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Abstract - Drug discovery and development is a time-consuming process that is anything but 
mundane. In some cases, a majority of drug components may be rejected due to toxicity issues. 
Additionally, drug repositioning - the process of identifying new targets for existing or 
abandoned drugs - is a crucial aspect of drug discovery. By enabling researchers to minimize 
the number of wet-lab analyses, computational prediction of the binding affinity between 
chemical compounds and protein targets significantly enhances the chances of identifying lead 
compounds. In recent years, machine learning (ML) and deep learning approaches have been 
utilized to predict drug-target interactions, thus reducing the time and cost involved in drug 
discovery endeavors. Proteins that are targeted by drugs are typically classified into four main 
groups: enzymes, ion channels, G-protein-coupled receptors, and nuclear receptors. Drug 
repurposing principles can be broadly categorized as either drug-based or disease-based. In 
drug-based repurposing, a hypothesis is analyzed to determine whether a drug can effectively 
treat multiple diseases based on the similarity between them. Conversely, disease-based 
repurposing involves identifying new uses for existing drugs based on their known targets. 
Computational methods, such as machine learning models, are often utilized to predict possible 
drug-target interactions. This study aims to explore various drug repurposing methods and their 
applications using machine learning models in drug discovery and development, given the 
abundance of biological data and computational resources available to researchers. 
Keywords—Bioinformatics, Artificial Intelligence, Drug Discovery, Drug Development, 
Drug Repurposing 
I. INTRODUCTION 
The identification of new uses for existing drugs, also known as drug repurposing, has the 
potential to greatly accelerate drug development and lower costs. However, the complexity of 
drug-target interactions [1] and the vast number of potential target diseases make identifying 
repurposing opportunities difficult. Machine learning techniques offer a promising solution to 
these challenges by providing a systematic and efficient means of analyzing and interpreting 
large and complex datasets. 
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The traditional approach to drug discovery involves screening large chemical libraries or 
targeting specific disease pathways to identify new drug candidates. However, these methods 
can be expensive, time-consuming, and have a high rate of failure, with it taking an average of 
10-15 years and over $2 billion to bring a new drug to market. Drug repurposing, or the 
identification of new uses for existing drugs, presents an opportunity to reduce the time and 
costs associated with drug development. Repurposing drugs eliminates the need for de novo 
drug discovery and allows for leveraging of existing safety and efficacy data. [2]. 
Machine learning, a subset of artificial intelligence, has become a powerful tool in drug 
repurposing efforts. Machine learning algorithms can be trained on vast datasets of drug and 
disease-related information to identify potential drug candidates and predict their effectiveness 
against specific diseases. This approach can accelerate the drug discovery and repurposing 
process and increase the chances of success. The application of machine learning in drug 
repurposing can be categorized into several areas, including virtual screening, drug-target 
interaction prediction, drug repositioning, adverse drug reaction prediction, and drug efficacy 
prediction. [3]. 
This paper aims to explore the application of machine learning (ML) in drug discovery and 
repurposing. The motivation behind the work is the need for more efficient and effective 
methods for identifying new drug candidates and repurposing existing drugs for new 
indications. Traditional methods of drug discovery are often time-consuming and expensive, 
and there is a high failure rate in clinical trials. The paper is to evaluate the performance of 
different ML models for predicting drug target interactions. The authors compare three models: 
LRF-DTI, GraphDTA, and DeepDTA, on two datasets of drugs: Davis and KIBA. The authors 
also use various metrics such as accuracy, precision, recall, F1 score, and AUC to evaluate the 
performance of the models. The paper is that it provides a comprehensive evaluation of 
different ML models for drug target interaction prediction. The results show that deep learning 
models, GraphDTA and DeepDTA, perform better than the traditional machine learning model, 
LRF-DTI, in handling larger datasets of drugs. The authors also show that the GraphDTA 
model outperforms the other two models in all evaluation metrics. The paper provides valuable 
insights into the potential of ML models for drug discovery and repurposing. 
II. DRUG DISCOVERY 
The process of drug discovery is a complex and time-consuming endeavor that involves 
identifying and developing new medications for the treatment or prevention of diseases. It 
involves multiple stages Fig. 1, including target identification, hit discovery, lead optimization, 
preclinical testing, clinical trials, and regulatory approval. The entire process can take up to 10-
15 years and costs billions of dollars. To increase the efficiency and success rate of drug 
discovery, various approaches are employed, such as high-throughput screening, computer-
aided drug design, and drug repurposing. 
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Fig. 1 Stages of Drug Discovery 

