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Abstract: In the application of detached object recognition in public places like railway 
terminals, the recognition of the co-located objects in the video is a more vital process. 
Nevertheless, owing to the occurrence of multiple co-located object instances, the analysis of 
the status of the co-located object in the video is a challenging process. Hence, for solving this 
issue, this paper proposes the Min-Max Distance based K-Means (MMD-K-Means)-centric co-
located object recognition with object status identification. Primarily, the input video from the 
railway is converted to frames. Subsequently, it was improved using Contrast Limited Adaptive 
Histogram Equalization (CLAHE). Next, Tukey’s Bi-weight Correlation-based Byte Tacking 
(TBC-BT) and MMD-K-Means clustering are done for the detection and tracking of moving 
and non-moving objects. Subsequently, the Cyclic Neighbor-based Connected Component 
Analysis (CN-CCA) process was done from the static and moving object-detected frames for 
the main and co-located object labeling. Next, it executed the patch extraction for the separate 
analysis of each instance. At last, the Maxout-based Gated Recurrent Unit (Max-GRU) 
determined the object status in CN-CCA processed frame with the estimated distance between 
objects and extracted features from the static objects. The proposed system’s performance is 
experimentally proved with several performance metrics. 
Keywords: Co-located object recognition, video stream, Min-Max Distance based MMD-K-
Means, Tukey’s Bi-weight Correlation-based Byte Tacking (TBC-BT), Cyclic Neighbor-based 
Connected Component Analysis (CN-CCA), Maxout-based Gated Recurrent Unit (GRU).  
1. INTRODUCTION 
For visual applications, Pattern Recognition (PR) is a necessary objective. Here, solving 
numerous high-level intelligent issues depends heavily on the success of automatic and 
accurate PR (Zhang et al., 2020). In addition, the exploration of new boundaries like studies on 
image and video, and co-located object recognition is enabled by PR (Wu et al., 2022). In 
spatial data and spatio-temporal data like videos, the co-located PR can be done. In the 
application of surveillance, namely airways, railways, etc for the detached co-located object 
recognition, the co-located PR in the video is utilized. As a co-located object (i.e. bag) can 
move along with its owner for a long time, it can be left without movement at some point 
(Popov et al., 2021). Hence, for accurate co-located object recognition and tracking, video 
content analysis approaches are utilized. 
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In spontaneously evaluating video to observe and regulate spatial and temporal events, 
Video Content Analytics (VCA) is the proficiency (Jayaram & Bhajantri, 2019). Centered on 
the human co-located-object Interaction, the co-located object recognition in VCA is done. The 
human-based object detection and tracking task, which intends for recognizing betwixt persons 
and objects in a video, is named Human–co-located object interaction (Sun et al., 2021)(T. 
Wang et al., 2022). A process that locates the position of one or more objects in the image or 
video with the help of a bounding box is termed object detection (Kaur & Singh, 2022). 
Throughout the years, object detection approaches have enhanced to the point in which their 
error rate is less than human beings when monitoring surveillance (Alzaabi et al., 2020). Mask 
Regions with CNN (RCNN) (Dogariu et al., 2020), You Only Look Once (YOLO) (Santad et 
al., 2018), et cetera are a few prevailing approaches for the identification of abandoned Co-
located object recognition. But, they are usually designed for a single target domain (W. Wang 
et al., 2022) and are designed for static objects only. Hence, for co-located object status 
recognition, the Multiple Object Tracking (MOT) (X. Yang et al., 2020) is considered as an 
effective approach for the dynamic moving co-located objects.  

The MOT task is largely divided into locating multiple objects, maintaining their identities, 
and yielding their individual trajectories from an input video (Luo et al., 2021). Long Short 
Term Memory (LSTM) (Tsai et al., 2020), Kalman filtering (Elhoseny, 2020), and so on are 
the prevailing works developed for the MOT. Nevertheless, in the baseline studies, when the 
video is investigated as a whole, the status of the entire co-located object can’t be identified. 
Therefore, for solving this issue, this paper proposes patch-based co-located object status 
detection with MMD-K-means-based co-located object recognition 
1.1 Problem statements 
The existing studies for co-located object recognition in the video stream include the 
succeeding setbacks. 

