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Abstract: For providing balanced resources to the Internet of Things (IoT) cloud users, Task 
Scheduling (TS) plays an essential role. But, energy consumption and execution timeare 
increased by scheduling tasks on the cloud resources without proper analysis of task 
strategy.For overcoming this setback, this paper proposes the Chessboard-K-Prototype 
Algorithm(Ch-KPA)-based task grouping with the RICE-based Earliest Deadline First (R-
EDF) scheduling. Primarily, the bag of tasks is taken as input from which attributes are 
extracted. Next, using fuzzy, the tasks are classified as small, large, and medium based on the 
task length. Subsequently, based on the task attributes, the medium and large tasks are grouped 
as sequential and parallel using Ch-KPA. Next, based on first in first out, the tasks are added 
to the queue. Subsequently, the Logistic Chaotic map-based Giant Trevally Optimization (LC-
GTO) selects the single optimal Virtual Machine (VM) for the small task. Likewise, the optimal 
container and VMs of multi-cloud are selected for sequential and parallel tasks. Meanwhile,the 
availability of selected VM in the VM monitoring layer is determined by Drop-connect-
Random Translation Multi-Layer Perceptron (DRT-MLP) utilizing a feature updated table. If 
the VM is not in the updating state, the task is mapped to that VM.Lastly, the R-EDF scheduler 
dynamically schedules the task to the selected VM centered on the deadline. The proposed 
approach’s efficiency is proved by the experimental outcomes. 
Keywords: Virtual Machine (VM),Chessboard-K-Prototype Algorithm (Ch-KPA), Drop-
connect-Random Translation Multi-Layer Perceptron (DRT-MLP), task scheduling, Earliest 
Deadline First (EDF). 
1. INTRODUCTION 
A foundation of modern technology is cloud computing, which offers scalable and cost-
effective solutions to a variety of diverse issues (Iftikhar et al., 2023).Ultimately, for managing 
and handling IoT devices in cloud platforms, diverse resources are required (Ali et al., 
2021).For example, Multimedia application providers could rent VMs from cloud providers 
for rendering their users with diverse services. In this way, users request and receive their 
favourite applications from the service provider (Rawas, 2021). Nevertheless, such under-
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usage and over-usage of VM resources cause energy constraint issues as cloud servers have 
high bandwidth latency and communication waste (Zhang et al. 2022). Hence, for reducing 
energy consumption, enhancing resource utilization by balancing the number of on-run hosts’ 
tasks in VMs is one potentially viable strategy (Marahatta et al., 2021). Therefore, a research 
named as task scheduling in the cloud is performed for balancing the tasks on VMs and for 
minimizing energy consumption. 
An approach that assigns users’ tasks to VMs for execution is named task scheduling. From 
the customers’ view, their requested tasks should be run in the shortest amount of time on the 
VM by a suitable scheduling algorithm(Ebadifard et al., 2020).In TS, for mapping a proper set 
of resources to a particular task, a schedule is generated(Lu et al., 2019); this is performed by 
the component called Scheduler that mainly considers response time, latency, and throughput 
(Shyalika et al., 2020). Static and dynamic scheduling strategies are the two most fundamental 
forms of TS approaches in the cloud environment(Murad et al., 2022).Static scheduling utilizes 
public information and schedule tasks to the cloud service providers. Tasks whose information 
is unknown are dealt with the latter, which has more overhead compared to the former 
scheduling approach (Velliangiri et al., 2021). But, to manage and distribute many services 
over the cloud, an effective scheduler should render a dynamic scheduling approach (Bal et al., 
2022). Conversely, only when the workloads have a small variation, the static TS algorithms 
are utilized(Houssein et al., 2021); this is not effective for the real-time scenario. Hence, in 
most of the works, developing energy-efficient dynamic TS in the cloud environment is 
concentrated. 
Centered on the optimization algorithms, namely the Whale Optimization algorithm (WOA) 
(Chen et al., 2020), Ant Colony Optimization (ACO) algorithm (Wei, 2020), et cetera, some 
of the developed dynamic task schedulers are designed. But, missing deadlines cause 
performance losses or even complete failures of the real-time systems depending on the types 
of systems(Wang et al., 2020).In addition, when the VMs are handled improperly during the 
migration, the device state error occurs; this results in improper allocation of tasks to the VM 
in update/migration. Hence, for solving this issue, this work proposes the R-EDF task 
scheduling based on DRT-MLP with the LC-GTO virtual machine selection. 
1.1 Problem statements 
The downsides in existing research works for TS and VM selection are given below: 
● In TS, asignificantproblem of device state errors occurring during the VM backup or 
migration is not considered in prevailing works. This error affects the balanced schedulers’ 
performance. 
● The energy consumption and cost consumption increased when the prevailing models 
assigned the task to the VM without considering the entire task strategy.  
● In existingapproaches, as the overloaded VMs acquired resources from the neighboring 
VMs, the energy of other VMs in a cloud got depleted when a VM was overloaded with tasks.  
● In prevailingstudies, based on the less response time, distance,et cetera, the target VM 
was selected. However, in these works, improper scheduling may take place as vital VM 
factors, namely supported Ethernet and protocols were neglected. 
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By considering these limitations, developing an energy-efficient and load-balanced dynamic 
TS approach in the IoT cloud is the proposed system’s objective. The proposed system’s 
contributions are given below: 
● The availability of the VM is monitored using the DRP-MLP technique to minimize 
the device state error problem. 
● To provide energy-efficient TS, the Ch-KPA-based task grouping is done, where the 
sequential and parallel strategy tasks are scheduled simultaneously. This assures energy 
efficiency and a balanced task load in the proposed dynamic TS model. 
● For scheduling and load balancing the tasks to the VM resources, the R-EDF scheduler 
with LC-GTO is proposed to avoid overloading of the VMs. 
● To find the accurate resource-providing VM, the LC-GTO is proposed forchoosing the 
optimal VMs centered on the cost and waiting time, along with the supporting Ethernet 
protocol. 