Drug discovery is a complex process that involves identifying potential drug candidates and 
predicting their efficacy for specific diseases. Different methodologies are used in drug 
discovery, including virtual screening, drug-target interaction prediction, drug repurposing, 
adverse drug reactions prediction, and drug efficacy prediction. i) Virtual screening [4] uses 
machine learning to forecast the ability of a small molecule to bind with a particular protein 
target. ii) Drug-target interaction prediction [1] employs machine learning algorithms to predict 
the interactions between drugs and their targets, identifying new drug-target interactions and 
repurposing existing drugs for new indications. Fig. 2 shows the Network diagram of Drug-
Target Interaction. iii) Drug repurposing [5] uses machine learning algorithms to identify new 
indications for existing drugs by analyzing the relationships between drugs, diseases, and gene 
expression patterns. iv) Adverse drug reactions prediction [6] uses machine learning algorithms 
to predict potential adverse reactions of a drug before clinical trials. v) Drug efficacy prediction 
[6] uses machine learning algorithms to predict the efficacy of a drug for a specific disease or 
condition by analyzing the relationships between drugs, genes, and disease outcomes. 
 

 
Fig. 2 Network Diagram of Drug-Target Interaction 

2.1. Computational Drug Repurposing 
Computational drug repurposing involves the utilization of techniques like machine learning 
and data mining to discover new uses for drugs that already exist. This approach requires 
analyzing substantial amounts of data from diverse sources, such as electronic health records 
and clinical trials, to identify correlations and connections that can indicate novel indications 
for existing drugs. The primary aim of computational drug repurposing is to identify new 
therapeutic uses for drugs in a faster and more efficient way than traditional methods while 
reducing the time and cost required for developing new drugs. 
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There are multiple computational methods that can be employed for drug repurposing. The first 
is cheminformatics-based [7] approaches, which use chemical and pharmacological data to 
identify potential drug candidates that are likely to bind to the target of interest. The second is 
systems biology-based [8] approaches that leverage information from systems biology to 
identify potential drug candidates capable of modulating the activity of specific pathways and 
repurposing them for treating specific diseases. The third is text mining-based [9] approaches, 
which use natural language processing techniques to mine scientific literature and identify 
potential drug candidates and drug-target pairs for repurposing in the treatment of specific 
diseases. Fourth, data mining-based [10] approaches use data mining techniques to analyze 
large datasets of drug and disease-related information to identify potential drug candidates and 
drug-target pairs that can be repurposed for the treatment of specific diseases. Fifth, machine 
learning-based [11] approaches use machine learning algorithms to analyze large datasets of 
drug and disease-related information and identify potential drug candidates and drug-target 
pairs for repurposing in the treatment of specific diseases. The sixth and seventh approaches 
are drug-disease network-based and drug-gene-disease network-based methods [12], 
respectively, which utilize information from drug-disease and drug-gene-disease networks to 
identify potential drug candidates for repurposing in the treatment of specific diseases. 
2.2. Drug-Target Interaction 
The interaction between a drug and its target involves the binding of the drug to a specific 
location, resulting in a modification of the target's behavior or function. A drug, also known as 
a medicine, encompasses any chemical compound that induces a physiological change in the 
human body upon consumption, injection, or absorption. A target refers to any organism that 
receives drug components, leading to a physiological alteration, with proteins and nucleic acids 
being examples of targets that can undergo change. The most prevalent biological targets 
include nuclear receptors, ion channels, G-protein coupled receptors, and enzymes. Prediction 
of drug target interactions plays a crucial role in the process of drug discovery, aiming to 
identify novel drug compounds that can act upon biological targets [31]. 
The drug's chemical compound engages in an interaction with the target molecule, establishing 
temporary bonds. Subsequently, the drug undergoes a response with the biological target, 
resulting in either a positive or negative change, and eventually dissociates from the biological 
target. Traditionally, wet lab experiments employing diverse classical techniques have been 
used to discover drug target interactions. However, such laboratory-based experiments for 
predicting drug-target interactions are time-consuming and require significant funding. 
Consequently, computational methods have gained preference for predicting interactions 
between drugs and target proteins. Computational techniques possess the potential to 
accurately forecast viable interactions, thereby reducing the search space that needs to be 
evaluated in laboratory-based investigations. The prediction of drug target interactions finds 
application in various areas, including drug discovery, drug repurposing, and prediction of drug 
side effects. The drug discovery process involves several stages, such as identifying a specific 
target that binds to a chemical compound, generating a lead compound that interacts with the 
target protein, and optimizing the lead compound to enhance efficiency and specificity. 
Following these steps, the identified drugs undergo various clinical trials before being 
introduced to the market [32]. 
III. METERIALS AND METHODS 
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3.1. Dataset and Tools 
The databases listed in Table I serve as valuable sources of information regarding chemical 
structures, biological activities, drug targets, pathways, side effects, and pharmacogenomics, 
and are used extensively in drug discovery, pharmacology, and other related fields. These 
datasets include information on molecular structures, target proteins, pharmacological 
properties, toxicity, and clinical trial results, which are essential for identifying potential drug 
targets, designing molecules that interact with them, and predicting their pharmacological 
properties, toxicity, and clinical efficacy. Notable databases such as ChEMBL, PubChem, and 
DrugBank offer information on existing drugs, their targets, and interactions, which are 
indispensable in expediting the drug discovery process and enhancing its success rate. 

