

Journal of Data Acquisition and Processing Vol. 38 (3) July 2023 5796

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.777794

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR
DYNAMIC PROGRAM ANALYSIS

Amit Kumar Dogra a, *, Harsh Kumar Verma a

a Dept. of Computer Science and Engineering, Dr B R Ambedkar National Institute of
Technology Jalandhar, Punjab, India

*amitkumar62003@gmail.com

ABSTRACT

The popularity of DaCapo and SPEC JVM in both academia and industry can be used to gauge
the significance of benchmark suits in the field of software engineering. However, the majority
of the benchmark sets that are available in the existing body of knowledge, are either based on
Java, C++, or C hence missing out on python which is one of the fastest growing language of
the contemporary programming world. This study introduces PyCorpus, a collection of 15
executable Python programs, in an effort to fill the gap left by the lack of a Python-specific
benchmark suite in the field of Dynamic Program analysis. In order to investigate, assess, and
compare the performance, efficiency, and dynamic elements of the Python language, PyCorpus
seeks to offer scholars and practitioners with a thorough collection of Python programs that
exhibits dynamic behaviors.

KEYWORDS: Benchmark, DaCapo, SPEC, Dynamic Analysis, Python, Program analysis,
Dynamic program analysis.

1. INTRODUCTION

Benchmark suites play a crucial role in software analysis, providing standardized and
representative programs that enable researchers and practitioners to evaluate and compare the
performance of different software systems. The availability of benchmark suites allows for fair
and objective performance assessments, facilitates the identification of bottlenecks, and aids in
the development of optimization techniques. While benchmark suites have been widely
developed for various programming languages, including Java and C, there has been a notable
absence of a comprehensive benchmark suite for Python programs. Moreover most of the
existing benchmark available in the literature have been developed for static analysis of
softwares[1][2][3][4]. Static analysis is often assumed to be inherently sound but has limited
precision in maintaining soundness. However, certain aspects of a program are not captured by
static analysis, making it unsound in real-world scenarios. Dynamic programming language
features, such as reflection, proxies, class loading, and binding, are difficult to capture by static
analysis techniques. Many studies have pointed out the inefficacy of static analysis of softwares
especially when it comes to design quality assessment of softwares as it is hugely impacted by
dynamic features of programming languages like inheritance, late binding etc. [5][6][7][8].

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5797

1.1. Motivation

Python has gained immense popularity in recent years, becoming one of the most widely
used programming languages in various domains[9], including web development, data
analysis[10], Artificial Intelligence[11] etc. However, the absence of a standardized benchmark
suite for Python limits the ability to conduct accurate and reliable performance evaluations,
compare different Python programs, and identify areas for optimization[12]. To address this
gap, we introduce PyCorpus, a comprehensive benchmark suite tailored specifically for
dynamic design analysis of Python programs.

1.2. Importance of Benchmark Suites in Software Analysis

Benchmark suites serve as valuable resources for researchers and practitioners involved in
software analysis[12][13]. They provide a standardized set of programs that enable fair
performance evaluations, aid in identifying performance bottlenecks[14], fault predictions[15],
code comprehension[16] and facilitate the development and validation of optimization
techniques. Benchmark suites contribute to the advancement of software engineering by
enabling the comparison of different systems, the identification of best practices, and the
evaluation of new technologies[17].

1.3. Research Goals and Objectives

The primary goal of this research is to introduce PyCorpus, a comprehensive benchmark
suite for Python programs, and address the absence of a standardized benchmark suite in the
Python ecosystem. The specific objectives of this research article are as follows:

 Construct PyCorpus using a rigorous and systematic methodology

 Provide a diverse set of representative Python programs covering various domains and
application types

 Facilitate accurate performance evaluations and comparisons of Python programs

 Enable the identification of performance bottlenecks and optimization opportunities

 Foster community engagement and contributions to enhance PyCorpus over time

2. RELATED WORK

2.1. Existing Benchmark Suites and their Significance

DaCapo: The DaCapo Benchmark Suite[18] is a collection of open-source Java
benchmarks designed to evaluate the performance of Java Virtual Machines (JVMs) and
compilers. It consists of a set of real-world applications that cover a range of different
computational workloads. The suite includes various benchmarks that simulate different types
of applications, such as compilers, database systems, XML processing, object serialization, and
more. The DaCapo Benchmark Suite has been widely used by researchers and developers to
compare and evaluate the performance of JVMs, as well as to analyze the effectiveness of
optimization techniques and compiler optimizations.