This paper’s remaining part is arranged as: the proposed dynamic TS model’s related studies 
are explained in section 2, the proposed methodology for energy-efficient TS is explicated in 
section 3, the proposed system’s experimental outcomes in contrast to the prevailing and 
conventional techniques are given in section 4, and the paper is concluded with a future work 
suggestion in section 5. 
2. RELATED WORKS 
(Ding et al., 2020)propounded a Q-learning-centric dynamic TS for energy-effective cloud 
computing. Initially, for the queuing model, a centralized task dispatcher was utilized.Then, 
grounded on the priority of task laxity and task lifetime, Q-learning scheduled the tasks. The 
experimental analysis exhibited the presentedsystem’s superior performance. Still, in the 
presented model, the fresh actions of task strategy couldn’t be identified accurately with the Q-
Learning. 
(Alsadie, 2021)implemented a Meta-heuristic technique for Dynamic Virtual Machine 
Allocation (MDVMA) with optimized TS in cloud data centers. To develop a TS module, the 
crossover and mutation operation grounded on the genetic algorithm was established.As per 
the outcomes, the implemented algorithm’s energy usage was minimized than the prevailing 
approaches. However, without considering the structure, the tasks were scheduled; this resulted 
in less load-balancing efficiency. 
(Zhu et al., 2021) explored a self-adapted TS algorithm for container cloud grounded on 
learning automata. Through the scheduling experience accumulation, the algorithm improved 
the correlation between tasks and the running environment. Centered on the resource residual 
degree, the system’s effectiveness was proved by the experimental outcomes. The experimental 
outcomes proved the system’s effectiveness grounded on the resource residual degree. 
However, the developed system couldn’t render optimal TS as the cloud resources’ 
heterogeneity was neglected. 
(Dubey & Sharma, 2021)explained a TS algorithm with deadline constraints in cloud 
computing. The hybridized Chemical Reaction optimization and Particle Swarm Optimization 
(CR-PSO) were leveraged for the TS. The CR-PSO system’s efficiency was exposed by the 
experimental outcomes. The system’s energy efficiency was decreased since the task strategy 
wasn’t considered. 
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(Tuli et al., 2020)recommended a shared data-aware dynamic TS scheme for data-intensive 
applications on a hybrid cloud. Centered on the Aneka dynamic resource provisioning service, 
the dynamic tasks were scheduled. The suggested system proved its efficiency centered on the 
execution time. However, for large-scale applications, the system wasn’t suitable. 
(Teylo et al., 2021)propounded a dynamic task scheduler for resisting multiple hibernations in 
the cloud environment. It developed hibernation-aware static and dynamic schedulers with 
deadline constraints. Two modules, such as the primary scheduling heuristic module and the 
dynamic scheduler module were comprised in the Hibernation Aware Dynamic Scheduler. The 
outcomes proved the propounded Hibernation Aware Dynamic Scheduler model’s 
effectiveness regarding minimized monetary costs. But, a work-stealing procedure mitigated 
the overloaded tasks; this drained the corresponding resource-stolen VM’s energy. 
(Jing et al., 2021) suggested a Quality-of-Service (QoS)-aware TS scheme for medical cloud 
platforms. For the scheduling of the task in the cloud environment, the discrete Particle Swarm 
Optimization (PSO) algorithm was used.According to the experimental outcomes, the 
propounded approach achieved the expected QoS. But, the recommended system couldn’t 
schedule the tasks generated periodically. 
(Muniswamy & Vignesh, 2022)established a hybrid optimal and deep learning algorithm for 
dynamic scalable TS in the cloud environment. The Modified Pigeon-inspired optimization 
assured priority-centric scheduling. Subsequently, the rapid adaptive feedback Recurrent 
Neural Network was developed for pre-virtual allocation. The outcomes exposed the 
established system’s efficiency centered on the resource imbalance degree. Nevertheless, for 
attaining diverse objectives, separate classifier models were developed; this elevated the 
established model’s response time. 
(Sanaj & Joe Prathap, 2020) presented a TS scheme in the cloud environment. Grounded on 
the Enhanced version of the Round Robin (ERR) algorithm, the TS was done. As per the 
implementation outcomes, other prevailing algorithms were surpassed by the ERR algorithm 
regarding execution time. But, the ERR doesn’t concentrate on the deadline of the tasks by 
which deadline-crossed tasks couldn’t be scheduled efficiently.  
(Guo, 2021)established a fuzzy self-defense algorithm for TS optimization in cloud computing. 
Centered on multi-objective TS, the objective function for the fuzzy self-defense algorithm was 
developed. As per the outcome, the developed algorithm utilized fewer resources of the VM. 
But, since the supporting factors of the VM like supported Ethernet and protocol were not 
considered, the scheduling efficiency was reduced. 
3. PROPOSED METHODOLOGY FOR DYNAMIC TASK SCHEDULING IN THE 
CLOUD 
TS plays a vital role in maintaining the cloud resources’ energy. But, the prevailing models 
failed for developing energy-effective scheduling without taking into account the input task 
strategy. Hence, this study proposes an R-EDF scheduler with the Ch-KPA task strategy 
identification. 
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Figure 1:Architecture of the proposed model 