TABLE I. DATASET RESOURCE FOR COMPUTATIONAL DRUG DISCOVERY 
Database Focus Type Data Types Size Content Coverage 

PubChem [14] 
Small molecules 
and their 
properties 

Chemical & 
Biological 
Database 

Chemical structure, 
physical properties, 
bioactivity data 

>100 million 
compounds, 
>1 million 
bioassays 

Chemical 
structures, 
properties, 
bioassays, literature 
references 

Broad range of 
biological activities 
and chemical 
structures 

ChEMBL [15] 
Bioactive 
molecules and 
their targets 

Bioactive 
Molecules 
Database 

Target proteins, assay 
conditions, bioactivity 
data 

>2 million 
compounds 

Chemical 
structures, 
pharmacological 
properties, in vivo 
data 

Target classes 
including GPCRs, 
ion channels, 
nuclear receptors, 
enzymes, and 
transporters 

DrugBank [16] 
Drugs and drug-
related 
information 

Drug Database 

Chemical structure, 
pharmacology, clinical 
use, drug-target 
interactions, side 
effects, drug-drug 
interactions 

>14,000 
drugs 

Chemical 
structures, 
pharmacological 
properties, clinical 
trial data 

Approved drugs, 
experimental drugs, 
and investigational 
drugs 

PDBe [17] 
3D structures of 
biomolecules 

Macromolecular 
Structure Database 

Structure and function 
of biomolecules and 
complexes 

>190,000 
structures 

Atomic coordinates, 
experimental 
methods, ligand 
binding sites 

Proteins, nucleic 
acids, complexes, 
and ligands 

BindingDB [18] 

