

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5111

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.777647

OBSTACLE DETECTION AND PATH PLANING FOR ROBOTS

Govinda. K
SCOPE, VIT, Vellore
kgovinda@vit.ac.in

Chintalapati Akhil

SCOPE, VIT, Vellore, India
chintalapati.akhil2020@vitstudent.ac.in

Abstract
Obstacle detection bot is a smart robot that can identify barriers in its path and rapidly choose
a new path to deliver / move safely and without interruption. These robots can be seen in
modern restaurants, hospitals, and other congested areas where items must be delivered quickly
and safely. Topics linked to robotics have been one of the most researched subjects in recent
years. Meanwhile, intelligent mobile robots are popular, but controlling and navigating them
is challenging, and the inability to deal with permanent impediments and avoid them through
safe and secure routing is a key necessity of these systems. Motion planning, also known as
path planning (sometimes known as the navigation issue or the piano mover's problem), is a
computational problem that involves determining a set of viable configurations for moving an
object from one location to another. Computational geometry, computer animation, robotics,
and computer games all utilize the phrase. The computation of a continuous path that connects
a start configuration S and a goal configuration G while avoiding collision with known
obstacles is a basic motion planning problem. In a 2D or 3D workspace, the robot and obstacle
geometry are defined, and the motion is represented as a path in (potentially higher-
dimensional) configuration space. The subject of optimal path planning is a well-studied topic
in academics that has found applications in a variety of industries. Google Maps is a widely
used application that mainly relies on path finding algorithms, image processing, satellite
navigation, and sensor-based systems, among other things. Autonomous vehicles are futuristic
technologies that will be on the road in all developed countries within the next five years. All
of the challenges listed above necessitated the development of speedier algorithms for finding
the shortest path from a source to a target or multiple goals while avoiding static or moving
impediments. So the proposed work aims to compare four different path planning algorithms,
namely Bug 1 Algorithm, Bug 2 Algorithm, D* Algorithm and A * algorithm and through an
thorough comparative study conclude which of them is the best algorithm.
Keywords: Route, Distance, Left, Right, Grid.

Introduction
A mobile robot is a vehicle that can move around on its own. Mobile robots have been widely
used in indoor environments such as cleaning large buildings, transportation in industry,
surveillance in large buildings, and outdoor environments such as agriculture, forest, space,

OBSTACLE DETECTION AND PATH PLANING FOR ROBOTS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5112

underwater, military, firefighting, sewage tubes, and mining as robotic technologies have
progressed.
Autonomous mobile robots are being developed for a variety of applications where long-term
capabilities are advantageous. The primary goal of mobile robotics is to develop entirely
autonomous robots that can execute tasks without the need for human involvement.
Mobile robots' industrial and technical applications are growing in importance, particularly in
terms of reliability (uninterrupted and reliable execution of monotonous tasks such as
surveillance), accessibility (inspection of sites that are inaccessible to humans, such as tight
spaces, hazardous environments, or remote sites), and cost (transportation systems based on
autonomous mobile robots can be cheaper than standard track-bound systems).
An autonomous mobile system should be able to plan its route to its destination, identify and
avoid obstacles along the way, and arrive at the destination with a reasonable degree of
precision. The ability to avoid obstacles is critical in any mobile robotic system. The robot must
be trusted to carry out its duties without endangering itself or others. The prerequisites for a
better obstacle avoidance algorithm include speed, robustness, and independence from past
knowledge of the surroundings.
Mobile Robots (MRs) are now widely employed in a variety of industries, including military,
industrial, agricultural , and many others. Robot route planning, which enables the MR go from
the start point to the target point under obstacle limitations while obtaining the shortest path
with minimal energy consumption and the shortest running time, is one of the most concerning
topics in the field of robotics. In reality, there are two forms of MR path planning: global and
local.
The Global path planning methodology is a static motion planning method in which the MR's
trajectory is determined before the MR moves. When the environment is well-known and the
terrain is static, the MR's trajectory is created (no dynamic obstacles). Although this motion
planning type ensures that the goal point will be achieved or that the target point is inaccessible,
it also aids in determining if the goal point will be reached. Unfortunately, when using the
global path planning type, two requirements, namely a known environment and a static terrain,
only exist in perfect circumstances. It is difficult to obtain a reliable map of the obstacles, and
there is no guarantee that these obstacles will remain static in the face of several other
environmental variables and occurrences.
The other type, known as local path planning , is a dynamic motion planning strategy in which
the MR's trajectory is produced online based on current information observed by the MR's
onboard sensors. Because of its quick response to changing forms and obstacle positions in a
dynamic environment, this motion planning method is known as a more flexible and reliable
method than the previous type.
As we all know, autonomous MR navigation is required for a variety of applications, including
rescue robots searching for and rescuing persons trapped within collapsed buildings during
disasters . Additionally, when some events occur unexpectedly on the MR's predetermined
trajectory, the global path planning is unavailable.
However, we discovered that the local path planning method has limitations: I Without a global
information environment, the local path planner cannot guarantee global convergence to the
objective point . (ii) As a result, it may become stuck at some "local minima spots" and require
recalculation of waypoints as the MR moves .