 There was a higher probability that some of the co-located object statuses could be 
missed when the multiple co-located object instances were tracked in the video for the 
co-located object status determination. 

 In existing works, the tracking of the co-located objects became unreliable, while the 
connections betwixt the connected and co-located objects are neglected.  

 In most of the existing works, the detached co-located object is recognized grounded 
on its long-time stationary behavior, which is unreliable for object status determination.  

 When the pattern of the main and co-located object is not studied, the recognition of 
the detached co-located object is difficult. 

By considering these issues, developing an effective co-located objects recognition system 
for determining the status of all the co-located objects in the video is the goal of the proposed 
scheme. 

 The patch-centric distance evaluation of objects is done to determine the status of all 
the co-located objects in the video. 
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 The CN-CCA process is executed to determine the connected main object of a co-
located object. 

 The Max-GRU recognition based on the distance evaluation and features of static 
objects is proposed to determine the co-located object status efficiently. 

The remaining part of the paper is arranged as follows: the related works of the proposed 
system are elucidated in Section 2, the proposed approach is elaborated in Section 3, the 
experimental outcomes of the proposed study are discussed in Section 4, and at last, the paper 
is concluded with the future recommendation in Section 5. 
2. RELATED WORKS 
(Siddique & Medeiros, 2022) recommended Self-Supervised Learning (SSL) system for 
tracking passengers and baggage items at security checkpoints. For object detection, the 
Convolutional Neural Network (CNN) was utilized, and for the recognition of objects, the 
temporal identifiers were utilized. As per the outcomes, the multi-object tracking accuracy was 
enhanced by self-supervision. However, the SSL system was prevented from reaching the 
Supervised-Learning plan by the challenges in the differentiation of baggage from the other 
structures. 
(Ramadan et al., 2022) established the detection and classification plan for human-carrying 
baggage. The Densely-connected-convolutional Network (DenseNet-161) and the Fit One 
cycle executed the detection and classification. The system’s efficacy was proved by the binary 
and multi-class classification accuracy. Nevertheless, during training with more model 
parameters, the system could have caused computation overhead. 
(Russel & Selvaraj, 2021) explored a system for the carried objects’ recognition in the gait 
energy image. For improving the single CNN’s performance, a parallel deep CNN architecture 
with customized filters was developed. According to the outcomes, for the recognition of real-
time carried objects, the established system attained superior performance. But, owing to 
objects’ shape and motion pattern, the system reliability was limited. 
(P. Yang et al., 2021) established a plan for the discovery of co-location patterns from massive 
spatial datasets with or without rare features. For detecting the co-locations, an interesting 
measure named Weighted Participation Index (WPI) was established. The demonstrated 
scheme’s effectiveness and scalability were proved by the experimental outcomes. 
Nevertheless, in the system, the prevalence index’s determination was a difficult process. 
(Bao et al., 2021) propounded a mining technique for the recognition of Super Participation 
Index-closed (SPI-closed) co-location patterns. For discovering the SPI-closed Co-location 
Patterns (SCPs), a hash table formed with the correct neighboring cliques was utilized. As per 
the experiments, the SCP technique was more flexible compared to similar techniques. But, the 
time efficiency of the Maximal Co-located Patterns (MCPs) was not satisfactory. 
(Tran et al., 2021) presented a spatial co-location pattern mining technique centered on 
overlapping cliques. For the recognition of spatial co-location pattern mining, this framework 
introduces a two-level filter mechanism, where the first level is a feature type filter and the 
second level is a neighboring instance filter. According to the experimental study, more than 
any other algorithm, the established approach responded to user requirements quickly. 
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However, when storing the instances in the hash map structure, the system could suffer from 
high storage overhead. 
(Mehta & Kaur, 2020) implemented an automated technique for detecting and labeling 
abandoned objects from videos. In the implemented technique, for object detection, the Point-
Tracker algorithm with the generalized Region Of Interest was utilized. As per the outcomes, 
the detection system’s accuracy was enhanced by the generalized ROI. Yet, this approach 
wasn’t reliable for effectively abandoned object detection without the scene analysis from the 
key-frames of the video. 
(Anwar et al., 2020) recommended a pattern mining technique utilizing the Location-Based 
online Social Networks (LBSN) data for inferring types of diverse locations. The frequent co-
located users and user components were mined. Subsequently, for categorizing the locations, 
temporal pattern analysis was done with Frequent Pattern (FP) growth algorithm. The model’s 
efficacy regarding mean reciprocal rank was proved by the experimental results. However, the 
tree formation in the FP-growth was a difficult process, which would elevate the time for the 
pattern analysis. 
(Zhou et al., 2021) suggested the Maximal Instance Algorithm (MIA) for the spatial co-location 
patterns’ fast mining. For finding the maximum instances from a spatial dataset, a row instance 
tree was performed. Next, for identifying the co-location patterns, MIA with no minimal join 
operation was established. As per the experimental evaluation, the MIA achieved superior 
performance on running time. However, as the MIA model was applicable only to the static 
co-located pattern, it was unreliable. 
(Thenmozhi & Kalpana, 2020) employed moving object detection in a video surveillance 
system centered on Adaptive Motion Estimation (AME) and Sequential Outline Separation 
(SOS). The approaches utilized for identifying moving items and classifying moving items are 
the AME and SOS. During the experimental evaluation, the SOS and AME approaches attained 
superior outcomes for accuracy. But, the time taken for the computation was more than the 
analogized approach for the video data. 
3. PROPOSED METHODOLOGY FOR THE CO-LOCATED OBJECT 
RECOGNITION WITH STATUS ESTIMATION 
In the application of determining the status of the object, the recognition of co-located objects 
in the video helps. But, owing to the lack of detailed analysis of all co-located instances, 
existing works are limited in the determination of co-located object status recognition. Hence, 
this study proposes a patch-centric Max-GRU scheme for the recognition of the co-located 
object and its status in the video. The proposed system’s architecture is provided below: 