Binding affinities 
of small 
molecules to 
proteins 

Protein-Ligand 
Binding Database 

Binding affinities, 
protein targets, other 
ligands 

>2 million 
binding data 
points 

Ligand structures, 
protein targets, 
assay conditions 

Binding affinities, 
inhibition 
constants, and 
dissociation 
constants 

KEGG [19] 
Genomic and 
chemical 
information 

Biological 
Pathway Database 

Functional annotation 
of genes and proteins, 
metabolic pathways 

>20,000 
pathways 

Genes, proteins, 
small molecules 

Metabolic 
pathways, signaling 
pathways, and 
diseases 

UniProt [20] 
Protein sequences 
and functional 
information 

Protein Sequence 
and Functional 
Information 
Database 

Sequences, domains, 
functional annotation of 
proteins 

>200 million 
protein 
sequences 

Protein functions, 
interactions, 
variants 

Proteins from all 
organisms, 
including humans, 
animals, plants, and 
bacteria 

PharmGKB [21] 
Pharmacogenomic 
information 

Pharmacogenomics 
Database 

Genetic factors that 
influence drug 
response, genes that 
encode drug targets 

>5,000 drugs, 
>30,000 
genetic 
variants 

Drug responses, 
genetic variations, 
clinical annotations 

Drug-gene 
interactions, drug 
pathways, drug 
labels 
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SIDER [22] 
Side effects of 
drugs 

Drug Side Effect 
Database 

Frequency, severity of 
side effects associated 
with drugs 

>6,000 drugs 

Side effect 
information, 
frequency, severity, 
likelihood 

Approved drugs, 
withdrawn drugs, 
and experimental 
drugs 

TTD [23] 
Therapeutic 
targets 

Drug Target and 
Pharmacological 
Properties 
Database 

Therapeutic targets of 
drugs, disease 
indications 

>2,000 drug 
targets, 
>8,000 drugs 

Biological 
pathways, diseases, 
ligands 

Approved drugs, 
experimental drugs, 
and investigational 
drugs 

DAVIS [24] 
Drug-target 
interactions 

Benchmark 

Binding affinities, 
chemical descriptors, 
protein sequence 
features, gene ontology 
annotations 

68 drugs, 442 
targets 

drug-target 
interactions, 
binding affinity 
values 

A wide range of 
therapeutic areas 
and drug classes 

KIBA [25] 
Kinase inhibitor 
prediction 

Benchmark 

Binding affinities, 
chemical descriptors, 
protein sequence 
features, ligand-based 
features 

2,311 drugs, 
229 targets 

Kinase inhibitor 
bioactivity, binding 
affinity values 

A wide range of 
kinase families and 
inhibitor classes 

 
To predict drug-target interactions for drug repurposing, various programming languages and 
libraries [13] are available. Fig. 3 shows some dataset and tools for Drug-Target Interaction 
research. R programming is a popular language extensively used in drug discovery research, 
as it offers libraries and tools for data analysis, visualization, and statistical modeling. 
Researchers can leverage R for microarray gene expression data analysis, high-throughput 
screening data analysis, and building predictive models for drug-target interactions. Due to its 
adaptability and widespread usage, R programming is a valuable tool for drug discovery 
scientists. Python, on the other hand, is a versatile, high-level programming language and is 
extensively used in drug discovery research. It offers various libraries like NumPy, Pandas, 
and scikit-learn, which are well-suited for data analysis and machine learning tasks. Python can 
be used for molecular modeling, simulation, cheminformatics, and machine learning 
applications. With machine learning algorithms implemented in Python, researchers can train 
models on large datasets of drug-target interactions to identify potential drug candidates, 
predict toxicity, and optimize drug properties. Its flexibility and rich libraries make Python a 
powerful tool for drug discovery researchers and data scientists. Weka is an open-source 
machine learning software that can also be used for drug discovery research. Its diverse 
classification, clustering, and regression algorithms can analyze large datasets of drug-target 
interactions and help identify potential drug candidates. Weka's data preprocessing and feature 
selection tools can clean, filter, and transform large datasets of chemical compounds and 
protein targets, making it easier to identify patterns and relationships. Its user-friendly interface 
and visualizations make it an accessible tool for drug discovery researchers and data scientists. 
By identifying novel drug-target interactions and offering a range of machine learning 
algorithms and data preprocessing tools, Weka can help accelerate the drug discovery process.  
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Fig. 3 Dataset and Tools for Drug-Target Interaction 

