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Abstract: Recently, the advances in the technology causes the power systems switch to smart 
grids, ever-increase of the distributed power generation, and expansion of microgrid causes 
power quality problems to the consumers. Power Quality Disturbances causes serious damages 
to the electrical appliances and hence their prior detection classification gained significant 
interest. Towards such prospect, this paper introduced a new method for PQDs detection and 
classification based on composite features and ensemble learning. At features extraction, each 
PQD is signified through two different set of features extracted from S-transform and Statistical 
methods. S-transform reveals time-frequency characteristics and statistical features reveals the 
feature independency between inter PQDs. Further at classification, two machine learning 
algorithms namely Support Vector Machine (SVM) and Kernalized Extreme Learning 
Machine (KELM) are employed. KELM explores the perfect discrimination between PQDs 
and is formulated as a combination of polynomial and Radial Basis Function Kernels. 
Extensive simulations of synthetic PQDs shows the effectiveness of proposed method, 
especially at the mixed PQDs. The proposed method gained only noticeable improvement at 
single PQDs classification, but it gained significant improvement at mixed PQDs 
classifications.  
Keywords: power Quality Disturbances, S-transform, Statistical features, Mixed PQDs, 
KELM, SVM, and Accuracy.   

I. Introduction 

From the past few years, a huge rise in the power consumption is observed due to the 
population growth and the integration of new equipment with the Power Grid system. Further, 
to reach the increased demands of consumers, several types of power generation and storage 
strategies are developed [1]. Moreover, the rapid growth in the solid state switching devices 
and power electronic equipment in both public sectors and industrial sectors also demands for 
a continuous supply of electric power.  Such kind of integrated devices for distributed power 
generation, particularly with renewable energy sources (Eolic and Photovoltaic) and the micro 
grid’s consolidation [2] leads to a change in the operational management of power system [3]. 
Hence, the electric system needs to become smarter and needs to perform the operations in a 
decentralized fashion [4].      

Along with provision of continuous power supply, there must a power quality 
monitoring unit which assesses the quality of power supplied to home sectors and industrial 
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sectors. Since there exists sensitive electric and electronic devices, the qualitative power needs 
to be supplied otherwise they will get impacted much seriously. Any deviation in the Original 
characteristics of power is regarded as Power Quality Disturbance (PQD) [5]. Some examples 
of such deviations are Interruption, Elevation, Increased outages and under voltages etc. One 
of the main reasons behind the occurrence of PQDs is load changes according to the consumer’s 
facilities, irrespective of commercial, industrial or residential [6]. Further, the integration of 
different sources is the major sources of PQDs. PQDs shows huge impact on the experience of 
consumers, as they are non-linear in nature and cause huge damage to voltage sensitive loads 
like efficient energetic lighting and computers. In the case of industrial consumers, the PQDs 
can cause a production line to get stopped [7], [8].  

      

  (a)                                                                                             (b) 

      

   (c)                                                                                             (d) 

     

 

   (e)                                                                                             (f) 
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       (g)                                                                                             (h) 

 

(i) 

Figure.1 PQDs, (a) Normal, (b) Sag, (c) Swell, (d) Interruption, (e) Harmonics, (f) 
Oscillatory Transient, (g) Sag with harmonics, (h) Swell with harmonics and (i) Flickr  

 
In general, the power quality is affected due to the occurrence of Voltage Sags/Swells, 

Harmonics, interruptions, flickers etc. Along with these issues, the PQDs can also signify 
through the deviations of an electrical signal in its time, amplitude and frequency 
characteristics. Figure.1 shows some examples of PQD signals. Since the PQDs are totally 
uncertain in nature, a continuous power quality monitoring unit is required which can identify 
the deviations instantaneously and identifies the PQDs. Such kind of quick detection is a 
challenging task for humans and hence, an automatic PQDs detection and classification is the 
main motivation of this work. In the past, various approaches have been introduced for 
automatic detection and classification of PQDs through several methods [9-11] including 
signal processing, machine learning and statistical analysis methods etc. However, most of the 
earlier methods focused on single PQDs and very less concentrate on the Compound PQDs 
which are the combinations of multiple and single PQDs. For example, Sag is single PQD and 
Sag with harmonics is a Compound PQD in which the signal is deviated in multiple 
characteristics. Moreover, the compound PQDs are non-stationary in nature and the stationary 
signal processing methods like Fourier transform can’t explore the real PQD nature.  

To sort out these problems, this paper proposes a new Method for the Detection and 
Classification of both single and mixed PQDs. The complete methodology involves two feature 
extraction methods and two machine earning algorithms. S-Transform (ST) and Statistical 
methods are employed to extract features from PQDs and SVM and KELM are employed for 
the classification. SVM classifies the PQDs from Non-PQDs and KELM classifies PQDs into 
different classes. The major contribution of this work as follows;  
 S-Transform explores the time-frequency characteristics PQDs effectively without any 

necessity for the selection of mother wavelet. S-transform also ensures least data loss 
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during the time-frequency transformation. Further, S-Transform ensures a better signal 
clarity and it won’t have a cross term problem. Additionally, the statistical features ensure 
better discrimination between PQDs especially signals with larger deviations.   

 Ensemble Classification ensures better classification for both stationary and non-stationary 
signals. Mixed PQDs are non-stationary in nature and a single classifier won’t support for 
better accuracy. Hence we employed an ensemble classification at which the SVM 
classifies the input signal into two classes and the KELM classifies the further sub-class.  

Rest of the paper is organized as follows; the details of literature survey are explored in 
2nd section. The details of proposed method are explored in 3rd section. 4th section provides the 
details of experimental investigations and last section concludes the paper.       