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5798

SPECjvm: SPECjvm[19] is a benchmark suite designed by SPEC (Standard Performance
Evaluation Corporation) specifically for evaluating the performance of Java Virtual Machines
(JVMs) and Java applications. The SPECjvm benchmark suite consists of a set of
representative Java applications and benchmarks that cover various aspects of Java
performance, including computational and memory-intensive workloads. It aims to provide a
standardized methodology for evaluating JVM performance across different hardware and
software configurations.

The Qualitas Corpus[20] is a large-scale software benchmark and dataset that has been
widely used for empirical studies and evaluations in software engineering research. It was
created to support research on software quality, maintainability, and related aspects. The corpus
consists of a collection of open-source Java projects, providing a diverse set of software
systems from various application domains.

XCorpus[21], a set of 76 executable, real-world Java programs, includes a subset of 70
programs from the Qualitas Corpus. The data set uses a harness that combines built-in and
generated test cases, resulting in a branch coverage significantly better than what is available
from DaCapo.

Name Year Language Programs Version History Harness

DaCapo 2006 Java 14 No Yes
SpecJVM 2008 Java 10 Yes No
Qualitas Corpus 2008 Java 112 Yes No
XCorpus 2017 Java 70 Yes Yes
PyCorpus 2023 Python 15 Yes No

2.2. Benchmark Suites for Java and Other Programming Languages

Benchmark suites have been widely developed for various programming languages to
facilitate performance evaluations and comparisons. One prominent example is the DaCapo
benchmark suite for Java, which has had a significant impact on Java software analysis.
DaCapo comprises a diverse set of programs that cover a wide range of application domains,
allowing researchers to assess the performance of Java virtual machines and identify potential
optimizations.

2.3. Importance of Existing Benchmark Suites

Existing benchmark suites, such as DaCapo for Java, have played a crucial role in
advancing software analysis by providing standardized benchmarks. These suites have
significantly contributed to the evaluation of runtime performance, memory utilization,
scalability, and responsiveness of software systems. They have enabled the identification of
performance bottlenecks, the comparison of different optimization techniques, and the
validation of new approaches in software engineering research.

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5799

2.4. Gap in Benchmark Suites for Python

While benchmark suites have been developed for several programming languages,
including Java, C, and others, there has been a noticeable absence of a standardized benchmark
suite specifically tailored for Python programs. This gap limits the ability to accurately evaluate
and compare the performance of Python software systems, hindering advancements in the field.
The absence of a comprehensive benchmark suite for Python calls for the development of
PyCorpus to address this critical need.

2.5. Significance of PyCorpus

PyCorpus aims to fill the gap in the absence of a standardized benchmark suite for Python
programs. By providing a comprehensive and diverse set of benchmarks, PyCorpus enables
researchers and practitioners to conduct accurate performance evaluations, compare different
Python programs, and identify areas for optimization. The significance of PyCorpus lies in its
ability to foster fair and objective performance assessments, facilitate the development of
optimization techniques, and promote best practices in Python software engineering.

2.6. Building on Existing Benchmarks

While existing benchmark suites for other programming languages[22][14] provide
valuable insights and methodologies, PyCorpus takes into account the unique characteristics
and dynamic features of Python. It incorporates benchmarks that capture the specific behaviors
and performance considerations of Python programs, allowing for a more accurate assessment
of Python software systems. PyCorpus builds upon the lessons learned from existing
benchmark suites while tailoring its benchmarks to the specific requirements and nuances of
the Python programming language.

The existing benchmark suites, such as DaCapo for Java, have demonstrated the
importance of standardized benchmarking in software analysis. However, the absence of a
comprehensive benchmark suite for Python programs has limited the ability to conduct
accurate performance evaluations and comparisons. PyCorpus aims to bridge this gap by
providing a diverse set of benchmarks specifically tailored for Python, enabling researchers
and practitioners to advance the field of Python software engineering through fair and objective
performance assessments, optimization opportunities, and best practice identification.

