the subsequent incoming job request along with the 
resource requirements to meet the execution. 
Here, RMS provides the necessary resources from available resources on the node to satisfy 
the task execution, but usually, a cluster node may have multiple tasks running at specific time 
intervals under preemption conditions that can cause tasks to wait a long time. Therefore, it is 
important to efficiently schedule and allocate jobs in the most appropriate way to minimize 
waiting delays for jobs. 
 
B. Job Scheduling 
In general, incoming work requests consist of application logic to run when resources are 
needed. It is queued until reserved for a node. Job scheduling in a homogeneous environment 
can be FIFO efficient, but in a heterogeneous environment, it is essential to adapt to resource 
availability to be cost-effective. 
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Figure.1: Resource Monitoring and job scheduling system 
 

The proposed resource management and job scheduling system is shown in Figure 1. It works 
with Request Handler (RH), Resource Monitoring (RM), and Job Scheduling (JS) modules. 
Work requests coming in from different BDAs are forwarded to JS for processing by RH and 
assigned to the most appropriate node available. Nodes in a cluster are organized in three sizes 
based on CPU cores: medium, high, and X-high. Each node consists of 𝑥 cores that are assigned 
tasks according to their requirements. 
Upon receiving a job request, RH acquires the job information of the required resources in 
terms of CPU cores and memory and sends it to JS. Here, JS uses a resource-based optimal 
scheduling (RB-BFS) algorithm to predict optimal node capacity. Scheduling that supports 
node information provided by RM. A node with multiple cores utilizes the cluster's resources 
in units of cores, allowing a node to be utilized for multiple tasks concurrently. Therefore, 
assigning multiple tasks to the same node can lead to the empty packing problem [36], which 
can be solved by a distributed resource-sharing model within nodes. 
Let's assume the cluster has m configured nodes. Each node Nt can allocate up to n jobs at any 
time, and each task 𝑗𝑖 requested from the system may require a service that requires x cores and 
y memory to execute. Each node capacity is featured by balance capacity, and the first to find 
the availability of cores and memory for a task is allocated for execution. Subsequently, the 
interpretation of this is NP-complete, so we use a greedy set heuristic method to obtain the 
optimal result. We used the RB-BFS algorithm with RAV information obtained through 
resource monitoring to optimize resource utilization and increase the cost efficiency presented 
in Algorithm-1. 
Algorithm-1: RB-BFS algorithm 
 

Input:  JR  Set of incoming job requests.  

 RAL  Resource availability list of Nodes. 
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Output: Allocation of Job to a Node. 
For every arriving job 𝑗𝑖 ∈ JR ∀ 𝑖 = 1 to 𝐽 
{ 
 //-- the number of CPU cores and memory 

Qi = C(𝑗𝑖) && M(𝑗𝑖); 
 

//-- Find the best node to allocate 
 //-- Evaluate RM data (RAL) 
 AssignFlag = False; 
 For each node RAL vk ∈ RAL ∀ k = 1 to V 

{ 
 Wk = C(vk) && M(vk); 
 If ( Qi ≤ Wk ) { 
  Allocate the Job to node Nk ; 

   AssignFlag = True; 
   Break; 

 } 
 } 
 If(AssignFlag == False) { 
  Place back in the JR queue. 
 } 
} 
 
The algorithm assigns tasks to nodes when the necessary capacity is met by the node's free 
resource capacity. A node might have several job requests in the queue which need to be 
scheduled for a period, so it is important to calculate the best fit and best satisfy resource 
availability for efficiently assigning the job. 

IV. Experiment Evaluation 

A. Setup 
We executed our method and perform extensive experimentation in various test 

settings. We use Kubernetes on Spark 3.2.1 and perform experiments on cluster nodes 
configured as shown in Table-1. For evaluation, we set up a default scheduler and comparator 
for benchmark application data [37]. Evaluation measures are used to measure cost, 
performance, and overhead. The VM is configured on the GCP platform with 20 GB of storage 
for $0.24 per hour. 
 

Table 1: Cluster Node Resource Configuration 
Resource 
Instance 

CPU 
Cores 

Memory 
(Gb) 

Quantity 

Medium 6 16 2 
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High 10 32 2 

X-High 16 48 2 

 
We evaluate the enhancement of the proposed JSM using benchmark data information provided 
in BigDataBench [37] to create Spark workloads. Further precisely, we select 4 dissimilar 
workloads known as WordCount (WC), Sort (ST), PageRank (PR), and Mixed (MX) as given 
by Islam et al. [38].  These workloads vary with the scales of data and resource requirements 
in the form of Cores and Memory as given in Table 2.  