3.1 Input data 

The proposed system’s input is the Bag of Tasks (BOT)  nT  assigned by the IoT user to the 
cloud platform, which contains many VMs. This is mathematically expressed as, 

 zn TTTT ,...,, 21       (1) 

Here, zT definesthe 
thz subtask. 

 
3.2 Attribute extraction 

Next, task attributes like task length  lT , independence, granularity, locality, and device 
attributes like bandwidth, power, battery information, and storage are extracted from the tasks

 nT . The extracted features are signified as,  

 mx FFFF ,...,, 21       (2) 

Here, the 
thm feature extracted is given as mF . 

3.3 Task-level classification 

After the attributes are extracted, based on the length of the task  lT , the given task  nT is 
classified. For the classification of the tasks using the trapezoidal membership function, fuzzy 
rules are utilized. 

Using the trapezoidal membership function, the fuzzifierfuzzifies the crisp input  lT  as, 
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Here, the task sizes are depicted as elmediumsmall arg,, , the bound values of the fuzzy 
membership are signified as srqp ,,, , which are the threshold value to map the Degree Of 
Membership (DOM) of small, medium, and large tasks.  

After the DOM is acquired, THENIF  statements aggregate the tasks. The max centered 

aggregation 
 agg

is done, which is expressed as, 

 elmediumsmallagg arg,,max
   (6) 

Lastly, the aggregated values are defuzzified, and the crisp output aggc
, which is small, medium, 

or large task class, is acquired.  

The task is allotted to a single VM’s queue if the given aggc
is a small task. 

3.4 Task strategy-based clustering 
However,if the classified task is a medium or large task, the tasks are grouped into sequential 
and parallel tasks grounded on the strategy and subsequently scheduled. In this, the Ch-KPA 
is leveraged for the grouping. The K-Prototype Algorithm (KPA) is chosen owing to its 
efficiency in grouping categorical and numerical data. But, hamming distance can’t accurately 
express the degree of dissimilarity between the categorical attribute and the center.  Hence, for 
solving this issue, this algorithm introduces the chessboard distance. 

In this, for grouping the sequential and parallel tasks, the attribute set xF  is given to theCh-
KPA.  