3. METHODOLOGY

The construction of PyCorpus, a comprehensive benchmark suite for Python programs,
involved a systematic and rigorous methodology to ensure the selection of representative
benchmarks and the integration of associated test cases. This section outlines the key steps and
considerations undertaken during the construction process.

3.1. Benchmark Selection

The first step in constructing PyCorpus was to identify a wide range of Python programs
that would serve as representative benchmarks. To achieve this, we considered multiple
sources, including popular open-source projects, research codebases, and real-world

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5800

applications. These sources were carefully selected to cover various domains, programming
paradigms, and libraries commonly used in Python development.

During the benchmark selection process, we paid particular attention to capturing the
dynamic aspects of the Python language. We aimed to include benchmarks that utilize dynamic
features such as late binding, polymorphism, dynamic typing, and reflection. By encompassing
these dynamic characteristics, PyCorpus ensures that the benchmark suite accurately reflects
the behavior and performance considerations unique to Python programs.

To ensure the quality and relevance of the selected benchmarks, we evaluated them based
on several criteria. These criteria included the popularity and significance of the projects, the
maturity and stability of the codebase, the availability of multiple versions, and the presence
of associated test cases. By considering these factors, we aimed to include benchmarks that
would provide meaningful insights into the performance characteristics and evolution of
Python software systems.

3.2. Test Case Integration

An integral part of PyCorpus is the integration of test cases with each benchmark. Test
cases serve as a means to validate the correctness and functionality of the benchmarked
programs and provide a standardized set of inputs for performance evaluations. The integration
of test cases ensures that PyCorpus not only focuses on performance but also covers the
functional aspects of the software systems.

The process of test case integration involved studying the existing test suites associated
with the selected benchmarks and identifying relevant test cases. We considered both unit tests
and functional tests that exercise different parts of the programs and cover various usage
scenarios. The test cases were adapted and integrated into PyCorpus, ensuring their
compatibility and consistency with the benchmarked programs.

3.3. Versioning and Evolution

Another important aspect of PyCorpus is the inclusion of multiple versions of each
benchmark program. This allows researchers to study the evolution of software over time and
analyze the impact of changes, improvements, or regressions on performance characteristics.
Collecting multiple versions involved identifying different releases or revisions of the
benchmarked projects and capturing the corresponding codebases.

By including multiple versions, PyCorpus enables researchers to assess the performance
implications of software evolution and provides insights into the effectiveness of optimization
techniques and development practices. It allows for comparative analysis between different
versions and facilitates a better understanding of the performance trade-offs associated with
software changes.

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5801

3.4. Documentation and Dissemination

PyCorpus is accompanied by comprehensive documentation that provides detailed
information about the benchmark selection process, program characteristics, associated test
cases, performance metrics, and usage guidelines. The documentation serves as a guide for
researchers and practitioners interested in utilizing PyCorpus for their performance evaluations
and optimization efforts. In addition to documentation, the dissemination of PyCorpus is
crucial for its adoption and impact. We have made PyCorpus openly available to the Python
community through a public repository[23].

By following this methodology, we have successfully constructed PyCorpus, a
comprehensive benchmark suite that captures the dynamic aspects of Python programs.
PyCorpus provides researchers and practitioners with a valuable tool for performance analysis,
optimization, and software engineering advancements in the Python ecosystem.

4. OVERVIEW OF PYCORPUS

PyCorpus includes a wide range of representative benchmarks carefully selected from
various sources. These benchmarks cover different domains, programming paradigms, and
libraries commonly used in Python development. By encompassing this diversity, PyCorpus
ensures that researchers and practitioners have access to benchmarks that accurately reflect the
real-world scenarios and challenges encountered in Python programming.

PyCorpus

1. Requests - HTTP library 9. NumPy - Numerical computing library

2. Flask - Micro web framework 10. Scikit-learn - Machine learning library

3.Tornado - asynchronous networking library 11. Keras - Deep learning library

4. Scrapy - Web scraping framework 12. SciPy - Scientific computing library

5. Pygame - Game development library 13. Django - Web framework

6. Dash - Data visualization framework 14. Torch - Deep learning library

7. SQLAlchemy - Object-relational mapper 15. Pandas - Data analysis libraryPandas

8. Ansible - IT automation tool

It serves as a valuable resource for researchers and practitioners involved in performance
analysis, optimization, and software engineering advancements in the Python ecosystem.
PyCorpus encompasses a diverse set of representative benchmarks, associated test cases, and
dynamic metrics to facilitate accurate and meaningful evaluations of Python software systems.