II. Literature Survey 

In the past, so many works have been proposed for the detection and classification of 
PQDs. Broadly the entire methodology is accomplished in three phases; they are feature 
extraction, feature selection and classification. For feature extraction, the methods like 
“Wavelet Transform (WT)”, “Fast Fourier Transform (FFT)”, “Short Time Fourier Transform 
(STFT)”, “Hilbert Huang Transform (HHT)” etc. are used. Next, for feature selection, the 
method like “Genetic Algorithm (GA)”, “Artificial Bee Colony (ABC)”, and “Maximum 
Redundancy Relevancy (MRR)”, “Principal Component Analysis (PCA)”, Fisher Criterion etc. 
are used. Finally at classification, the artificial intelligence algorithm such as SVM, “Artificial 
Neural Networks (ANN)”, “Decision Tree (DT)”, “Multi-Layer Perceptron (MLP)” etc. are 
used. Some the approaches employed even deep learning algorithm also for PQDs 
classification. This section explores the recent methods focused on the detection and 
classification of PQDs.     

 Jamali S et al. [12] proposed a PQDs classification method to classify totally 16 classes 
considered based on the IEEE 1159 standard. Each PQD signal is sampled at 6.4 kHz with 10 
cycles is processed for feature extraction through different methods. Maximum Relevancy 
Minimum Redundancy (MRMR), Sequential Forward Selection (SFS) and genetic algorithm 
are used for the selection of precise features. Then the selected features are fed to several 
classifiers and the best classifier is found based on the comparison of results. Six classifiers 
namely K-NN, ANN, SVM, Random Forest, “Linear Discriminant Analysis (LDA)” and DT 
are employed for classification.   

Liu H. et al. [13] considered “Fast Discrete Curvelet Transform (FDCT)” [14] and 
“Singular Spectrum Analysis (SSA)” and deep “Convolutional Neural Networks (CNNs)” to 
detect and classify the PQDs. Initially the PQD signal is decomposed through FDCT and SSA 
up to three and six levels respectively. Then they employed CNNs based classifier and Multi-
class SVM classifier for the classification of both single and complex PQDs. Totally they 
considered 31 classes of both real and synthetic PQDs for classification. Similarly, Ma J et al. 
[15] also employed deep learning algorithm for PQDs classification. They used Stacked Auto 
encoder as a deep learning method to extract high level features and used Particle Swarm 
Optimization (PSO) and Variances to help the model for PQDs classification.     

Wilson L. Rodrigues et al. [16] proposed a customized deep learning algorithm for the 
classification of PQDs from voltage signals. Their CNN model composed of convolutional 
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layers, batch normalization unit, short term memory layer and pooling layer. They used the 
voltage signals with overlapping windows with different Signal to Noise Ratios (SNRs) and 
Different sampling rates. Ucar F et al. [17] proposed a PQDs classification method in two 
stages to classify totally six classes. In the first stage, they employed Histogram based method 
and DWT to detect the majority Power Quality events (PQEs). In the second stage, they 
employed Extreme Learning Machine (ELM) to classify the PQ events.  

E. Sami et al. [18] classified totally four single PQDs such as Swell, Sag, Harmonics 
and Interruption. For such purpose, they employed a Colorized Continuous Wavelet Transform 
on voltage signal and converted them into images files, i.e., 2D files. Then they are fed to 
optimized Bayesian CNNs for classification. Their CNN model composed of three 
convolutional layers, two pooling layers, one fully connected layer and one soft max layer. 
Amin Akbarpour et al. [19] proposed a direct and straightforward method for PQDs 
classification. Totally eight PQDs are targeted at classification, they are Swell, Sag, 
Interruption, Flicker, Harmonics, Sag with harmonics, well with harmonics and interruption. 
Three machine learning algorithms are employed for classification; they are namely SVM, 
Decision tree and KNN and conclude that the DT had shown better classification performance.  

Singh U and Singh S. N. [20] proposed a multi-objective feature selection mechanism 
through ACO to minimize the size of feature set and classification error in the classification of 
PQDs. For feature extraction, they employed the combination of Time-time transform and S-
Transform which gives a wide range of features. Three machine learning algorithms are 
employed for classification; they are namely SVM, Decision tree and KNN. S. Dash, U. 
Subudhi [21] applied Modified Stockwell Transform with 2nd order Gaussian window for 
features extraction from PQDs. Three statistical features namely Energy and Standard 
Deviation of magnitude and phase contour are extracted from ST matrix and fed o SVM for 
classification. A Meta-heuristic algorithm called “Whale Optimization Algorithm (WOA)” 
[22] is employed to tune the SVM’s hyper parameters. Similarly, Alqam S. J. et al. [23] also 
employed S-transform for time-frequency analysis of PQDs. They employed a rue based DT 
for classification.       

Bravo-Rodríguez et al. [24] proposed a S-Transform based hybrid method for PQDs 
classification. After extracting the features from PQDs through ST, they are fed to three 
machine learning algorithms namely DT, K-NN and SVM. Further, the process was optimized 
through GA [25] and “Competitive Swarm Optimization (CSO)” [26]. Belkis Eristi, Huseyin 
Eristi [27] proposed “ST and Bayesian optimization-based CNN (STBOACNN)” which 
employs ST and CNN for PQDs classification in hybrid power system. Initially, a contour 
image is constructed after applying ST over PQD signal. Then the resultant image is fed to 
CNN for classification. In addition, they employed “Bayesian Optimization Algorithm (BOA)” 
[28] to tune the hyper parameters of CNN.   

W. Zhao et al. [29] used two transform techniques namely Wavelet Transform and S-
Transform for feature extraction and two machine learning algorithms namely Decision tree 
and classification rules for classification of PQDs. The rules are formulated based on the energy 
spectrum obtained through Wavelet Transform and other seven time frequency features 
obtained by S-transform. Ismail Topaloglu [30] developed a CNN based classifier to classify 
the PQDs. They employed an attention model in CNN in which the data is multiplied by the 
number of elements by the number of epoch time.   Ezgi Güney et al. [35] applied S-transform 
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for feature extraction from PQDS and employed two machine learning algorithms namely VM 
and ANN for classification.  