TBC-K-MEANS BASED CO-LOCATED OBJECT RECOGNITION WITH CO-LOCATED OBJECT STATUS IDENTIFICATION FRAMEWORK 
USING MAX-GRU 

 
Journal of Data Acquisition and Processing Vol. 38 (3) 2023      5143 

 
Figure 1: Architecture of the proposed scheme 

3.1 Input data 
Primarily, the proposed system takes input surveillance video from the railway terminals and 

converts it into frames for the recognition of co-located objects. In this, the frames  

acquired from the input video are signified as, 

     (1) 

Where,  depicts the frame obtained from the video. 

3.2 Pre-processing 

The CLAHE approach is utilized for improving the quality of the video frames  and 

enhancing the recognition rate of the objects in the frames. Utilizing CLAHE has the main 
advantage of reducing the over-amplification of contrast in the homogeneous regions of an 
image. Rather than the entire image, it operates on the smaller portion of an image named tiles. 
Next, to eliminate the artificial boundaries and improve the image contrast, the nearest regions 
are merged utilizing bilinear interpolation. 

Primarily, the frames are partitioned into tiles of size  and the histogram of each 

region is calculated centered on its gray level. Subsequently, to make the image appear more 
natural, the intensity of each region is enhanced based on the Rayleigh transform. The density 

of each intensity value  grounded on Rayleigh transform is termed as, 

        (2) 

Here, the lower bound of the pixel  value is , Rayleigh scaling parameter is 

depicted as , and the transfer function is signified as . The contrast of the image will be 

enhanced by a higher value. The enhanced frame thus obtained is denoted as . 