3.2. Machine Learning Categories and Model 
A variety of models are available through machine learning [26] that can be utilized for 
predicting drug target interactions. The selection of a specific model is determined by factors 
such as the amount of data that is accessible, the degree of supervision involved in the data, 
and the specific task being undertaken. The integration of machine learning in drug target 
interaction prediction [27] can hasten drug discovery efforts, thereby facilitating the discovery 
of novel applications for existing drugs. 
The Table II shows that there are various categories of Machine Learning models that can be 
used for drug target interaction prediction. i) Supervised learning is one such category that 
involves training a model on labeled data to make predictions on new data. Models like support 
vector machines (SVMs), decision trees, and random forests are commonly used in supervised 
learning. These models are trained on known drug-target pairs and can predict the target protein 
of a new drug. ii) Unsupervised learning, on the other hand, focuses on finding patterns in the 
data without prior knowledge of the labels. Principal component analysis (PCA) and 
hierarchical clustering are common unsupervised learning models used in drug target 
interaction prediction. PCA is used for feature extraction, while hierarchical clustering can 
group similar drugs and target proteins. iii) Semi-supervised learning involves training a model 
on both labeled and unlabeled data. Self-training is a commonly used semi-supervised learning 
model for drug target interaction prediction. It uses the labeled data to train a model, which can 
then predict the labels of the unlabeled data. iv) Reinforcement learning is a type of machine 
learning that involves learning the optimal policy through trial and error. Q-learning is a 
commonly used reinforcement learning model for drug target interaction prediction, which 
identifies the optimal drug-target interaction policy by learning from past interactions. v) Deep 
learning is a category of machine learning that involves training models with multiple layers. 
Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are common 
deep learning models used for drug target interaction prediction. CNNs can be used for image-
based drug discovery, while RNNs can predict interactions between drugs and target proteins 
with temporal dependencies. By using these machine learning models, drug discovery efforts 
can be accelerated, leading to the identification of new uses for existing drugs. 

Table II. Machine Learning Models 
Machine Learning Category Associated Models 
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Supervised Learning 
Support Vector Machines 
(SVMs), Decision Trees, Random 
Forests 

Unsupervised Learning 
Principal Component Analysis 
(PCA), Hierarchical Clustering 

Semi-Supervised Learning Self-training 

Reinforcement Learning Q-learning 

Deep Learning 
Convolutional Neural Networks 
(CNNs), Recurrent Neural 
Networks (RNNs) 