Khokar et al. [39] focused on the classification of bot single and multiple PQDs with 
the help of DWT and “Probabilistic Neural Networks (PNNs)” and ABC. Here, DWT is used 
for feature extraction and PNN is used for classification. ABC is used for the optimization of 
two parameters of PNN such as number of features and spread constant. Huang et al. [40] 
proposed an “Optimal Multi-Resolution Fast S-Transform (OMFST)” for feature extraction 
and “Classification and Regression Tree (CART)” for classification of PQDs in microgrid. 
OMFST extracts frequency domain features from PQD signal and totally 67 features are 
extracted from time-frequency analysis. Further, the feature section is accomplished based on 
the Gini index and they are fed to CART for classification. Li J et al. [41] proposed a method 
for the detection and classification of PQDs based on “Directed Acyclic Graph SVMs (DAG-
SVMs)” and “Double Resolution S-Transform (DRST)”.   

III. Proposed Approach   

3.1 Overview 

This section illustrates the complete details of proposed approach for the detection and 
classification of PQDs from voltage signals. Figure.2 shows the overall block diagram of 
proposed approach which is executed in two phases they are feature extraction and 
classification. At feature extraction, two different set of features are extracted hey are time-
frequency features and statistical features.  For the extraction of time-frequency features, we 
employed the Stock well transform. Under statistical features, we extract totally six features; 
they are Root Sum of Squared Level (RSS), Mean Absolute Deviation (MAD), Standard 
Deviation, Minimum, maximum and mean. Then they are fed to classification at where we 
employed a ensemble classifier, a combination of SVM and KELM.  

 

Figure.2 Block Diagram of proposed method 

3.2 Feature Extraction  
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At this phase, we employed two methods namely S-transform and Statistical methods 
for extracting features from each PQD signal. S-transform intended to provide the time-
frequency related features and statistical methods intended to provide statistical characteristics. 
The complete details of these two methods are explored in the following sub-sections;   

A. Time-Frequency Features  

In general, the PQD detection and classification is carried out through the voltage 
signals processing through the electronic and electric equipment. The voltage signals are time 
base signals which has either continuous or discrete amplitude at every time instance. However, 
the basic feature such as time and amplitude are not sufficient to detect the PQDs. Hence the 
researchers extracted different set of features from PQD signals to identify them. Some 
methods applied Fourier transform which reveals the frequency information of signal, but the 
FT is applicable for only stationary signals. Next, STFT [31] is a one more time-frequency 
transformation technique which solves the problem of FT. However, the STFT adapts a fixed 
width window which cannot reveal the time and frequency resolutions simultaneously. Wavelet 
Transform [32] is found one of the mostly used multi-resolution analysis technique which can 
ensure a proper time-frequency resolution of a signal. Wavelet Transform decomposes the 
signal into different scales and every scale explores specific resolution of the signal. Wavelet 
Transform applies a pinging window with varying widths and provides both high and low 
frequency parts of the signal. Finally, the Wavelet transform transforms the signal into a series 
of wavelet functions. However, the major drawback of Wavelet Transform is the selection of 
mother wavelet and also the wavelet coefficients lost the data belongs to phase.  

To overcome these problems, we use S-Transform, a time-frequency distribution model 
developed by Stockwell in 1996 [33]. S-Transform is regarded as generalized version of STFT 
and the extended model of “Continuous Wavelet transform (CWT)”. S-Transform is more 
advantageous than FT and WT. At first, it fixes the modulation sinusoids with respect to time 
axis; it localizes the scalable Gaussian window translations and dilations. Further, S-Transform 
ensures a better signal clarity and it won’t have a cross term problem. Finally, the 
computational complexity of S-Transform is very less, i.e., 𝑂(𝑁𝑙𝑜𝑔𝑁). Since S-transform is 
regarded as an effective transform, it gives high-frequency resolution at low frequencies and 
high time resolution at high frequencies. Hence, we applied S-Transform to represent each 
PQD signal in time-frequency format.  The S-Transform of a continuous signal  𝑥(𝑡) is 
expressed as 

𝑆௫(𝑡, 𝑓) = exp (𝑗2𝜋𝑓𝑡)𝑊௫(𝑡, 𝑑)    (1) 

Where 𝑊௫(𝑡, 𝑑) denotes the CWT of a signal  𝑥(𝑡). The S-transform is derived as the phase 
correction of CWT with window being the Gaussian function, Eq.(1) is formulated as a 
function of CWT of signal. The mathematical expression for 𝑊௫(𝑡) is given as  

𝑊௫(𝜏, 𝑑) = ∫ 𝑥(𝑡)𝜔(𝑡 − 𝜏, 𝑑)𝑑𝑡
ஶ

ିஶ
    (2) 

Where 𝜔(𝑡, 𝑓) is a Gaussian Mother wavelet expressed as  

𝜔(𝑡, 𝑓) =
|௙|

√ଶగ
exp ቀ

ି௙మ௧మ

ଶ
ቁ exp (−𝑗2𝜋𝑓𝑡)    (3) 
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Where d signifies the inverse of frequency f, i.e., 𝑑 = 1/𝑓. Thus the mathematical expression 
of S-Transform is changed as  

𝑆௫(𝜏, 𝑑) =
|௙|

√ଶగ
exp ቀ

ି௙మ(௧ିఛ)మ

ଶ
ቁ exp (−𝑗2𝜋𝑓𝑡)𝑑𝑡    (4) 

From Eq.(3), it can denoted that the S-transform’s width is totally dependent on the frequency 
f, hence, the width becomes wider for the decrease in frequency and becomes narrower for an 
increase in the frequency [34]. An example S-transform response of Interruption is shown in 
Figure.3.   