Table 2: Job Type workload and resources required 

Job Type 
Workload 
Scale 

Resource 
for Low 

Resource 
for High 

WordCount 
(WC) 

Low, High 〈4C, 
8Gb〉 

〈10C, 
16Gb〉 

Sort (ST) Low, High 〈4C, 
8Gb〉 

〈10C, 
16Gb〉 

PageRank (PR) Low, High 〈4C, 
8Gb〉 

〈10C, 
16Gb〉 

Mixed (MX) Low, High 〈4C, 
8Gb〉 

〈10C, 
16Gb〉 

 
These actions are extracted from Facebook and Hadoop response traces for these various 
actions. Incoming jobs are dependent on high and low loads for various periods selecting the 
resource demands listed in Table 2. There are over 100 job requests during high load and nearly 
50 job requests during low load. 
B. Baseline Schedulers 
The challenge with cluster scheduling methods in Spark jobs is that they don't account for 
facilitator-level job assignments. These methods primarily focus on selecting the resources or 
multiple nodes required for every task during scheduling decisions. However, the proposed 
JSM runs at the pod selectivity level by incorporating resource utilization estimation to 
efficiently schedule task assignments. Compare the following schedulers to see improvements 
in the proposal. 

 FIFO: Apache Spark's default FIFO scheduler is installed on Apache Mesos. Here, jobs are 
scheduled based on a first-come first-service. Instead of using the scheduler's merge 
preference; it distributes executors in a round-robin manner. Most existing scheduling 
algorithms use this preferred method of placing jobs and choose this scheduler as one of 
their baselines as it is also a common choice for users using Spark jobs. 

 BFD [38]: This proposal is a greedy procedure inherited from the “best-fit Decreasing 
(BFD)” heuristic to optimize the cost of Apache Spark clusters deployed using Apache 
Mesos as a cluster scheduler for the applications. 
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 Morpheus [39]: In this strategy, low-cost packaging is utilized for actuator assignment. 
Based on the present load in a cluster it employs the strategy to detect the job's resource 
requirements (such as memory or CPU cores). Later, the jobs are sorted in ascending order 
as per the limited resource requirements. As a result, the cluster's resource is well-
proportioned during the scheduling and allows for running maximum jobs. 

 
For the optimal scheduling in the proposed RMS, we configured the minimum and maximum 
range of CPU consumption to [0.5 to 0.9] and memory utilization to [0.75 to 1], respectively. 
 
C. Results 
A. Cost Efficiency 
 
This evaluation shows that the proposed scheduling algorithm can be applied to diverse kinds 
of applications while decreasing the cost of employing big data clusters. It stores the RAV of 
several pods used by the node to compute the sum of the cost acquired by the scheduler. Here, 
over period T, we summed up the number of pods under running for the various jobs in a node. 
The number of pods utilized in a given period in the node is directly proportional to the running 
cost. So, the total cost we computed using the given Eq. (4). 

_ ( )
t T

Total Cost NumberofPods t


    (4) 

It calculates the cost of each scheduling algorithm under low and high workloads to evaluate 
cost-effectiveness with different resource demands as given in Table-2. 

  

Figure. 2 Cost Efficiency at Low Workload Figure. 3 Cost Efficiency at High Workload 

 
The proposed RMS shows an efficient allocation of jobs and significantly reduces the cost of 
running jobs compared to other schedulers. The regular monitoring of resources and creating a 
RAV support RMS to schedule jobs efficiently in comparison to baseline schedulers. The FIFO 
scheduler shows the highest execution cost due to its creation of new pods for assigning jobs.  
Morpheus and BFD are able to maintain costs lower than FIFO due to their effective 
management of job orders in a queue that balances the cluster resources. Fig. 2 and 3 shows 
the cost efficiency of different scheduling procedures during low and high job workload 
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respectively. In this execution of low workload 4 Cores and 8 GB memory resources, and for 
high load 10 Core and 16 GB memory are utilized for execution of 4 different types of jobs. 
 