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5802

 Some of the basic features/metrics like Cyclomatic Complexity(CC), Maintainability
Index(MI), and Raw metrics (LOC, LLOC, SLOC) etc. of these projects as reported by
radon[24] has been given below.

Project
Block
s CC

Classe
s mi LOC LLOC SLOC

Comment
s

Requests 272 3.261 18 68.375 5435 2458 2891 450
Flask 376 2.787 22 61.394 8791 3247 3920 700
Tornado 3074 2.115 72 51.623 42034 21118 25857 4079
Scrapy 1702 2.536 170 71.144 22219 12331 15207 753
Pygame 3163 2.390 172 59.766 67050 37429 46106 5230
Dash 919 3.214 207 87.613 42913 8412 21721 1037
SQLAlchem
y 11546 2.532 252 50.643 226767 84964 138112 9921
Ansible 4523 5.004 479 68.551 122756 60828 82997 13409
NumPy 12080 2.598 484 56.468 249832 122068 146715 15636
Scikit-learn 9338 3.212 548 57.078 308286 114728 168687 19263
Keras 5315 3.266 604 78.093 165770 56389 88005 12692
SciPy 18483 2.350 797 57.624 430421 179165 225487 28672
Django 10329 2.998 872 75.674 151296 77456 105302 11632
Torch 20847 2.997 1362 69.63 480941 195483 319828 34986
Pandas 26965 2.729 1371 59.276 563651 263410 381353 35337

0
10
20
30
40
50
60
70
80
90

100

Re
qu

es
ts

Fl
as

k
To

rn
ad

o
Sc

ra
py

Py
ga

m
e

Da
sh

SQ
LA

lc
he

m
y

An
sib

le
N

um
Py

Sc
ik

it-
le

ar
n

Ke
ra

s
Sc

iP
y

Dj
an

go
To

rc
h

Pa
nd

as

Maintainabilty Index

0.000

1.000

2.000

3.000

4.000

5.000

6.000

Re
qu

es
ts

Fl
as

k
To

rn
ad

o
Sc

ra
py

Py
ga

m
e

Da
sh

SQ
LA

lc
he

m
y

An
si

bl
e

N
um

Py
Sc

ik
it-

le
ar

n
Ke

ra
s

Sc
iP

y
Dj

an
go

To
rc

h
Pa

nd
as

Cyclomatic Complexity

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5803

5. DYNAMIC ASPECTS CAPTURED BY PYCORPUS

The programs in PyCorpus are chosen to capture the dynamic aspects of the Python
language. They leverage features such as late binding, polymorphism, dynamic typing, and
reflection, which are fundamental to Python's flexibility and expressiveness. By including these
dynamic features, PyCorpus enables researchers to analyze and understand the performance
implications of Python's unique language characteristics.

6. USECASES AND APPLICATION SCENARIOS

PyCorpus, as a curated collection of FOSS Python programs with specific attributes, can serve
as a valuable resource for various use cases and application scenarios in empirical studies,
benchmarking, machine learning, and software engineering education.

6.1. Empirical Studies:

Comparative Analysis: Researchers can perform comparative studies on different projects
within PyCorpus to understand patterns, best practices, and common pitfalls in Python software
development.
Code Quality Analysis: PyCorpus can be used to analyze code quality metrics across projects,
identify trends, and assess the impact of various coding styles and practices on maintainability
and performance.
Dynamic Feature Analysis: Researchers can study the prevalence and usage patterns of
dynamic features in Python by examining code samples from PyCorpus.
Evolutionary Analysis: PyCorpus's projects with multiple versions can be analyzed to study
code evolution, identify changes in design patterns, and assess the impact of refactoring.

6.2. Benchmarking Tools and Techniques:

Tool Comparison: Researchers can use PyCorpus to benchmark different static analysis tools,
testing frameworks, and performance analysis tools to evaluate their effectiveness and
efficiency on real-world projects.