Cluster-center selection: Thenumber of clusters  p with k cluster centers is initialized for 

the given input xF . The k cluster centers are randomly initialized in Ch-KPA. The initialized 
cluster centroids are expressed as, 

num
i

cat
in CCC ,      (7) 

Here, the random cluster centers for the categorical and numerical attributes are indicated as
num
i

cat
i CC , .  

Distance estimation: After the centroids are chosen,the distance  D  between the centroid 

point  cat
iC and the other data points 

 xj Fd 
iscalculated as, 
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     (8) 

Here, the data points’ mean value is signified as jd̂
. 

Dissimilarity estimation: Subsequently, the dissimilarity difference for the categorical data 

 j
is calculatedutilizing the Chessboard distance as, 

j
cat
inji C  max,      (9) 

Assign clusters: Lastly, jijiD ,, 
 is calculated with every k clusters, and the object is 

assigned to a cluster that contains a low overall difference. Hence, the final cluster acquired is 
indicated as, 

 parseqk  ,
     (10) 

Here, the sequential and parallel task clusters are symbolized as parseq  ,
.  

3.5 Queuing 
As each task is assigned to different kinds of resources, the tasks are added to the different 
queues after the tasks are grouped. The queued tasks are given as, 

 tttQsm ,....,, 21       (11) 

 qsqQ  ,....,, 21
      (12) 

  ,....,, 21plQ
      (13) 

Here, the queues of small, sequential, and parallel tasks are signified as plsqsm QQQ ,,
. The final 

tasks added to the queue are depicted as t , q , and  . 
3.6 Optimal VM selection 
Next,the optimal VM selection takes place for mapping the task to the optimal resources. In 
this, a single optimal VM is chosen for the small tasks as the small process can be completed 
in a single VM. Here,LC-GTO is utilized for the VM selection. The GTO is chosenowing to 
its efficiency to providea global optimal solution. However, the random coefficient in the 
search decreases the exploration efficiency, which induces slow convergence. Hence,in the 
GTO, aLogistic Chaotic map (LC) is introduced. 
Population Initialization: In the CSP, the population of the giant trevally is considered as the 
VMs, which is indicated as, 
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Here,the solution for LC-GTO is signified as G , the size of the population and the dimension 

are indicated as ,q , and the value of the 
th task signified by the 

th candidate solution is 

depicted as ,g
. Next, the position to each trevally is assigned by, 
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      
lowuplow BBBG ,      (15) 

Here, the lowest and highest value that a task can have is signified as
uplow BB  ,

. A random 

number is depicted as . 
Fitness estimation: After the positions are defined, the trevalliesare stored in a vector as, 
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Here, the 
th

  member fitness is indicated as   Gr , and the fitness vector is given as , 
which is expressed as, 

     preteqdlbtccwt ,,max,,min
   (17) 

Where, the fitness is considered as minimum waiting time  wt , minimum task completion task
 tcc , the maximum degree of load balance  dlb , equivalent Ethernet  et , and protocol  pr .   
Primarily, the prey searching strategy utilizing levy flight takes place, by which their movement 
is updated as, 
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  (18) 

Here, the best position is signified as
bestG , the iteration is given as , and the levy flight 

distribution function is indicated as . u, are the numbers that are determined utilizing LCand 
 is the variance, which is given as, 

       log1loglog 1 uubu      (19) 
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Here, the chaotic map variable is depicted as b , and the control parameter to control the levy 

flight is signified as . 
Next, during the right area of hunting, the trevally determines the best area for its prey and 
food, which is indicated as, 

       GIWGG mean
best1    (21) 

Here, the position vector of the giant trevallies in the successive iteration is signified as  1G

, the position change controlling parameter is depicted asW , andthe previous information’s 

average is given as meanI , which is indicated as, 
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     (22) 
Subsequently,the position with the best fitness value is selected as the optimal solution (i.e. 

VM) by calculating the fitness of the position  1G  of trevallies, and it is depicted as oV . 