3.3 Object detection and tracking 
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Next, the frames are improved; the objects in the frames are detected and tracked with the TBC-
BT technique, which relies on the motion of objects between successive frames. Owing to its 
advantage in object detection with tracking behavior even in occluded scenarios, Byte Tracking 
(BT) is chosen. However, to detect the objects with only the feature distance, BT takes more 
time. Hence, for solving this issue, Tukey’s Biweight Correlation (TBC) technique is included 
in BT. The steps in TBC-BT are explained below: 
Object detection: Utilizing the bounding boxes, the TBC-BT uses YOLO for the detection of 

the objects in the frames . The YOLO v8 predicts multiple bounding boxes per grid cell in 

which the head predicts the bounding box of an object and give the center coordinates

, width , and height . Hence, the final predicted bounding box  is estimated as, 

     (3) 

     (4) 

     (5) 

     (6) 

Here, the predicted offsets from the anchor box are depicted as , the coordinates of the 

top-left corner of the bounding box are signified as , the sigmoid activation is indicated 

as , and the anchor box’s height and width are depicted as .  

After determining the bounding boxes for an object, the overlapped bounding boxes are 
detected using the Intersection of the union  as, 

     (7) 

Here, the predicted and target bounding boxes are indicated as . In this, the bounding 

box with the highest value is chosen as the detected objects’ bounding box. Hence, the 
bounding boxes with diverse scores are signified as, 

    (8) 

Here, the detected objects’ bounding box is signified as . 

Object tracking: In TBC-BT, after the object detection, the objects are tracked based on the 
association process, which is a matching process by estimating the similarity with tracklets. In 
TBC-BT, the bounding box with a high score and low score are separated by the TBC  and 

Euclidean distance  as, 

.     (9) 

    (10) 

Here, the bounding box with the highest score is signified as , which is determined 

in the TBC-BT. The boxes with high value and the minimum value are considered as 
high-scored tracklets and vice-versa. Next, using the Kalman filtering, the bounding boxes with 
all the score values are associated and tracked centered on the area difference  as, 
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    (11) 

Here, the tracking window’s area is depicted as , which indicates the degree of the 
window’s deformation. The smaller  value signifies a closer description of the two objects’ 

shapes. The objects in the frames  are depicted as , , 

correspondingly. Hence, the objects tracked frames are acquired, which is represented 
mathematically as, 

     (12) 

Here, the object detected and tracked frame is given as . Based on motion, the TBC-

BT detects and tracks the objects; hence, only the co-located objects in motion are detected, 
while static objects were not identified. MMD-K-Means is used here to detect static objects. 
3.4 Static object detection 
The static object detection (i.e. separation of co-located objects) is performed using the MMD-
K-Means algorithm to determine all the co-located objects in the video frame. In this, due to 
the efficient classification of the stationary and nan-stationary pixels, the K-Means algorithm 
is chosen. However, the identification efficiency decreases without the proper centroid 
initialization. Hence, for solving this issue, the Min-Max Distance (MMD) between the 
histogram of pixels is estimated for the centroid selection, and is explained below: 

Initialization: The frame is fed as input to the MMD-K-Means clustering for which the 

clusters are also initialized and are depicted as, 

    (13) 

Here, the initial clusters generated are signified as . 

Centroid estimation: The clusters’ centroids  are calculated with MMD of pixel 

histogram as, 

     (14) 

Here, the cluster’s center is signified as , and the pixel in the object detected frame is 

depicted as , which ranges from 0 to 255 pixel values. Obtaining the biggest pixel value, 

is determined. Hence, the final cluster centroid  is determined by estimating the MMD 

value and obtaining the minimum value. 

Assigning clusters: Subsequent to the centroid calculation, the pixel points are assigned 

to the clusters utilizing the distance formula, 

    (15) 

Here, the pixel data value in the frame is depicted as , and the total number of pixels in 

the frame is signified as . The data points are assigned to the respective clusters with the 

minimum distance based on this distance calculation. Next, the final static  and dynamic

 pixel objects in the frame are clustered as, 
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Pseudocode of proposed MMD-K-Means 

Input: Objects tracked frames  

Output: Clusters  

Begin 
 Initialize frames , pixels  

 For frame do 

  Initialize clusters  

  Initialize centroids with MMD 

   For each pixel points  in the frame  

    Calculate distance using
 

End for
 

   Assign pixel to with minimum distance  

 End for 

 Return clusters  

End 
 
3.5 Main and co-located object filtering 
Subsequently, the CN-CCA process determines the main object corresponding to the co-

located object in the frame  with the as a reference. In this, the CCA is utilized for the 

advantage of evaluating the connected class with the main class. However, the CCA has the 
random usage of midpoints that degrades the interconnection recognition of objects. Hence, for 
overcoming this, the Cyclic Neighborhood (CN) technique is utilized in CCA. 