In Fig. 2 the proposed RMS exhibits significant cost reduction during the low workload period 
due to effectively managing the jobs scheduling in the nodes. In comparison to the baseline 
scheduling algorithm, RMS reduces the cost of cluster node usage for WordCount, Sort, and 
Mixed applications by at least 33%, 39%, and 20%, respectively. For PageRank applications, 
RMS reduces resource consumption costs by at least 12% compared to FIFO. RMS also 
decreases resource utilization costs by 6% related to Morpheus. The RMS attempts to allocate 
the jobs in appropriate pods of a node with the support of RAV information, which improves 
job performance and thus reduces the overall cost of applications. In Fig. 3 during a high 
workload, the decrease in cost is lesser than low workload due to the overused of the cluster 
nodes. In this situation, RMS shows cost efficiency near 5% to 21% with variation in the job 
workloads. 
B. Job Performance 
 

  

Figure. 4 Job Performance at Low Workload Figure. 5 Job Performance at High Workload 

 
Fig. 4 and 5 show the average job finishing interval for the scheduling procedures at low and 
high workloads respectively. It shows RMS improvement over FIFO, Morpheus, and BFD with 
all four job types’ execution. The enhancement of RMS is due to the use of RAV information 
for identifying best-fit pods within cluster nodes to accommodate the jobs by utilizing the 
demand resources to their maximum efficiency. 
The result of the PageRank application of both FIFO and Morpheus shows the lowest job result 
because of extreme network communications when the exchange periods of the job allocation. 
However, RMS outperforms the comparing schedulers in both workload situations.  It is 
because, in a low workload it smoothly placing of jobs due to prior resource availability 
information by the RM, and in a high workload the cluster gets overloaded due to not likely 
getting the required resource demand of the jobs. In such case, RMS reassign the jobs back in 
the queue and tries to avail the next best resource to assign job for execution. So, during a low 
workload, RMS improves runtime by at least 12%, and with a high workload 4%. 
C. Scheduling Overhead 
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Scheduling overload among the baseline scheduler and proposed RMS is shown in Fig. 6. It 
measures the ratio of the total number of jobs allocated within the deadline given versus the 
total number of jobs waiting in queue for a time interval.  

 
Figure. 6 Scheduling overload for schedulers  

Fig. 6 represents the scheduling overload for different schedulers employing deadline 
violations. Here the higher the violation, the more overload in scheduling. FIFO shows the 
highest among all the schedulers as the demand of the resource might not be available during 
the request time due to which waiting time for jobs is and it leads to deadline violations. 
Morpheus independently determines the priority of work, where the work that leads is well-
adjusted for the important job through sharing of resources in the cluster which makes it 
maintain lower violation than FIFO. The deadline violation between BFD and RMS shows a 
variation of 2%. As BFD uses a modest scheme known as “Earliest Deadline First”, where 
entire jobs are organized as per their deadlines, and for the new job the deadline is scheduled 
first. But, RMS shows the least among all as it allocates job much quicker due to the node 
resource availability information using RAV which make RMS select the best-fit node to place 
the jobs without violating the deadline. So, the enhancement in job performance and reduction 
in scheduling overhead in RMS with heterogeneous cluster nodes provides a better execution 
of jobs with high cost-effectiveness. 

V. Conclusion 

Job scheduling is being identified as a challenging task for big data applications due to its 
varying resource demand. In this paper, we present an RMS for efficient job scheduling through 
regular node resource monitoring. The RMS employs a resource monitoring mechanism for 
creating RAV for the cluster node which provides the information number of free Core and 
free memory size availability. The RMS mechanism will monitor the availability of various 
processes and resources in the scheduling process, leading to satisfaction with the use of these 
resources. Using RAV data it developed a scheduling algorithm called RB-BFS to improve 
resource management and improve cost-effectiveness by accurately deciding the allocation of 
the job as per their requirements. Extensive analysis against the baseline scheduler has been 
promising regarding the performance of RMS using reference application datasets in Spark and 
Kubernetes with a heterogeneous cluster node. The outcome results show an enhancement in 
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job performance and a reduction in scheduling overhead in RMS with heterogeneous cluster 
nodes providing a better execution of jobs with high cost-effectiveness. Further research could 
examine the suitability of this algorithm in other cloud scenarios, such as network resource, 
deadline sensitive and sensitive and priority jobs scheduling. 
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