Likewise, the optimal VM in multiple clouds is chosenfor the parallel tasks in the queue
 plQ

and is signified as
gMV ,...2,1,  . 
Pseudocode of LC-GTO 

Input: VMs in the cloud 
Output: Optimally selected VM 
Begin 

 Initialize population,  ,,u , maximum iteration  max  

 Set iteration 1  

 While  max  do 

  Calculate fitness   
  Perform Prey searching  

  Update position using    ,log, 1uGbest

 

  Update position to best food area      GIWG mean
best

 

  If        GG  1 { 

   Return  1G as optimal solution 
  } Else { 
   Repeat while 
  End If 
 End While 

 1   

 Return output oV  
End  
3.7 Optimal container selection 

For the sequential tasks in the queue
 sqQ

, based on the fitness values of    dlbtccwt max,,min

, the optimal containers are selected.In this, the population initialized isexpressed as, 

 vj  ,....,, 21
     (23) 

Where, the
thv cloud container is considered as v , and the given population goes through the 

steps from (14) to (22) for finding the optimal container; this is indicated as o . In this, for 
sequential tasks, the container is selected sincethe container maps the tasks in the VMs in it if 
a sequential is assigned for a single cloud container that contains multiple VMs. Similarly, the 
waiting time for tasks is minimized. 
3.8 VM availability identification 



AN ENERGY-EFFICIENT DYNAMIC TASK SCHEDULING IN THE CLOUD WITH R-EDF AND LC-GTO BASED ON VM AVAILABILITY 
IDENTIFICATION 

 
Journal of Data Acquisition and Processing Vol. 38 (3) 2023      6246 

For the energy-efficient TS, the checking availability of the VM takes an important place as 
the selected VM might be in the updation or migration state that led to the device state error. 
In this, the DRT-MLP is used for checking the availability of the VM. The Multi-Layer 
Perceptron (MLP) is chosen owing to its large data handling efficiency. However, overfitting 
and vanishing gradient issues are led by a greater number of layers. Hence, in the MLP, the 
Drop-connect regularization layer and Random translation activation are introduced. 

Input: The feature-updated table  T  that is provided by the cloud brokers’ VM monitoring 

layer is the input of the DRT-MLP. T contains the features of the VM in the cloud,namely state 
(i.e., active, running, updated), supported Ethernet, supported protocol, bandwidth, memory, 
and type of resource available. These features are depicted as, 

 yc RRRR ,...,, 21
    (24) 

Here, the 
thy feature in the feature table is signified as yR

. These feature values are dynamically 
updated in the tablecentered on which the DRT-MLP predicts whether the VM is in the running 
state or under updation or migration. Figure 2 shows the proposed DRT-MLP network 
architecture. 

 
Figure 2: Neural architecture of DRT-MLP 

Input layer: In this, the feature-updated table cR is given to the input layer. Here, the input is 
prepared by the input layer for further processing by the other layers. 

Drop-connect layer: After the input layers process the features of cR , for the regularization of 
the input, the results are given to the drop-connect layer. The drop connect layer process is 
expressed as, 

  cc RE       (25) 
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In this, the binary matrix coding encoding the connection information is signified as E , the 
weight value of the neurons is indicated as , and theRandom translation activation is given as
 , which is depicted as, 

   


 


else

hRifhR
R cc

c 0

0


   (26) 

Here, the random translation constant is depicted as h .  

Hidden layers: From the drop-connect layer, the prepared c  is given to hidden layers  cZ , 
where hidden neurons process the features as, 









 








1

cc

     (27) 

Where, the hidden
th  neuron of the

thc hidden layer is symbolized as
c , the bias value is 

signified as , and the total number of hidden neurons is given as  . The activation of hidden 
neuronsis expressed as, 

   


 


else

hifh cc
c 0

0


    (28) 
Output layer: The processed features from the hidden neurons are summed up and given to 

the output layer for predictingthe corresponding input’s output class  S . The DRT-MLP’s 
output is expressed as, 









 



y

c
cS

1


    (29) 

After the output value S  is predicted, for finding the error in the classifier, the loss function  L  
is calculated as, 

 



y

c
out SO

y
L

1

1

     (30) 

Where, the threshold output is depicted as outO . The output class will be considered if the 

estimated error value is less than or equal to the threshold   , else the training continues by 
changing the weight values. 

Pseudocode of DRT-MLP 
Input: Feature updated table 
Output: Identified status of VM 
Begin 

Initialize number of layers, parameters  ,  

If  L { 

 Return final output S  
} Else { 
 Update weights  

 Perform drop-connectfunction   cRE    
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  Activate neurons with Random translation activation 

  Perform 








 








1

cc

 

  Compute output S  
 } 

 Return final output S  
 End if 
End   
Whether the VM is in the process of task migration or updation or else in the active running 
state is predicted by the output class. The task is added to the queue of the selected VM if only 
the VM is in the running state. In this queue, the tasks are dynamically scheduled regarding the 

earliest deadline by the scheduler. The tasks added to the Queue of the VM oV  is given as, 

 UV XXXX ,....,, 21      (31) 

Here, the 
thU task assigned to the VM oV or MV

 is depicted as UX . 
3.9 Dynamic scheduler 
The earliest deadline task should be given high priority after the tasks are allotted to the VM. 
Hence, the R-EDF is proposed. In this, the Earliest Deadline First (EDF) scheduler is 
chosensince it is scheduledgrounded on the deadline. However, the EDF suffers from a priority 
inversion problem sometimes. Hence,for the correct prioritization of tasks, the Rice technique 
is introduced in the EDF. 