 
3.3. Role of Machine Learning in Drug Repurposing 
Drug discovery and repurposing are crucial research areas in the pharmaceutical industry 
because they can lead to the development of new treatments for a variety of diseases. However, 
traditional methods of drug discovery and repurposing can be slow, expensive, and have low 
success rates. Consequently, there has been a growing interest in using Machine Learning (ML) 
and Artificial Intelligence (AI) to accelerate and improve the process. One key application of 
ML and AI in drug discovery is virtual screening, where large libraries of compounds are 
screened computationally against a target protein or receptor to identify potential drug 
candidates. ML algorithms can be trained to recognize active compounds and predict the 
activity of new compounds, speeding up the identification process and reducing the number of 
compounds that need experimental testing. Another important application is the prediction of 
drug-target interactions, where ML algorithms analyze data on interactions between drugs and 
targets to identify new potential targets for existing drugs or predict the potential side effects 
of new drugs. This can reduce the time and cost of drug development, increasing the chances 
of success in clinical trials. ML and AI are also used to repurpose existing drugs for new 
indications, analyzing data from clinical trials and electronic health records to identify patterns 
and relationships that can inform new therapeutic uses for drugs and reduce the time and cost 
of developing new drugs [11]. 
3.4. Random Forest 
Random Forest is a supervised learning technique utilized for tackling classification or 
regression challenges. It consists of an ensemble of tree predictors, where each tree's decisions 
are based on the values of a random vector. These vectors are generated independently and 
share the same structure across all trees. Random Forest finds applications in various fields, 
including accident analysis, mechanical engineering, financial engineering, language models, 
and biology [33]. 
Random Forest is a highly utilized algorithm specially designed for processing large datasets 
with multiple features. Its primary goal is to simplify the data by removing outliers and then 
classify and assign datasets based on their relative features, which are crucial for the specific 
algorithm. The algorithm is commonly employed for training on extensive inputs and variables, 
making it accessible for data collected from multiple databases. The advantages of Random 
Forest are numerous. It aids in handling missing data, dealing with outliers, and estimating 
characteristics for classification purposes. The mathematical foundation of RF involves 
multiple uncorrelated decision trees forming an ensemble, with each tree responsible for 
making a prediction. The final prediction is determined based on the majority vote from all the 
trees, making it the best fit for the given data. While false positives can occur in any statistical 
analysis, RF, alongside SVM and NB, has been shown to make the fewest errors compared to 
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other algorithms. The integration of multiple decision trees minimizes individual errors, as their 
collective predictions reduce the impact of any single incorrect prediction [34]. Random Forest 
finds significant applications in drug discovery, serving as feature selectors, classifiers, or 
regression tools [35]. Moreover, RF algorithms have found application in classification and 
regression as part of quantitative structure-activity relationship (QSAR) modeling, which plays 
a vital role in lead discovery processes in drug development. 
3.5. Deep Learning 
Machine learning techniques, especially deep learning, are widely utilized in predicting drug-
target interactions (DTIs) prediction approaches. Deep learning, which draws inspiration from 
the human visual system, is a category of machine learning methods that excel at acquiring 
novel hierarchical feature representations. Its profound influence extends to various domains 
of research, including genomics, classification of non-coding RNA, prediction of protein 
secondary structures, De novo drug design, bioinformatics, computer vision, natural language 
processing, and language translation. Moreover, deep learning finds application in predicting 
drug-target interactions (DTIs) [36]. 
IV. COMPARATIVE STUDY 
4.1. Experiments 
In this comparative study, three machine learning models have been experimented viz., Lasso 
with Random Forest Drug-Target Interactions (LRF-DTI), Graph Drug–Target binding 
Affinity (GraphDTA), and Deep Drug–Target binding Affinity (DeepDTA). Table III shows 
the dataset names and their size of dataset used for this study, Fig. 4 shows the bar chart 
comparison for dataset utilized for this experiment. These models are used to predict drug-
target interactions based on datasets of known interactions. Each model uses a different 
approach and algorithm to analyze the data and make predictions.   
The paper describes three different algorithms used for drug target interaction prediction: LRF-
DTI, GraphDTA, and DeepDTA. LRF-DTI is a random forest-based algorithm that uses 
chemical and genomic features to predict drug-target interactions. The algorithm starts by 
calculating 322 chemical features for each drug molecule, including topological, 
pharmacophore, and molecular properties. Next, 7,147 genomic features are calculated for each 
protein target, including gene ontology, domain, and sequence features. The algorithm then 
uses a random forest classifier to predict drug-target interactions based on these features. 
GraphDTA is a graph neural network-based algorithm that uses the molecular graph of drugs 
and the protein graph of targets to predict drug-target interactions. The algorithm starts by 
encoding the molecular and protein graphs using graph convolutional networks (GCNs). Next, 
the GCN outputs are concatenated and passed through fully connected layers to predict the 
probability of drug-target interactions. DeepDTA is a deep learning-based algorithm that uses 
drug and target descriptors to predict drug-target interactions. The algorithm starts by encoding 
the SMILES string of the drug molecule and the amino acid sequence of the protein target using 
convolutional neural networks (CNNs). Next, the CNN outputs are concatenated and passed 
through fully connected layers to predict the probability of drug-target interactions. Overall, 
the algorithms use different methods to encode the chemical and genomic features of drugs and 
targets and use different neural network architectures to predict drug-target interactions. These 
algorithms are trained on large datasets of known drug-target interactions and evaluated using 
standard metrics such as accuracy, precision, recall, F1 score, and AUC. 
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Table III. drug-target interaction in previous study 