OBSTACLE DETECTION AND PATH PLANING FOR ROBOTS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5113

Humanity's future is in the hands of robots. It is critical to understand the algorithms used to
create them. Robots have the ability to replace all restaurant servers, delivery employees, and
a variety of other hazardous tasks in nuclear power plants, among other places. As a result, the
creation of such robots will improve technology while also reducing manual involvement in all
subjects.
So there are various path planning algorithms to make obstacle detection robot. In this project
we aim to study four such algorithm. We have tried to understand the algorithm and the code
to implement the algorithms. Then we have tried to implement 2 of the most widely used
algorithms for path planning namely A * and D *. Both of these algorithms have their own
advantages and disadvantages. Both are useful in different scenarios. So in the end we have
concluded the project by giving a comparative report of the merits and demerits of the 4 chosen
algorithms. Also we have given our conclusion about which among them is best for obstacle
detection and path planning.

Path planning algorithms are used by mobile robots, unmanned aerial vehicles, and
autonomous cars in order to identify safe, efficient, collision-free, and least-cost travel paths
from an origin to a destination. Choosing an appropriate path planning algorithm helps to
ensure safe and effective point-to-point navigation, and the optimal algorithm depends on the
robot geometry as well as the computing constraints, including static/holonomic and dynamic
constrained systems, and requires a comprehensive understanding of contemporary solutions.
The goal of this paper is to help novice practitioner’s gain an awareness of the classes of path
planning algorithms used today and to understand their potential use cases—particularly within
automated or unmanned systems. To that end, we provide broad, rather than deep, coverage of
key and foundational algorithms, with popular algorithms and variants considered in the
context of different robotic systems. The definitions, summaries, and comparisons are relevant
to novice robotics engineers and embedded system developers seeking a primer of available
algorithms.

LITERATURE REVIEW

In this research paper they have studied about BUG algorithms for robot navigation and path
planning. However, our conclusion according to the project is that A* algorithm is the best
algorithm because it gives the shortest path between the start and the end point so it is more
optimal and efficient for path planning robots compared to the various BUG algorithm they
have studied here [1].

In the research paper they have concluded that A star algorithm is best for search and rescue
which is correct because A* is fast and efficient. But when search operations are taking place,
we do not know the position of all the obstacles. So, our conclusion according to the project is
D * algorithm is the perfect algorithm in this case as this where there may be moving obstacles
as D * algorithm modifies itself whereas A* starts from scratch [2].

In this research paper titled “Modified bug-1 algorithm based strategy for obstacle avoidance
in multi robot system” they have used the Bug 1 algorithm for their path planning project.

OBSTACLE DETECTION AND PATH PLANING FOR ROBOTS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5114

However according to our observation in our project we have seen that the bug 1 algorithm is
actually an exhaustive search algorithm, in this algorithm the robot takes an entire revolution
around the hurdle’s surface until it finds the point of departure with minimum distance from
the goal point. This method of obstacle detection and path planning requires large memory and
is less efficient. Thus, we find that it is better to use A * algorithm as it is faster and more
efficient [3].

In this project they have built a path planning robot using Arduino uno and ultrasonic sensor.
However the code that they have uploaded in the Arduino IDE is not that of A * algorithm so
though it plans paths and avoids obstacles, it not give the shortest path hence consumes a lot
of time [4].

In this research paper titled “D-Star Algorithm Modification”, the D-star algorithm has been
modified and been used for object detection and path planning of the robot. The D-Star
algorithm has been proposed as the best algorithm for path planning. However, according to
the results that we got from our project we have concluded that is the position of the obstacles
are already known then the A-Star algorithm serves as a much better alternative for the path
planning as it is faster and more effective than the D-Star algorithm[5].

PROPOSED METHOD
BUG 1 ALGORITHM

 Robot proceeds along the shortest path between robot position X and destination
location until it comes upon a hurdle.

 When it comes face to face with an obstacle, it rotates around its surface and calculates
the distance to the goal point.

 It determines the point of departure that is closest to the target after one complete
revolution.

 Depending on the distance between the departure point and the hit point, it maintains
or changes the direction of motion.