In the RICE-EDF, the RICE technique gives the priority of the tasks in the queue VX , which is 
expressed as, 

  EfCo  .Im.Re      (32) 
Here, the Reach, Impact, Confidence, and Effort (RICE) scoresof the tasks in the queue are 

signified as EfCo,Im,Re, . Next, the task with the maximum  is arranged in a single set, and 
the remaining tasks are arranged in another set. Subsequently, by checking the criteria given 
below, the tasks are scheduled. 

1
1

 



nn

K K

K
V J

Y

     (33) 

Here, the earliest deadline task is depicted as V , and the worst-case computation time of nn

processes and their relative deadlines are symbolized as KK JY , . 
Therefore, energy-effective and load-balanced dynamic TS is done by doing this process in the 
cloud simultaneously. The subsequent section experimentally proves this time efficiency and 
load balancing results. 
 
 
4. RESULTS AND DISCUSSIONS 
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Here, the proposed system’s performance is experimentally assessed in comparison to the 
prevailing approaches for proving its efficiency. On the working platform of JAVA, the 
experiments are done with the data collected based on real-time network deployment. 
4.1 Performance analysis of the dynamic scheduler 
Here, regarding acceptance rate, execution efficiency, and makespan, the proposed dynamic 
scheduler R-EDF’s performance is experimentally investigated and verified in comparison 
with prevailing EDF, Max-Min, Shortest Job Next (SJN), and Round Robin (RR) schedulers. 

Table 1: Makespan results of the proposed model 

Techniques 
Number of tasks 

100 200 300 400 500 
Proposed 
R-EDF 

2568 3875 6358 5284 4258 

EDF 4236 5986 8475 7456 6579 
Max-Min 6124 7485 9658 9541 8423 

SJN 8744 10874 12658 11847 10514 
RR 9547 11549 12579 13658 12548 

 
Table 1 displays the proposed R-EDF’s comparative measure. For 100 tasks, the proposed R-
EDF achieved a makespan of 2568, while the conventional EDF attained only 4236,which is 
comparatively higher than the proposed approach. Similarly, when compared with the proposed 
one, the makespan of the other techniques like Max-Min, SJN, and RR is also higher. The 
proposed technique’s makespan increases as the number of tasks increases; but, it is not higher 
than the baseline techniques. Hence, in the dynamic TS in the cloud resources, the proposed R-
EDF is better in performance than the other techniques. 

 
Figure 3: Execution efficiency analysis  

Figure 3 reveals the proposed system’s execution efficiency centered on execution time. In this, 
the proposed model takes an execution time of 12547ms with the EDF algorithm, which is 
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comparatively lesser than the traditional Max-Min, SJN, and RR schedulers. But, the proposed 
scheduler takes less than 9628ms, which is lower than the other baseline schedulers.This proves 
that the dynamic scheduling of tasks before the deadline completion is performed effectively 
with the R-EDF scheduler. 

Table 2: Acceptance rate outcomes 
Techniques Acceptance rate (%) 

Proposed R-EDF 98.32 
EDF 94.12 

Max-Min 89 
SJN 87.49 
RR 84.97 

 
From Table 2, it is evident that the acceptance rate is enhanced by separately assigning tasks 
to multiple VMs simultaneously based on the earliest deadline first priority. In this, the 
acceptance rate for the proposed model is 98.32%, which is comparatively higher when 
analogized with the conventional EDF, Max-Min, SJN, and RR schedulers. This exhibits that 
the resources in the VMs are occupied without being overloaded, and avoided the device state 
error. 
 
4.2 Performance analysis of optimal VM and container selection 
Here, for proving the load balancing, fitness, throughput, energy consumption, latency, 
resource utilization, response time, and average waiting time efficiency, the selection algorithm 
LC-GTO is comparatively examined with the prevailing selection algorithms, namely GTO, 
ACO, PSO, and Reptile Search Algorithm (RSA). 