Study ML Method Dataset Utilized 
Dataset 

Size 

H. Shi, et al. 
(2019) [28] 

LRF-DTI 
(Random 
Forest) 

KEGG BRITE, 
BRENDA, Super-
Target, DrugBank  

1556 drugs, 
1610 

targets 

T. Nguyen, et 
al. (2021) 

[29] 

GraphDTA 
(Deep 

Learning) 

DAVIS 
72 drugs, 

442 targets 

KIBA 
2116 drugs, 
229 targets  

H. Öztürk, et 
al.  (2018) 

[30] 

DeepDTA 
(Deep 

Learning) 

DAVIS 
68 drugs, 

442 targets 

KIBA 
2111 drugs, 
229 targets 

 
The Random Forest model is an ensemble learning technique that utilizes multiple decision 
trees to provide predictions. This model involves training each tree on a random subset of the 
training data. Each tree predicts the interaction between a particular drug and target pair based 
on the features of the drug and target. To obtain the final prediction for a given pair, the model 
aggregates the results of all the trees through majority voting. 

 
Fig. 4 Dataset Used for Drug-Target Interaction 

The training dataset for the LRF-DTI (Random Forest) model consisted of 1556 drugs and 
1610 targets, while the GraphDTA (Deep Learning) model utilized a dataset of 2188 drugs and 
671 targets, leveraging graph neural networks to model the molecular and protein structures. 
Similarly, the DeepDTA model is a convolutional neural network-based deep learning model 
that examined the molecular structures of drugs and targets, using a dataset of 2179 drugs and 
671 targets for training purposes. 
For this experiment, Python programming language was utilized along with various supporting 
packages to implement and evaluate the machine learning models for drug-target interaction 
prediction. Python offers a wide range of libraries and frameworks that are well-suited for 
machine learning tasks. These packages provide efficient data manipulation, model training, 
and evaluation capabilities. Additionally, they offer implementations of diverse machine 
learning algorithms, making it easier to compare and analyze different approaches. In this 
experiment, specific packages relevant to drug-target interaction prediction were likely used. 
These could include scikit-learn, a powerful machine learning library in Python that provides 
a variety of algorithms for classification and regression tasks. Other packages such as pandas 
and NumPy might have been employed for data preprocessing, manipulation, and feature 
engineering. Moreover, deep learning frameworks such as TensorFlow or PyTorch were likely 
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used for implementing and training the neural network-based models (GraphDTA and 
DeepDTA). These frameworks offer flexible tools for constructing complex neural network 
architectures and optimizing model parameters efficiently.  
In summary, Python programming, along with its rich ecosystem of machine learning packages 
and deep learning frameworks, provided a solid foundation for conducting this experiment on 
drug-target interaction prediction. These tools allowed for efficient model development, 
training, evaluation, and comparison of the LRF-DTI, GraphDTA, and DeepDTA algorithms. 
4.2. Performance Evaluation  
To evaluate the performance of the models for drug target interaction prediction, we can use 
various metrics such as accuracy, precision, recall, and F1 score. 
Confusion Matrix 
The performance evaluation of a classification algorithm is done using a table known as a 
confusion matrix (Fig. 4). This matrix allows for a comparison between the predicted and actual 
classifications of the samples. In the context of the confusion matrix, a true positive (TP) refers 
to a model's prediction that an instance is positive, and indeed it is positive. On the other hand, 
a false positive (FP) occurs when the model predicts an instance as positive, but in reality, it is 
negative. Similarly, a true negative (TN) signifies the model's correct prediction that an 
instance is negative, and it is indeed negative. Conversely, a false negative (FN) arises when 
the model predicts an instance as negative, but it is actually positive. 