The CN-CCA takes the input pixels  in , and checks whether the in connects 

with any other pixels in the main object pixel , which is present inside the bounding box. 

This process is performed by the CN approach as, 

  (17) 

Here, the distance between the current and the neighboring pixel value is depicted as , 

and when the minimum is acquired, the object corresponding to it is labeled as the main 

object . The assignment of labeling is given as, 

  (18) 
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Where, the label of the objects is depicted as , and the value of the pixels is signified as

. In the CN-CCA approach, when calculating the distance of the pixel values to the 

neighbor pixels, if the non-zero pixels in the co-located object are connected to another pixel 
of the main connected object, it is filtered and labeled. Otherwise, the non-zero pixels are 
assigned with another label during the first pass. 

Next, after all the objects in the frame are labeled, the second pass is done for checking 

whether the has equivalent labels as other objects’ pixels and solve them.  

Subsequently, the final filtered main-co-located pair is acquired based on this process. The 

filtered main and co-located pair  is given as, 

    (19) 

Here, the filtered main- and co-located object is signified as  and  is the acquired 

frame. 
3.6 Patch Extraction 
To analyze the trajectory of the co-located objects individually after filtering the main and co-
located object in the frame, each main- and co-located object is converted to patches. After the 
patch conversion, to avoid missing the track of a single co-located object, the trajectory of the 
co-located object is observed in each patch. The converted patches are indicated as, 

    (20) 

Here,
 

 denotes the patch for the main-colocated object pair. 

3.7 Distance Estimation 
After the patches are obtained, based on the radius, the distance between the main and the 
collocated objects in the frames is determined. The distance is estimated as, 

     (21) 

Here, the distance calculation in the frame for patch is depicted as , and the main 

and co-located object in the patch is signified as . Hence, the object is considered 

as detached object when the exceeds the threshold .  

3.8 Feature extraction 
The SURF and HOG patterns of the co-located objects are also given to the object status 
identifier to differentiate the main and co-located object during the co-located object status 
identification and to improve the accuracy of the status identification, which are given below: 
Speeded Up Robust Features (SURF): For the feature extraction in the image, SURF uses 
square-shaped filters. Using SURF descriptors , the SURF feature is extracted and is given 

as, 
     (22) 

Here, the isotropic and separable Gaussian kernel is signified as , and the pixel co-

ordinates in the frame  are depicted as . A feature set is obtained with this descriptor, 

and it is denoted as . 
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Histogram Of Gradients (HOG): A feature descriptor to determine the co-occurrence counts 
of gradient orientation in the portion of a frame is named HOG. 
In this, by combining the angle and magnitude obtained from the image, the gradients are 

obtained. The angle of gradients on the x-axis and y-axis is calculated as, 

    

(23) 

Here, the gradient angle is signified as . The magnitude of the gradient  is found by the 

given equation, 

    (24) 

At last, the obtained features of the co-located objects are indicated as, 

     (25) 

Here, the feature is depicted as . 

3.9 Co-located object status identification 

After the features are extracted, the features along with the estimated distance , the 

filtered object frame , and the status of the co-located object are identified. In this, the 

Max-GRU classifier is utilized for status identification. Due to its efficiency in video 
applications, the GRU is considered. However, the GRU has the drawback of increased time-
consuming with increased model complexity. Hence, for overcoming this drawback, the 
Maxout activation is utilized in GRU. Figure 2 gives the architecture of the proposed Max-
GRU as, 

 
Figure 2: Structure of proposed Max-GRU 
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     (26) 

Two inputs that include the current input and the previous hidden state as vectors 

are taken by the reset gate and Update gate in the Max-GRU at each time. By performing 

element-wise multiplication between the obtained vector and the respective weights  for 

each gate, the output of each gate is obtained. The operations of the Reset gate and Update 
gate are given as,  
Reset Gate: In the reset gate, the linear sum betwixt the freshly computed state and the 
prevailing state with the bias parameter is calculated, and is mathematically indicated as, 

    
(27) 

Here,  depicts the reset gate determined by the input vector and the information at the 

previous memory gate , the bias value is depicted , and the Maxout activation function 

is signified as . The Maxout activation of gates is given as, 

     (28) 

Here, the transpose function is signified as . 