 
Figure 4: Performance analysis based on load balancing time 

Figure 4 displays the time taken by the proposed and prevailing systems for balancing the task. 
For the 500 tasks, the proposed technique’s load balancing time is 625.4ms. Similarly, for 
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balancing 100 to 400 tasks, the proposed model also obtained a lower time. On the other hand, 
for the existing methods like GTO, the load balancing time elevates in the range of 547.7ms to 
735.1ms as the number of tasks elevates. Likewise, for other existing techniques also, the load 
balancing time varies (higher). This displays the system’s superiority in managing the load of 
the tasks mapped to the VM resources. 

 
Figure 5: Energy consumption in the task scheduling 

Figure 5 shows the energy consumed by various models during TS. In this, the proposed LC-
GTO consumed 29.7J of energy for 500 tasks, while the GTO, ACO, PSO, and RSA 
approaches consumed 33.7J, 38J, 42.6J, and 45.2J of energy. Likewise, when compared to the 
prevailing algorithms, the proposed technique takes less energy for the other number of tasks 
also. This reveals that for scheduling the tasks, low energy is consumed with the LC-GTO 
technique. 
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Figure 6: Resource utilization by existing and proposed techniques 
The VMs’ resource utilization by the proposed system is examined by analogizing it with 
existing scheduling algorithms. Figure 6 shows that when compared with conventional 
approaches for scheduling, the GTO used fewer resources. However, for the 100, 200, 300, 
400, and 500 tasks, the LC approach in the GTO technique reduced the utilization to 4.23, 7.25, 
10.84, 10.48, and 12.87, correspondingly. Hence, it is proved that the proposed scheduling 
system used fewer resources by which energy efficiency is attained. 

 
Figure 7: Average waiting time analysis 

The proposed LC-GTO’s average waiting time for scheduling various tasks is displayed in 
Figure 7. In this, for scheduling 500 tasks, the proposed approach waits only for 2317ms, while 
the prevailing GTO, ACO, PSO, and RSA wait for 2548ms, 3485ms, 3874ms, and 4312ms to 
assign the task to VM, correspondingly. This exhibits that when contrasted with prevailing 
approaches, the proposed model’s average waiting time is very much lower. The above 
discussion shows that the proposed model with logistic chaotic mapping schedules the task 
more quickly than the prevailing approaches. 
 
 
 
 

Table 3: Fitness Vs Iteration 

Iteration 
Fitness 

RSA PSO ACO GTO 
Proposed 
LC-GTO 

10 53 74 89 113 138 
20 73 92 110 128 149 
30 91 109 123 143 163 
40 108 113 146 163 204 
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50 121 132 160 181 279 
 
LC-GTO technique’s performance regarding fitness vs. iteration is displayed in Table 3. For 
the proposed model, the fitness value is 138 and 149 while the no.of iteration is 10 and 20, 
respectively, and lastly, the fitness is 279 for 50; this exhibits the increasing capacity of the 
LC-GTO’s performance. In addition, even a gradual increase is not exhibited by the prevailing 
works, which render low-range values for diverse iterations. This displays that the convergence 
issues are avoided by the usage of the logistic chaotic mapping in the proposed model; hence, 
the proposed study attains peak performance than the baseline approaches. 

 
Figure 8: Experimental analysis based on latency 

From Figure 8, it is clear that the proposed LC-GTO model exhibits a lower latency. For the 
100 number of tasks, the proposed approach’s latency is 1254ms. For the same 100 tasks, the 
prevailing approaches say GTO has a higher latency (1875ms). For the remaining number of 
tasks, the latency increases as the number of tasks increases; however, it is lower than the 
prevailing systems’ latency. Hence, it is proved that when analogized with the prevailing 
approaches, the LC-GTO technique’s performance is well. 
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Figure 9: Throughput analysis 

Figure 9 shows that when analogized with other prevailing approaches, the proposed system 
has higher throughput. For 100 tasks, the prevailing approaches, namely GTO (4065bps), ACO 
(3874bps), PSO (3326bps), and RSA (2859bps) acquired lower values, while the proposed LC-
GTO’s throughput is 4238bps. Similarly, the proposed approach’s throughput is higher than 
the prevailing system for the remaining number of tasks.Hence, the overall analysis shows that 
in the selection of optimal VM selection for TS, the proposed model attains superior outcomes. 