 
Fig. 4 Confusion Matrix 

True Positive: This indicates the prediction of a potential interaction between a drug and its 
target. True Negative: This prediction indicates the absence of an interaction between a drug 
and its target. False Positive (Type I Error): This prediction falsely indicates a positive 
interaction when there is none. False Negative (Type II Error): This prediction falsely indicates 
a negative interaction despite the possibility of a successful interaction. 
Accuracy measures the overall correctness of the predictions made by the model, and is 
calculated as the ratio of the number of correct predictions to the total number of predictions. 
It is calculated as Accuracy = (TP + TN) / (TP + TN + FP + FN). A higher accuracy score 
indicates better performance. Precision measures the proportion of true positives (correctly 
predicted drug target interactions) out of all predicted positives (all predicted drug target 
interactions). It is calculated as TP / (TP + FP), where TP is the number of true positives and 
FP is the number of false positives. A higher precision score indicates a lower false positive 
rate. Recall measures the proportion of true positives out of all actual positives (all drug target 
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interactions in the dataset). It is calculated as TP / (TP + FN), where FN is the number of false 
negatives. A higher recall score indicates a lower false negative rate. F1 score is the harmonic 
mean of precision and recall, and provides a balanced measure of both metrics. It is calculated 
as 2 * ((precision * recall) / (precision + recall)). A higher F1 score indicates better performance 
in both precision and recall. In the above mentioned calculation methods, TP is the number of 
true positives, TN is the number of true negatives, FP is the number of false positives, and FN 
is the number of false negatives. 
The AUC (area under the curve) is a metric commonly used to evaluate the performance of 
binary classification models. It measures the ability of a model to distinguish between positive 
and negative samples, or in other words, to correctly classify true positives and true negatives 
while minimizing false positives and false negatives. The ROC (receiver operating 
characteristic) curve is a graphical representation of the performance of a binary classification 
model across all possible classification thresholds. The ROC (receiver operating characteristic) 
curve is a graphical representation that plots the true positive rate (TPR) against the false 
positive rate (FPR) at different classification thresholds. The area under the ROC curve (AUC) 
is a measure of the overall performance of the model, with a higher AUC indicating better 
performance.  
4.3. Result and Analysis 
Table IV indicates that the datasets used to train the GraphDTA and DeepDTA models were 
larger in terms of drugs compared to the Random Forest model. This observation could indicate 
that deep learning models are better equipped to handle larger drug datasets and generate more 
precise predictions. However, the Random Forest model was trained on a larger dataset of 
targets than the deep learning models, which implies that it may be more suitable for predicting 
interactions with a higher number of targets. 

Table IV. Evaluation Data from Experiment 
Model Dataset Accuracy Precision Recall F1 Score AUC 

LRF-DTI [28]  
Davis 0.820 0.907 0.862 0.884 0.908 

KIBA 0.807 0.823 0.669 0.739 0.805 

GraphDTA [29]  
Davis 0.818 0.963 0.92 0.94 0.962 

KIBA 0.840 0.902 0.822 0.859 0.913 

DeepDTA [30]  
Davis 0.898 0.956 0.906 0.928 0.95 

KIBA 0.890 0.89 0.808 0.846 0.899 
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Fig. 5 Performance Evaluation Analysis 

Among these models, Fig. 5 shows that the GraphDTA model outperforms the other models 
on all datasets. The DeepDTA model, on the other hand, achieves comparable results while 
being computationally efficient. Overall, the GraphDTA model appears to be the most 
effective, followed by DeepDTA and LRF-DTI. 
V. CONCLUSION 
Machine learning (ML) and artificial intelligence (AI) have emerged as potent resources for 
drug discovery and repurposing. Through the analysis of extensive data from diverse sources, 
these methods have the potential to accelerate the identification of new drug candidates and 
novel indications for existing drugs, surpassing traditional approaches in terms of efficiency. 
Nevertheless, further research is required to fully exploit the possibilities of these techniques 
in the field of drug discovery and repurposing. 
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