0

100000

200000

300000

400000

500000

600000

RAW Metrics

LOC LLOC SLOC Comments

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5804

Code Coverage Analysis: PyCorpus can be used to benchmark code coverage tools and
techniques to assess their accuracy in measuring test coverage.
Dynamic Analysis Techniques: Researchers can compare various dynamic analysis
techniques (e.g., profiling, tracing) on PyCorpus to understand their effectiveness in different
scenarios.

6.3. Training Machine Learning Models:

Machine Learning for Code Analysis: Researchers can use PyCorpus to train machine
learning models for code classification, bug detection, and other software engineering tasks.
Predictive Maintenance: Machine learning models trained on PyCorpus can help predict
maintenance needs, identify code smells, and anticipate potential issues in software projects.

6.4. Enhancing Software Engineering Education:

Learning Resources: PyCorpus can be a valuable resource for educational purposes,
providing real-world examples for students to study, analyze, and learn from.
Code Review Practice: Students can practice code review on projects from PyCorpus to
improve their code analysis and critical thinking skills.
Best Practices: PyCorpus can serve as a reference for demonstrating best practices, design
patterns, and coding conventions in Python development.

6.5. Language Feature Exploration:

Language Research: PyCorpus can be used to explore how different Python language features
are used in real-world projects, providing insights into the popularity and practicality of
specific language constructs.

6.6. Automated Code Generation and Refactoring:

PyCorpus can serve as a dataset for training machine learning models to automatically generate
code snippets or assist in code refactoring tasks.
Overall, PyCorpus offers a diverse range of Python projects that can be leveraged for research,
analysis, benchmarking, and educational purposes. The availability of multiple versions of
projects allows for historical analysis and trend identification. Researchers, practitioners, and
educators can benefit from PyCorpus to advance their understanding and expertise in Python
software engineering.

7. LIMITATIONS AND FUTURE DIRECTIONS

While PyCorpus represents a significant contribution to the field of Python software analysis,
there are several avenues for future work and improvements:

7.1. Expansion of Benchmark Suite

One area for future work is the expansion of PyCorpus to include an even broader range of
benchmarks. This expansion can encompass additional domains, programming paradigms, and
libraries, ensuring a more comprehensive representation of the Python ecosystem. By including

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5805

a wider variety of benchmarks, PyCorpus will become an even more powerful tool for
performance analysis and optimization.

7.2. Inclusion of Real-World Applications

Another direction for future work is the inclusion of benchmarks based on real-world Python
applications. This would involve collaborating with industry partners or open-source projects
to incorporate their software systems into PyCorpus. By including real-world applications,
PyCorpus can provide researchers and practitioners with insights into the performance
characteristics of production-grade Python programs.

7.3. Integration with Existing Tools and Frameworks

PyCorpus can be further enhanced by integrating it with existing tools and frameworks used
for performance analysis and optimization in the Python ecosystem. This integration would
allow researchers and practitioners to leverage PyCorpus seamlessly within their existing
workflows and take advantage of the features and capabilities offered by these tools.

7.4. Community Collaboration and Contributions

A vital aspect of future work is fostering community collaboration and contributions to
PyCorpus. By establishing PyCorpus as an open-source project, researchers and practitioners
can contribute new benchmarks, test cases, and performance metrics based on their specific
needs and areas of expertise. Community involvement will ensure the continuous improvement
and relevance of PyCorpus over time.
The future work outlined above will further enhance the capabilities of PyCorpus and
contribute to the ongoing improvement and development of Python software analysis tools and
technique

8. CONCLUSION

PyCorpus represents a significant contribution to the field of Python software analysis by
providing a comprehensive benchmark suite tailored for Python programs. With its diverse set
of representative benchmarks, integration of test cases, inclusion of multiple versions, and
dynamic metrics, PyCorpus enables researchers to gain insights into the performance behavior
of Python programs and make informed decisions regarding accurate performance evaluations,
optimization opportunities, and software engineering advancements. Practitioners can leverage
PyCorpus to identify performance bottlenecks, optimize critical sections of their codebase, or
assess the performance implications of software changes. The availability of PyCorpus as a
standardized benchmark suite fosters collaboration, enables comparative studies, and promotes
advancements in the field of Python software analysis.