Update Gate: The update gate determines how much of the earlier information from previous 

time  steps are needed to be updated. The update gate can be calculated as, 

     
(29) 

      (30) 

Here, the update gate computed by the newly computed state is depicted as .  

To pass the relevant information, the current memory content  needs the reset gate

, while the final memory unit holds the information for the current unit and passes it to the 

network utilizing the update gate. The memory in the Max-GRU is calculated as, 

     
(31) 

    (32) 
Here, the hyperbolic tangent activation function is signified as . Hence, from the final 

memory unit, the final output class  in the Max-GRU is estimated.  

Pseudocode of proposed Max-GRU 

Input:  

Output: Output class 
Begin 

Initialize input data , parameters ,number of layers  

Set initial memory content  

For time step do 

 Estimate update gatewith  

Activate update gate using maxoutactvation  

Calculate reset gate using  and  
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Compute final memory content  

End for 

Return output  

End  

In this, the output classes are the status (i.e. detached or not-detached) of the object. After 
obtaining the status of the Max-GRU, if the co-located object is found to be detached, the 
information is notified to the surveillance administrator. Through a public announcement, the 
administrator can notify the users.  
4. RESULTS AND DISCUSSION 
This section evaluates the proposed approach’s performance centered on the performance 
metrics and analogizes the outcomes with the prevailing approaches. Utilizing publically 
gathered surveillance video data in railway stations, the proposed approach is deployed in the 
working platform of PYTHON. Figure 3 gives the sample image outcomes. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 


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(e) 

Figure 3: Sample image results for (a) frame conversion (b) Image enhancement (c) detected 
and tracked objects (d) static object recognition and € patch extraction  

4.1 Performance Analysis of Co-located Object Recognition 
In this subsection, the proposed MMD-K-Means approach’s performance for identifying the 
co-located objects is analogized with the existing algorithm like K-Means, K-Medoid, 
Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) and Clustering LARge 
Applications (CLARA). 

Table 1: Recognition Rate Analysis 
Techniques Recognition Rate (%) 

Proposed MMD-K-Means 97.92 

K-Means 95.2 

K-Medoid 93.23 

BIRCH 91.04 

CLARA 86.49 

 
The recognition rate achieved by several approaches is displayed in Table 1. Here, when 

analogized to the prevailing K-means system having a 95.2% recognition rate, the proposed 
MMD-K-Means system’s recognition rate enhanced by about 2.72%. Similarly, the proposed 
algorithm surpassed other prevailing systems also. This result shows that the clustering 
approach’s performance has been enhanced by the proposed MMD for centroid selection, 
hence leading to co-located objects’ better recognition rate. 
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Figure 4: Performance Analysis of proposed MMD-K-means 

Figure 4 illustrates the time taken by the proposed and baseline systems to recognize the 
objects. The static and co-located objects were recognized by the proposed algorithm in 
1184ms; however, for recognizing the objects, the prevailing K-Means needed 2834ms, K-
Medoid needed 4691ms, BIRCH needed 6015 ms, and CLARA needed 7153 ms. Thus, the 
MMD-centric measurement usage aided in effective clustering with less time. 
4.2 Performance Analysis of object status Identification 
The proposed Max-GRU classifier’s performance for identifying the object status is examined 
with the prevailing approaches like GRU, LSTM, Bidirectional LSTM (Bi-LSTM), and 
Recurrent Neural Networks (RNN). 
 