   

 

(a)                                                                                       (b)  

Figure.3 (a) Interruption and (b) S-transform response of Interruption 

B. Statistical features  

Since the statistics of 2-D signal are different from PQD to PQD, they can explore 
significant knowledge about their statistical nature. For example the Sags mean is different 
from Swell’s Mean because they are much deviated in their magnitudes.  Hence, we employed 
to describe the PQD through their statistical features. For the computation of statistical features, 
each PQD is windowed through a window of time span 0.5 seconds. Totally six features are 
computed under this category, they are namely RSS, MA), Standard Deviation (SD), 
Minimum, maximum and mean. They are explained as follows;  
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Mean: Mean explores the average amplitude variations in the signal. For a given w, the mean 
is computed as a summation of amplitudes of all samples followed by division of sum with 
total number of samples present in the window. Mathematically, it is expressed as   

𝜇 =
ଵ

௦௜௭௘(௪)
∑ 𝑠௜

௦௜௭௘(௪)
௜ୀଵ                                (5) 

Where 𝑠௜ denotes the ith sample’s amplitude.  

Minimum and Maximum: Minimum and Maximum value explores the least and most values 
among the given input samples.  These features help in the discrimination between sag and 
swell signals and also between sag with harmonics and swell with harmonics. For a given 
window w, the minimum and maximum are computed as; 

𝑀𝑥 = 𝑀𝑎𝑥(𝑤)                                     (6) 

𝑀𝑛 = 𝑀𝑖𝑛(𝑤)                               (7) 

SD: SD explores the PQD signal’s statistical distribution with respect to mean. For a given 
window w, initially mean is computed and then each sample’s amplitude is subtracted from 
mean followed by summation, normalization and square root computation. Mathematically, 
MAD is computed as  

  𝜎 = ට
ଵ

௦௜௭௘(௪)
∑ (𝑠௜ − 𝜇)ଶ௦௜௭௘(௪)

௜ୀଵ                               (8) 

MAD: It reveals the signal’s variability. For a given window w, mean is calculated at first and 
then each sample’s amplitude is subtracted from mean followed by summation and 
normalization is performed. Since the means of PQDs are different in nature, the MAD ensure 
better discrimination between PQDs. Mathematically, MAD is computed as  

𝑀𝐴𝐷 =
ଵ

௦௜௭௘(௪)
∑ (𝑝௜ − 𝜇)

௦௜௭௘(௪)
௜ୀଵ                            (9)  

RSS: It is measured as the square root of mean of summation of squared amplitudes of each 
sample in the window. For a given window, initially each sample is squared and then all the 
values are subjected to summation followed by normalization and square root computation. 
RSS alleviate the difference between PQD signals and noises perfectly since the squared 
amplitude clears the ambiguity.  For a given window w, the RSS is computed as;  

𝑅𝑆𝑆 = ට
ଵ

௦௜௭௘(௪)
∑ (𝑝௜)

ଶ௦௜௭௘(௪)
௜ୀଵ                            (10)   

 

3.3 Ensemble Classification  

Under the Ensemble classifier, we considered two different machine learning 
algorithms namely KELM and SVM. SVM   is employed at the first stage of the classification 
while at the second stage classification, KELM is employed.  During the training phase, the 
system learns only two kinds of features they are PQD features and normal features.  The SVM 
algorithm assigns these two features with two labels, one label for PQD set and another label 
for normal set.  Next for the PQDs classification, the system uses KELM algorithm and the 
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input data is only PQDs feature set.  During the testing phase, initially the features are 
computed through S-transform and Statistical measures and then processed through the SVM 
algorithm to find its class.  If it is classified as PQD then it is again processed through KELM 
algorithm to find its further class.  The complete details about the two machine learning 
algorithms are demonstrated here.    

A. SVM 

SVM mainly determines a hyperplane which can place the samples from inside 
class.  Different types of kernel functions are employed in the SVM which can hypothesize the 
nonlinear and linear features thereby it can model a hyperplane strictly according to the 
functionality of the kernel function.  At this case, we used a tool called as LIBSVM to test the 
model. Consider 𝑥௜ ∈ 𝑅௡, 𝑖 = 1,2, … . 𝑙 as vector of input features of two classes, and then SVM 

determines a vector of output features  𝑦௜ ∈ 𝑅௟  in such a way  𝑦௜ ∈ {−1,1}. Based on this 
theory, the mathematical expression of SVM is given as   

𝑓(𝑡) = 𝑠𝑔𝑛 ൫∑ 𝑦௜𝛼௜
௟
௜ୀଵ 𝐾(𝑥௜, 𝑥) + 𝑏൯             (11) 

Where 𝛼௜  = the coefficients of Lagrange multiplier of the ith feature, 𝐾(𝑥௜, 𝑥)= kernel function 
and b = subjective constant.  Mathematically, the function of kernel is expressed as  

𝐾൫(𝑥௜, 𝑥)൯ = 𝑒𝑥𝑝 ቀ
ିฮ(௫೔ି௫)‖మ

ఙమ ቁ , 𝜎 ∈ 𝑅            (12) 

In accordance to the functionality theory, a kernel 𝐾(𝑥௜ , 𝑥)  is determined as positive definite 
kernel if it satisfies the mercer’s condition. For a given input signal, the SVM assigns two labels 
such as -1 for Normal Class and +1 for PQD class.   