 
Figure 10: Response time for selecting the VM 

Figure 10 calculates the proposed LC-GTO technique’s response time for scheduling under a 
diverse number of tasks. The proposed LC-GTO’s response time varies between 896ms and 
1097ms for 100 to 200 tasks, while the prevailing GTO has a higher (1108ms to 1221ms) 
response time for scheduling the same 100 to 200 tasks. Similarly, for the rest of the approaches 
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also, the response time increases. This lower response time is owing to the modification of LC 
mapping to conventional optimization. Hence, when compared to the prevailing approaches, 
the proposed system attains a superior task-scheduling VM.  
4.3 Performance analysis of grouping 
Here, the proposed sequential and parallel task partition algorithm Ch-KPA approach is 
comparatively examined with the KPA, K-Means, K-Mode, and K-Medoid approachesfor 
proving its time efficiency. 

Table 4: Comparative measure of proposed Ch-KPA 
Techniques Grouping time(ms) 

Proposed Ch-KPA 1258 
KPA 1937 

K-Means 2054 
K-Mode 2375 

K-Medoid 2764 
 
The grouping time taken by the proposed approach is depicted in Table 4. For grouping, the 
time taken by the proposed technique is only 1258ms (lower), while the time taken by the 
prevailing KPA(1937ms), K-Means (2054ms), K-Mode (2375ms), and K-Medoid (2764ms) 
are higher than the proposed HEM-KPA. Hence, it is proved that the sequential and parallel 
tasks are grouped in less time with the Ch-KPA approach by which the tasks can be efficiently 
assigned to multiple VM sources.  
4.4 Performance analysis of VM availability recognition 
Here, regarding the recognition error, recognition time, and Mean Square Error (MSE), the 
proposed DRT-MLP algorithm is comparatively analyzed and verified.  

Table 5: Comparative measure of proposed DRT-MLP 

Techniques 
Recognition 
Error(RE) 

MSE 
Recognition time 

Proposed DRT-
MLP 

0.656 0.4345 
5334 

MLP 1.578 0.6732 7274 
CNN 2.786 0.7125 9468 
DNN 5.786 0.7963 13527 
ANN 8.567 0.9872 15647 

 
The comparative measure of the proposed R-EDF is elucidated in Table 5. In this, by attaining 
lower error rates of the order of 0.656 (RE) and 0.4345 (MSE), the proposed approach performs 
better. Similarly, the error values attained by traditional techniques, namely MLP, 
Convolutional Neural Network (CNN), Deep Neural Network (DNN), and Artificial Neural 
Network (ANN) are higher and range between 1.578-8.567 (RE) and 0.6732-0.9872 (MSE). In 
addition, the VM’s availability is examined in a lesser time (5334ms) than the other contrasted 
algorithms. Hence, it is clear that in the proposed system, the VM status is identified with less 
error and within less time. 
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4.5 Comparative analysis 
Here, the proposed model’s efficiency is verified by analogizing the energy efficiency with the 
prevailing works of (Ding et al., 2020), (Alsadie, 2021), and (Dubey & Sharma, 2021).  

 
Figure 11: Comparative analysis 

In the proposed system, the tasks are separated centered on their strategy, and then scheduled 
to the optimally selected cloud resources simultaneously. Hence, when compared with the 
prevailing works, the proposed system’s time efficiency (154.64ms) is better. As per the 
proposed model’s time efficiency, the tasks are dynamically scheduled to the cloud resources 
in load load-balanced and energy-efficient manner. This displays the proposed model’s 
superiority over the other models for dynamic TS.  
5. CONCLUSION 
In this work, centered on the recognition of the availability of the VM status, a dynamic task 
scheduling in the optimally selected cloud resources is proposed. In this, utilizing the Ch-KPA 
technique, the strategy is analyzed and grouped as sequential and parallel tasks for energy-
efficient TS. Next, the R-EDF technique with LC-GTO-based optimal VM and container 
selection takes place for efficient scheduling. Lastly, the proposed algorithms’ performance is 
experimentally investigated and verified. During analysis, the proposed technique took less 
energy (29.7J) and resource utilization (14.65). Moreover, the proposed technique’s reliability 
for dynamic TS is exhibited by the acceptance rate, load balancing time, and recognition error. 
Lastly, in the comparative study, the proposed system’s dominance over prevailing systems 
regarding time efficiency is displayed. This study proposes the dynamic scheduling of the tasks 
based on the task strategy. However, the security issues in the IoT cloud are not considered in 
this work. Hence, in the future, for secure TS in the cloud, the security paradigms can be 
introduced together with the proposed system. 
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