Table 2: Performance Measure of Max-GRU 
Techniques Accuracy (%) Precision (%) 

Proposed Max-GRU 98.13 97.34 

GRU 96.98 95.55 

LSTM 94.34 93.14 

Bi-LSTM 91.84 91.77 

RNN 89.26 89.9 

 
The proposed classifier’s performance centered on accuracy and precision is shown in Table 

2. For effective object status identification, accuracy and precision values should be higher. 
Consequently, the objects’ status was identified by the proposed classifier with 98.13% 
accuracy and 97.34% precision, while the prevailing approaches render relatively lower 
performance. This exhibits the proposed system’s superiority in recognizing the objects’ status. 
Generally, when compared to prevailing approaches, the proposed classifier provided superior 
performance. 
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Figure 5: Performance Validation based on Recall and F-measure 

The proposed and prevailing approaches’ performance are investigated regarding Recall and 
F-measure in Figure 5. Recall and F-measure attained by the proposed technique are 98.37% 
and 97.64%, correspondingly, while the prevailing GRU, LSTM, Bi-LSTM, and RNN 
approaches proffered lower values. The proposed classifier’s performance has been improved 
to a greater extent with the inclusion of the maxout activation function in GRU. 

Table 3: Comparison of Proposed and Existing Classifiers 
Techniques Training Time (ms) Specificity (%) 

Proposed Max-GRU 9920 96.94 

GRU 11354 94.11 

LSTM 12943 92.34 

Bi-LSTM 14647 89.99 

RNN 15761 87.42 

 
The training time and specificity of the proposed Max-GRU algorithm and the prevailing 

classifiers are exposed in Table 3. The proposed system consumed 9920 ms for effectively 
training the system with minimum error, while the prevailing systems like GRU, LSTM, Bi-
LSTM, and RNN needed 11354 ms, 12943 ms, 14647 ms, and 15761 ms, correspondingly. 
Likewise, when analogized to the prevailing GRU, the proposed object status identifier’s 
specificity exhibited a 2.83% improvement. The proposed system’s efficacy is exposed clearly 
by this analysis. 
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Figure 6: ROC Analysis 

For discriminating between detached and non-detached objects, Receiver Operating 
Characteristic (ROC) curve determines the accuracy level of the object status identifier (Max-
GRU). The ROC curve is the curve generated by the plot between True Positive Rate (TPR) 
and False Positive Rate (FPR) across varying cut-offs. Better performance is signified by a 
ROC curve lying above the diagonal level and a monotonically increasing curve. Hence, 
according to Figure 6, a high saturation (0.98) was attained by the curve for the proposed Max-
GRU, while other prevailing classification systems exhibit an increasing curve below the 
proposed level (GRU-0.96, LSTM-0.94, Bi-LSTM-0.91, RNN-0.89). Hence, when compared 
to the existing ones, the higher value achieved by the proposed system displays significant 
improvement in performance. 

 
Figure 7: AUC Analysis 

The measure of sensitivity and specificity that evaluates the classification outcome is named 
the Area Under the ROC Curve (AUC). The correct classification of all the inputs with their 
exact target is described by the highest AUC. With this point from Figure 7, the proposed Max-
GRU achieves an AUC value of 0.98, which signifies that it classifies the detached and non-
attached objects correctly with maximum probability. On the other hand, when analogized to 
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the proposed system, other conventional classification approaches achieve less AUC value. 
This shows the proposed classifier’s effectiveness for object status identification. 

 
Figure 8: Performance Analysis of Proposed Max-GRU 

The proposed and existing classifiers’ error metrics Mean Absolute Error, Mean Absolute 
Percentage Error, and Root Mean Square Error (MAE, MAPE, and RMSE) are illustrated in 
the above figure 8. Superior experimental outcomes are demonstrated by the lower error values. 
Centered on the magnitude of error produced by the system, the aforementioned error metrics 
evaluate the prediction rate. Thus, the graph shows that the proposed classifier attained 0.0734, 
0.1329, and 0.0946 for MAE, MAPE, and RMSE, respectively. Similarly, the MAE, MAPE, 
and RMSE attained by the prevailing GRU, LSTM, Bi-LSTM, and RNN classifiers are 
(0.0968, 0.1671, 0.1134), (0.1286, 0.173, 0.1499), (0.1494, 0.2064, 0.1637), and (0.1673, 
0.2276, 0.1847), correspondingly. On analogizing these values, the proposed system has lower 
values compared to other prevailing approaches. Hereafter, it is concluded that the proposed 
study achieves superior accuracy with lower errors and proves to be more proficient. 
4.3 Performance Analysis of Object Filtering 
Here, the proposed co-located objects filtering system is contrasted with the baseline 
approaches like CCA, Aggressive Relabeling (AR), Rosenfeld Quick Union (RQU), and 
Contour Tracing (CT). 
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Figure 9: Estimation Time  
The performance analysis of the proposed and existing systems grounded on the time 