B. KELM    

ELM is found as one of the popular approach which was developed by Huang et al. 
[36] at first.  It is regarded as a feed formal neural network which consists of a single hidden 
layer.  Since the conventional machine learning algorithms require more parameters 
tuning, this is regard as a local optimal solution.  However in ELM, there is no such 
requirement and it requires only to tune the hidden nodes count in the network.  Furthermore 
ELM also won't expect the weight adjustments in the input layer and the Hidden layers bias.  It 
can be regarded as an optimal solution in global fashion [37].  Due to these reasons the ELM 
is considered as a fastest algorithm which has fastest convergence rate.  Consider the training 
dataset is represented as 𝑇௥ = {(𝑥௜, 𝒕𝒊), 𝑖 = 1,2, … , 𝑁}, where 𝒙𝒊 = [𝑥௜

ଵ, 𝑥௜
ଶ, … , 𝑥௜

௡] is the input 

feature vector and 𝒕𝒊 = [𝑡௜
ଵ, 𝑡௜

ଶ, … , 𝑡௜
௡] is the corresponding target vector, the major requirement 

is to find an optimal model under testing process.  Accordingly 𝒚𝒊 = [𝑦௜
ଵ, 𝑦௜

ଶ, … , 𝑦௜
௡] is an 

output vector needs to be determined with the help of ELM, hence, it can be described as  

𝒚𝒊 = ∑ 𝛽௝𝑔௝(𝒙𝒊)
௟
௝ୀଵ = ∑ 𝛽௝𝑔൫𝜶𝒋. 𝒙𝒊 + 𝒄𝒋൯௟

௝ୀଵ , 𝑖 = 1, … , 𝑁   (13) 

Where 𝜶𝒋 is called as Weighted vector which illustrates the weight between hidden layer and 

input layer, 𝛽௝ is called as Weighted vector which illustrates the weight between hidden layer 

and output layer,  𝑔൫𝜶𝒋. 𝒙𝒊 + 𝒄𝒋൯ is the hidden layer’s activation function and bias function is 

denoted by 𝑐௝. As 𝑐௝  and 𝛼௝ are random processes in the hidden layer, they needs to be 

determined at hidden layers nodes. Towards the weights and hidden layer nodes computation, 
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the error obtained between output vector and target vector are presumed to be zero as shown 
below.  

∑ ฮ𝒕𝒋 − 𝒚𝒋ฮே
௜ୀଵ = 0   (14) 

Substitute Eq.(13) in Eq.(14), then  

𝒕𝒋 = ∑ 𝛽௝𝑔൫𝜶𝒋. 𝒙𝒊 + 𝑐௝൯௟
௝ୀଵ , 𝑖 = 1, … , 𝑁    (15) 

Upon expanding the Eq.(15), the resultant of expansion is shown in the Eq.(16), as follows;  

൥
𝑔(𝜶𝟏. 𝒙𝟏 + 𝑐ଵ) … 𝑔(𝜶𝒍. 𝒙𝟏 + 𝑐௟)

⋮ ⋱ ⋮
𝑔(𝜶𝟏. 𝒙𝑵 + 𝑐ଵ) … 𝑔(𝜶𝒍. 𝒙𝑵 + 𝑐௟)

൩

ே×௟

. ቎
𝛽ଵ

்

⋮
𝛽௟

்
቏

௟×௠

= ቎
𝑡ଵ

்

⋮
𝑡௟

்
቏

ே×௠

   (16) 

Eq.(16) can be written as  

𝑯𝛽 = 𝑻 and 𝛽 = 𝑯ା𝑻    (17) 

Where H is the Hidden layer’s output matrix,  𝛽 is the Hidden layer’s weight and T is target 
vector’s the output matrix. 𝑯ା is the “Moore-Penrose (MP)” generalized inverse of H matrix, 
is obtained as follows; 

𝑯ା = 𝑯𝑻(𝑯𝑯𝑻)ି𝟏    (18) 

However, ELM experienced poor classification performance under its accomplishment over 
some unknown datasets. Thus, we developed a new version of ELM by introducing a kernel 
function in it and named as KELM. According to the modified expression, the KELM is 
formulated as  

𝑓(𝒙) = ℎ(𝒙)𝛽 = ℎ(𝒙) ൬𝑯𝑻 ቀ
𝑰

𝑪
+ 𝑯𝑯𝑻ቁ

ି𝟏

൰   (19) 

Where C denotes a penalty parameter and I is an identity matrix. The Kernel function of KELM 
is defined as  

𝐾𝐸𝐿𝑀௜,௝ = ℎ(𝒙𝒊)ℎ൫𝒙𝒋൯ = 𝐾(𝒙𝒊, 𝒙𝒋)    (20) 

Then Eq.(19) is changed as  

𝑓(𝒙) = ൥
𝐾(𝒙, 𝒙𝟏)

⋮
𝐾(𝒙, 𝒙𝑵)

൩ . ൬𝑯𝑻 ቀ
𝑰

𝑪
+ 𝑯𝑯𝑻ቁ

ି𝟏

൰   (21) 

The kernel function shows significant impact on the performance of KELM. Furthermore, the 
exact kernel function insertion is challenging task in KELM. Here, we consider two different 
kernels such as RBF and polynomial to insert in the KELM.  The polynomial kernel has a great 
generalization capability and hence regarded as generalized function which was employed in 
so many approaches to deal with generalized learning capability [38]. Moreover, it is also 
considered as global kernel and its mathematical expression is given as follows; 

𝐾௣൫𝒙, 𝒙𝒋൯ = (𝒙. 𝒙𝒊 + 𝑏)௣                    (22)   
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On the other hand, the RBF kernel is regarded as local kernel function which has strong ability 
of learning and weak ability at generalization of solution. Based on the local functionality, the 
RBF kernel is mathematically articulated as   

𝐾ோ൫𝒙, 𝒙𝒋൯ = 𝑒𝑥𝑝 ቀ−
‖𝒙ି𝒙𝒊‖మ

ଶఙమ ቁ    (23) 

By integrating these two kernels, a composite kernel function is designed by assigning 
individual weights to each kernel. Mathematically, the composite kernel function is represented 
as  

𝐾஼൫𝒙, 𝒙𝒋൯ = 𝑤ଵ. 𝐾௣൫𝒙, 𝒙𝒋൯ + (1 − 𝑤ଵ). 𝐾ோ൫𝒙, 𝒙𝒋൯, 𝑤ଵ ∈ [0,1]   (24)  

The proposed composite kernel is more advantageous than the individual kernels. As the 
polynomial kernel suffers from weak ability at learning, it is solved through RBF kernel.  Next, 
the weak ability at generalization of solution with RBF kernel is solved through polynomial 
kernel. Thus, the proposed approach can ensure better IDS with strong learning ability along 
with strong generalization capability.  Such kind of classifiers produces better classification 
results.  