REFERENCES

[1] M. J. Ordonez and H. M. Haddad, “The State of Metrics in Software Industry,” in Fifth
International Conference on Information Technology: New Generations (itng 2008),
2008, pp. 453–458.

[2] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented Design,”
IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5806

[3] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical guide. Prentice-
Hall, Inc., 1994.

[4] F. Brotoeabreu, “The MOOD Metrics Set,” in Proc. ECOOP’95 Workshop Metrics,
1995.

[5] N. E. Fenton and M. Neil, “Software metrics: successes, failures and new directions,” J.
Syst. Softw., vol. 47, no. 2–3, pp. 149–157, 1999.

[6] M. D. Ernst, “Static and dynamic analysis: synergy and duality,” WODA 2003 ICSE
Work. Dyn. Anal., pp. 24–27, 2003.

[7] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software
developers use static analysis tools to find bugs?,” in 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 672–681.

[8] K. Goseva-Popstojanova and A. Zahalka, “The impact of dynamic metrics on
identification of the failure prone parts of the software,” Lane Dept. Comput. Sci. Electr.
Eng. West Virginia Univ. Morgantown, USA, June, 2006.

[9] S. Oveflow, “Stack Overflow developer survey 2023.” [Online]. Available:
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof.

[10] W. McKinney, Python for data analysis. “ O’Reilly Media, Inc.,” 2022.
[11] R. Zulunov and B. Soliev, “Importance of Python language in development of artificial

intelligence,” Потомки Аль-Фаргани, vol. 1, no. 1, pp. 7–12, 2023.
[12] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking to advance research: A

challenge to software engineering,” in 25th International Conference on Software
Engineering, 2003. Proceedings., 2003, pp. 74–83.

[13] P. Botman, “Software Assessments, Benchmarks and Best Practices,” Softw. Qual.
Prof., vol. 4, no. 2, p. 48, 2002.

[14] A. Meneely, B. Smith, and L. Williams, “Validating Software Metrics: A Spectrum of
Philosophies,” ACM Trans. Softw. Eng. Methodol., vol. 21, no. 4, pp. 1–28, 2012.

[15] S. Beecham, T. Hall, D. Bowes, D. Gray, S. Counsell, and S. Black, “A Systematic
Review of Fault Prediction approaches used in Software Engineering,” Engineering, no.
03, 2010.

[16] H. A. Valdecantos, K. Tarrit, M. Mirakhorli, and J. O. Coplien, “An Empirical Study on
Code Comprehension: Data Context Interaction Compared to Classical Object
Oriented,” in 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC), 2017, pp. 275–285.

[17] W. Hasselbring, “Benchmarking as empirical standard in software engineering
research,” in Evaluation and Assessment in Software Engineering, 2021, pp. 365–372.

[18] S. M. Blackburn et al., “The DaCapo Benchmarks : Java Benchmarking Development
and Analysis ∗,” in 21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, 2006, pp. 169–190.

[19] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko, “SPECjvm2008 Performance
Characterization,” in Computer Performance Evaluation and Benchmarking, 2009, pp.
17–35.

[20] E. Tempero et al., “The Qualitas Corpus: A curated collection of Java code for empirical
studies,” in Software Engineering Conference (APSEC), 2010 17th Asia Pacific, 2010,
pp. 336–345.

PYCORPUS: A BENCHMARK CORPUS OF PYTHON PROGRAMS FOR DYNAMIC PROGRAM ANALYSIS

Journal of Data Acquisition and Processing Vol. 38 (3) 2023 5807

[21] J. Dietrich, H. Schole, L. Sui, and E. Tempero, “XCorpus – An executable Corpus of
Java Programs (preprint , under review for jot . fm),” pp. 1–26, 2017.

[22] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Martínez-Perez, and C. Soubervielle-
Montalvo, “Source code metrics: A systematic mapping study,” J. Syst. Softw., vol. 128,
pp. 164–197, 2017.

[23] Amit Kumar Dogra and H. K. Verma, “PyCorpus Github repository.” [Online].
Available: https://github.com/amitkumar62003/PyCorpus.git.

[24] “Radon.” [Online]. Available: https://radon.readthedocs.io/en/latest/index.html#.
[Accessed: 25-Jun-2023].