consumed for estimating the connected component is indicated in Figure 9. The proposed CN-
CCA approach’s estimation time is 4535ms. Conversely, the prevailing approaches, such as 
CCA, AR, RQU, and CT consumed 6487ms, 9543ms, 12043ms, and 16349ms, 
correspondingly. Better performance in filtering objects with minimum time has been 
displayed by the CN inclusion in the proposed approach. 
4.4 Performance Analysis of Object Tracking 
Grounded on Multiple Object Tracking Accuracy (MOTA), the performance of the proposed 
object tracking algorithm TBC-BT is analogized with the baseline techniques, namely BT, deep 
Simple Online Real-time Tracking (SORT), SORT, and Kalman Filter (KF). 

 
Figure 10: MOTA analysis 

Figure 10 depicts the MOTA acquired by the proposed TBC-BT algorithm and prevailing 
techniques. The multi-object tracking process’ efficiency is determined by MOTA analysis. 
Figure 10 illustrates that the MOTA acquired by the proposed system is 92.64. However, the 
MOTA values acquired by the prevailing systems are lower (BT-89.43%, Deep SORT-86.75%, 
SORT-84.33%, and KF-82.46%). Hence, TBC in the conventional BT algorithm has exhibited 
effective performance in object tracking. 
4.5 Comparative analysis  
Here, for proving the proposed system’s efficiency, the efficiency of the proposed and the 
existing studies of (Siddique & Medeiros, 2022), (Mehta & Kaur, 2020), and (Thenmozhi & 
Kalpana, 2020) are contrasted. 
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Figure 11: Comparative analysis 

A comparative analysis of the proposed and the existing systems regarding efficiency is 
given in Figure 11. In this, for the co-located object status identification, the efficiency is 
evaluated with the recognition of co-located objects. In this, the (Siddique & Medeiros, 2022), 
(Mehta & Kaur, 2020), and (Thenmozhi & Kalpana, 2020) systems provide 9.03%, 7.13%, and 
0.41% less efficiency compared to the proposed system only for the detection of objects. 
However, the proposed system attained higher efficiency compared to the other systems even 
with the status identification. Hence, higher efficiency is due to the higher recognition rate and 
patch-wise analysis in the proposed model. This makes the proposed system more appropriate 
for co-located object recognition and status identification. 
5. CONCLUSION 
The co-located objects in railway terminal videos for the recognition of object status are 
identified in this paper. In this, MMD-K-Means and TBC-BT are used for the co-located object 
recognition, and the Max-GRU model was introduced for the co-located object status 
recognition. Next, patch-wise analysis is performed for covering all the co-located object 
instances in the video. Subsequently, the proposed system was experimentally analyzed and 
verified in contrast to the prevailing approaches. In 1184ms, the proposed MMD-K-Means 
attained a 97.92% co-located object recognition rate. Next, the Max-GRU acquired 98.13% 
identification accuracy, and for other performance metrics also, it acquired superior outcomes. 
Subsequently, the proposed TBC-BT and CN-CCA also attained superior results than the 
analogized approaches. Lastly, the efficacy of the proposed system over the other baseline 
systems was proved by the comparative analysis. But, the proposed system is executed with a 
video acquired with a single surveillance video, where when the co-located object moved to 
the next location, it can’t be detected. Hence, for better-co-located object status recognition, 
multiple successive surveillance videos for a single railway terminal can be utilized in the 
future. 
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