IV. Experimental Analysis 

4.1 Simulation setup 

To validate the proposed method experimentally, here we generate synthetic PQD 
signals in different number. Table.1 shows the generalized mathematical expressions through 
several control parameters used to generate PQDs. Here we consider totally 11 different signals 
among which one is normal signal which is represented with a pure sinusoidal wave form of 
frequency 50 Hz and amplitude of 1.0 p.u. Next, the PQDs are represented through the deviated 
Sinusoid signals and the deviations are attained through different control parameters. The entire 
signals are generated through MATLAB tool and the total recording time of each signal is kept 
as 0.4 seconds. Next, table.2 shows the number of signal generated, trained and tested. Out of 
total generated signals, 70% of signals are used for training and the remaining 30% are used 
for testing.  

Table.1 controlling parameters of various PQDs  

Class  Name  Expression Controlling Parameters  

C1 Sag 𝑠(𝑡) = [1 − 𝛼(𝑢(𝑡 − 𝑡ଵ)

− 𝑢(𝑡

− 𝑡ଶ))] sin(𝜔௡𝑡) 

0.9 ≥ 𝛼 ≥ 0.1 & 9𝑇 ≥

𝑡ଶ − 𝑡ଵ ≥ 𝑇 

C2 Swell 𝑠(𝑡) = [1 + 𝛼(𝑢(𝑡 − 𝑡ଵ)

− 𝑢(𝑡

− 𝑡ଶ))] sin(𝜔௡𝑡) 

0.8 ≥ 𝛼 ≥ 0.1 & 9𝑇 ≥

𝑡ଶ − 𝑡ଵ ≥ 𝑇 
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C3 Interruption  𝑠(𝑡) = [1 − 𝛼(𝑢(𝑡 − 𝑡ଵ)

− 𝑢(𝑡

− 𝑡ଶ))] sin(𝜔௡𝑡) 

1 ≥ 𝛼 ≥ 0.9 & 9𝑇 ≥ 𝑡ଶ −

𝑡ଵ ≥ 𝑇 

C4 Flicker  𝑠(𝑡) = [1 + 𝛼 sin(2𝜋𝛽𝑡)] sin(𝜔௡𝑡) 0.1 ≤ 𝛼 ≤ 0.2, 5𝐻𝑧 ≤ 𝛽 ≤

20𝐻𝑧 

C5 Harmonics 𝑠(𝑡) = 𝛼ଵsin(𝜔௡𝑡) + 𝛼ଷsin(3𝜔௡𝑡)

+ 𝛼ହsin(5𝜔௡𝑡)

+ 𝛼଻sin(7𝜔௡𝑡) 

0.05 ≤ 𝛼ଷ, 𝛼ହ, 𝛼଻

≤ 0.15, ෍ 𝛼௜
ଶ = 1 

C6 Oscillatory 
Transients  

𝑠(𝑡) = sin(𝜔௡𝑡) + 𝛼 exp (−(𝑡

− 𝑡ଵ)

/𝜏)(𝑢(𝑡

− 𝑡ଶ)) sin(2𝜋𝑓௡𝑡) 

0.1 ≤ 𝛼 ≤ 0.8, 0.5𝑇 ≤

𝑡ଶ − 𝑡ଵ ≤ 3𝑇, 300𝐻𝑧 ≤

𝑓௡ ≤ 900𝐻𝑧, 8𝑚𝑠 ≤ 𝜏 ≤

4𝑚 

C7 Spike  𝑠(𝑡) = sin(𝜔௕𝑡)

+ 𝑠𝑖𝑔𝑛(sin (𝜔௕𝑡))

× ෍ 𝑘ൣ𝑢൫𝑡

ଽ

௡ୀ଴

− (𝑡ଵ + 0.2𝑛)൯ − 𝑢(𝑡

− (𝑡ଶ + 0,02𝑛))൧ 

0.1 ≤ 𝑘 ≤ 0.4, 0 ≤ 𝑡ଵ, 𝑡ଶ ≤

0.5𝑇,  

0.01𝑇 ≤ 𝑡ଶ − 𝑡ଵ ≤ 0.05𝑇 

C8 Notch  𝑠(𝑡) = sin(𝜔௕𝑡)

− 𝑠𝑖𝑔𝑛(sin (𝜔௕𝑡))

× ෍ 𝑘ൣ𝑢൫𝑡

ଽ

௡ୀ଴

− (𝑡ଵ + 0.2𝑛)൯ − 𝑢(𝑡

− (𝑡ଶ + 0,02𝑛))൧ 

0.1 ≤ 𝑘 ≤ 0.4, 0 ≤ 𝑡ଵ, 𝑡ଶ ≤

0.5𝑇,  

0.01𝑇 ≤ 𝑡ଶ − 𝑡ଵ ≤ 0.05𝑇 

C9 Sag + 
Harmonics  

𝑠(𝑡) = ൣ1 − 𝛼൫𝑢(𝑡 − 𝑡ଵ)

− 𝑢(𝑡 − 𝑡ଶ)൯൧

× [𝛼ଵsin(𝜔௡𝑡)

+ 𝛼ଷsin(3𝜔௡𝑡)

+ 𝛼ହsin(5𝜔௡𝑡)

+ 𝛼଻sin(7𝜔௡𝑡)] 