OBSTACLE DETECTION AND PATH PLANING FOR ROBOTS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5115

Fig1. Movement in Bug1 Algorithm
ALGORITHM

BUG 2 ALGORITHM

 The Bug 2 algorithm is a modified version of the Bug 1 method.

 Instead of looking for the shortest distance, the Bug 2 algorithm concentrates on
keeping the motion in the same direction as the goal.

 It determines the slope of the line connecting the starting point and the goal location.
When a robot comes across an obstacle, it begins moving along the obstruction's edge until it
finds a place with the same slope.

 It begins to move along the line that connects the point of departure and the point of
destination.

Fig2. Movement in Bug2 Algorithm

OBSTACLE DETECTION AND PATH PLANING FOR ROBOTS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5116

ALGORITHM

D * ALGORITHM

 D star Lite is a pathfinding technique that helps a programmer to determine the best
path between two points in a known or partially known environment.

 D* starts by going backwards in time from the goal node. Each expanded node has a
back pointer that points to the target's next node.

 When an obstruction is found along the intended path, all affected sites are re-added
to the OPEN list. The algorithm investigates its neighbours to see if it can minimise the cost
of the node.

 If not, all descendants of the node, that is, nodes with backpointers to it, will be
propagated.

A * ALGORITHM:

 A * algorithm is a path-finding algorithm that looks for the shortest path between the
starting and ending states.

 It's utilised in a variety of applications, particularly those that use maps. There are three
parameters in the A* algorithm:

 g: This is the cost of travelling from the starting cell to the current one. That is, the total
number of cells visited since the source was removed.

OBSTACLE DETECTION AND PATH PLANING FOR ROBOTS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5117

 h: This is the projected cost of transferring from the current to the end cell.

 f: It is equal to the product of g and h. f = g + h is the formula. This f value will be used
by the algorithm to make judgments.

 The path with the least f value among all potential paths is chosen.

 This decision is made after each cell has been advanced.

Fig3. Movement in A* Algorithm

PSEUDOCODE

 We must first initialise both the open and closed lists before proceeding to the main
function. Both start out as an equal and open list of empty nodes.

 So, in this code, the maze, as well as the start and finish nodes, are provided to the
astar function first. The initial node is now inserted to the open list first.

 We'll now execute a loop till the open list isn't empty.

 The current node is the one with the lowest f value at the start. After that, that value is
moved from the open list to the closed list.

Results and Discussion

The following are some graphs used to compare the about stated algorithm:

OBSTACLE DETECTION AND PATH PLANING FOR ROBOTS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5118

Fig4. Runtime Analysis of A* and D*

Fig5. Grid Size Vs Runtime of Algo’s

Conclusion
So out of the above algorithms both BUG 1 and BUG 2 are outdated and they take a lot of time
for planning the path and avoiding obstacles. Also, they do not give the shortest path between
the starting point and the ending point. Whereas A * and D * provide the shortest path along
with avoiding obstacles. So, these two algorithms are chosen over BUG 1 and BUG 2. Among
these two the only difference is that for A * the path starts from the start to the end and then
once the path is completed, it backtracks and gives the path whereas D * starts from the end
and goes to the starting position. Also, A * algorithm takes much less time than D * but when
the robot is in motion and the orientation of the obstacle is suddenly changed, then A *

OBSTACLE DETECTION AND PATH PLANING FOR ROBOTS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5119

algorithm starts from scratch once again whereas D* algorithm modifies its path as it is in
motion. Hence when the robot moves in path where the position of obstacle is known then A *
algorithm being the fastest algorithm and is the best. However if the robot moves in a path
where the obstacles can change anytime then D * algorithm is much faster and hence the best
choice

REFERNCES
1. K. N. McGuire1∗, G.C.H.E. de Croon1and K. Tuyls21Delft , A Comparative Study of
Bug Algorithms for Robot Navigation
University of Technology, The Netherlands2University of Liverpool, United Kingdom.
2. Xiang Liu , A Comparative study on A star algorithm for search and rescue School of
Electronic Information and Control Engineering Beijing university of Technology Beijing
100124, China
3. Kandathil, Jom & Mathew, Robins & Hiremath, Somashekhar. (2018). Modified bug-
1 algorithm based strategy for obstacle avoidance in multi robot system. MATEC Web of
Conferences. 144. 01012. 10.1051/matecconf/201714401012.
4. Kadry, Seifedine & Alferov, Gennady & Fedorov, Viktor. (2020). D-Star Algorithm
Modification. International Journal of Online and Biomedical Engineering (iJOE). 16. 108.
10.3991/ijoe.v16i08.14243