∑ 𝛼௜
ଶ = 1, 0.15 ≥

𝛼ହ, 𝛼଻, 𝛼ଷ ≥ 0.05, 0.9 ≥

𝛼 ≥ 0.1 & 9𝑇 ≥ 𝑡ଶ − 𝑡ଵ ≥

𝑇 
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C10 Swell + 
Harmonics 

𝑠(𝑡) = ൣ1 + 𝛼൫𝑢(𝑡 − 𝑡ଵ)

− 𝑢(𝑡 − 𝑡ଶ)൯൧

× [𝛼ଵsin(𝜔௡𝑡)

+ 𝛼ଷsin(3𝜔௡𝑡)

+ 𝛼ହsin(5𝜔௡𝑡)

+ 𝛼଻sin(7𝜔௡𝑡)] 

∑ 𝛼௜
ଶ = 1, 0.15 ≥

𝛼ହ, 𝛼଻, 𝛼ଷ ≥ 0.05, 0.8 ≥

𝛼 ≥ 0.1 & 9𝑇 ≥ 𝑡ଶ − 𝑡ଵ ≥

𝑇 

C11 Interruption 
+ harmonics  

𝑠(𝑡) = ൣ1 − 𝛼൫𝑢(𝑡 − 𝑡ଵ)

− 𝑢(𝑡 − 𝑡ଶ)൯൧

× [𝛼ଵsin(𝜔௡𝑡)

+ 𝛼ଷsin(3𝜔௡𝑡)

+ 𝛼ହsin(5𝜔௡𝑡)

+ 𝛼଻sin(7𝜔௡𝑡)] 

∑ 𝛼௜
ଶ = 1, 9𝑇 ≥ 𝑡ଶ − 𝑡ଵ ≥

𝑇, 0.15 ≥ 𝛼ହ, 𝛼଻, 𝛼ଷ ≥

0.05, 1 ≥ 𝛼 ≥ 0.9 

C12 Normal  𝑠(𝑡) = sin(𝜔௡𝑡) 𝜔௡ = 2𝜋 × 50 rad/sec 

 
Table.2 Simulation Setup      

Class  Total Signals 
Generated  

Trained  Tested  

Sag – C1 297 208 89 

Swell – C2 264 185 79 

Interruption – C3  66 46 20 

Flicker  - C4 32 22 10 

Harmonics – C5 27 19 8 

Oscillatory Transients – C6 288 202 86 

Spike – C7 144 101 43 

Notch – C8 144 101 43 

Sag + Harmonics – C9  243 170 73 

Swell + Harmonics – C10 216 151 65 

Interruption + harmonics – 
C11 

54 37 17 

Normal  - C12 10 7 3 

Total  1785 1249 536 
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B. Results   

After the simulation of test signals, the obtained classification results are formulated in 
the form of a confusion matrix of size 𝑁 × 𝑁 where N denotes the total number of classes 
intended to classify. Table.3 shows the resultant confusion matrix constructed after the 
simulation of proposed mechanism with multiple features and two machine learning 
algorithms. From the results, we can see that the proposed approach had identified more TPs 
for single PQDs than the mixed PQDs. Next, the performance is evaluated through three 
performance metrics namely Recall, precision, and F-Score, shown in Table.4. Out of 12 PQDs, 
four PQDs are recognized more accurately as they have gained recall rate of 100%. On the 
other hand, along with few single PQDs, the mixed PQDs have gained 100% precision. As the 
statistical feature ensures more differentiation between mixed PQDs, the False Positive count 
is less even for mixed PQDs. Hence, they are precisely classified with 100% precision. Further, 
the maximum misclassification is observed between C1 (Sag) and C3 (Interruption) because 
our synthetic Sag and Interruption signals are in resemblance with each other. The False 
negative Rate between interruption and Sag is observed as approximately 20%. Further, we 
observed that some of the mixed PQDs are classified as the base signals. For example out of 
73 Sag with harmonics, 2 are classified as Harmonics and 2 are classified as Sag.  Similarly, 
out of 65 swell with harmonics, 2 are classified as swell and out of 17 interruption with 
harmonics, 2 are classified as harmonics.    

Table.3 Confusion matrix of overall system  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Total 

C1 89 0 0 0 0 0 0 0 0 0 0 0 89 

C2 0 79 0 0 0 0 0 0 0 0 0 0 79 

C3 4 0 16 0 0 0 0 0 0 0 0 0 20 

C4 0 0 0 9 1 0 0 0 0 0 0 0 10 

C5 0 0 0 0 8 0 0 0 0 0 0 0 8 

C6 0 2 0 0 1 83 0 0 0 0 0 0 86 

C7 0 0 0 0 0 1 41 1 0 0 0 0 43 

C8 0 0 0 0 0 0 3 40 0 0 0 0 43 

C9 2 0 0 0 2 0 0 0 69 0 0 0 73 

C10 0 1 0 0 2 0 0 0 0 62 0 0 65 

C11 0 0 0 0 2 0 0 0 0 0 15 0 17 

C12 0 0 0 0 0 0 0 0 0 0 0 3 3 
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Total  95 82 16 9 16 84 44 41 69 62 15 3 536 

 
Table.4 Performance metrics of overall detection and classification system 

Class Recall (%) Precision (%)  F-score (%) 

C1 100.00 93.3800 96.7400 

C2 100.00 96.3400 98.1400 

C3 80.0000 100.00 88.8900 

C4 90.0000 100.00 94.7400 

C5 100.00 50.0000 66.6700 

C6 96.5100 98.8100 97.6500 

C7 95.3500 93.1800 94.2500 

C8 93.0200 97.5600 95.2400 

C9 94.5200 100.00 97.1800 

C10 95.3800 100.00 97.6400 

C11 88.2400 100.00 93.7500 

C12 100.00 100.00 100.00 

 
Table.5 shows the impact of feature extraction and machine learning methods on the 

detection and classification of PQDs. For this purpose, we employed different combination like 
ST+SVM, ST+KELM, SF+SVM and SF+KELM and computed F-score for every simulation. 
From the results, the best combination is found at ST + KELM since it gained an average F-
score of 94.6484%. Compared with statistical features, the multi-resolution features extracted 
by S-transform are more informative and provide more information about the time-frequency 
characteristics of PQDs. Further, the KELM employed a composite kernel strategy to train the 
detection system and hence, the both stationary and non-stationary signals are classified 
accurately. Further, the least F-score is observed at the combination of SF + SVM because the 
statistical features provide similar values for common signals like sag & interruption, and 
Flicker & Oscillatory transient etc.    

Table.5 F-score computation at different combinations of proposed approach (ST: S-
Transform, SF: Statistical Features) 

Class ST + SVM ST + KELM  SF+ SVM SF + KELM 

C1 93.5820 94.8210 94.0630 94.2670 
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C2 97.4120 96.2210 95.4650 95.6680 

C3 85.4410 86.9710 86.2120 86.4190 

C4 91.4520 92.8210 92.0660 92.2670 

C5 68.4420 64.7510 63.9980 64.1980 

C6 93.2170 95.7310 94.9790 95.1740 

C7 92.1380 92.3310 91.5780 91.7790 

C8 93.3360 93.3210 92.5620 92.7660 

C9 96.8685 95.2610 94.5080 94.7080 

C10 95.3350 95.7210 94.9620 95.1660 

C11 89.4780 91.8310 91.0750 91.2750 

C12 100.00 100.00 100.00 100.00 

 
Figure.4 and Figure.5 shows the impact of SNR and sampling rates on the detection 

and classification of PQDs through Precision and Recall respectively. As the SNR increases, 
the noise present in the PQD signal gets vanished and the signal becomes more qualitative. 
Such kind of qualitative signal ensure better features and helps the detection system in accurate 
classification. Hence, we achieved more precision and recall at larger SNR than at the lower 
SNRs. Next, the sampling rate also plays a vital role in the PQD classification. Towards such 
analysis, we conduct a simulation study with varying sampling rates, i.e., different samples are 
kept for each window like 16 samples/window, 32 samples/window and 64 samples/window. 
As the number of samples is more in each window, the system can gain more knowledge about 
the features of PQDs. Hence the better performance is achieved at larger sampling rates. The 
maximum detection rate is observed as 98.3250% and it is achieved at the sampling rate of 64 
samples/window and SNR of 40 dB. Similarly, the maximum precision is observed as 
99.5620% and it is achieved at the sampling rate of 64 samples/window and SNR of 40 dB.   
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Figure.4 Precision for varying SNRs at different Sampling rates 

 
Figure.5 Recall for varying SNRs at different Sampling rates 

Table.6 Comparison of accuracies between proposed and existing methods    
Reference 

No. 
Methodology  Number 

of Classes  
Accuracy (%) 

20 
DB 

30 DB 40 DB 50 DB 

[39] Wavelet Transform and 
Probabilistic Neural 

Networks 

14 86.86 91.93 93.71 94.57 

[29] Wavelet Features with 
K-NN 

8 96.78 98.00 98.48 98.56 

[40] Fast S-Transform and 
Embedded Decision 

Tree 

12 91.50 98.58 98.83 98.92 
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[41] S-Transform and DAG-
SVM 

9 97.77 - - - 

[24] S-Transform and CSO-
SVM 

13 97.76 - - - 

Proposed  S-Transform and 
Statistics with 

Ensemble Learning  

12 97.96 98.69 99.20 99.45 

 
Table.6 shows the comparison between proposed and several conventional methods 

through the methodology employed, classes considered and accuracy obtained at different 
SNRs. Among the existing methods, we considered both single PQDs classification methods 
and mixed PQDs classification methods. Most of the methods employed Wavelet and S-
transform for feature extraction as they are more effective in the provision of time-frequency 
features. However they were not much concentrated on statistical analysis and classifier. 
Considering additional features along with time-frequency features, improves the analytical 
capability of system thereby increasing the classification accuracy. For example, [39] and [29] 
used simple Wavelet transform and simple machine learning algorithms. Hence [39] 
experienced less accuracy of 86.86% only. Even at larger SNRs it gained only 94.57% accuracy 
which shows that it had limited capacity at mixed PQDs. Next, [41] considered only single 
PQDs and hence it gained 97.77% accuracy. Even though [24] employed an additional CSO 
algorithm for the optimization SVMs parameters, it gained only 97.76% accuracy which shows 
that it has limited capability for mixed PQDs classification. Further, we observed that as the 
SNR progresses, the accuracy increases and reached maximum value at 50 DB. At every SNR, 
the proposed method gained more accuracy than all the existing methods. The main reason is 
that the proposed method involved two set of features and two machine learning algorithms. 
Such kind of accomplishment ensures better discrimination between mixed PQDs and sources 
of mixed PQDs.  

V. Conclusion   

PQDs are serious problems in the electrical field which causes serious damages to the 
appliances and devices connected. Hence, the prior detection and classification of PQDs is a 
significant research area. Towards such aspect, this paper proposed a new method which 
describes each PQD with two set of features and employs two machine learning algorithms for 
classification. S-transform is employed to analyze time-frequency features and statistical 
features are extracted along with. SVM and KELM machine learning algorithms are employed 
at classification. Simulation on the develop stem through synthetic PQDs data shows the 
superiority in the classification of totally 12 types of PQDs which include both single and 
mixed PQDs. Especially, the proposed method shown its significance at mixed PQDs which 
are considered complex signals for existing methods. On an average, the proposed gained an 
improvement of 0.5896% from single PQDs classification methods and 5.5230%f from mixed 
PQDs classifications methods.           
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