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1. Abstract 

The sparse controlled proportionate recursive least square algorithm performs well for the 
systems with variable sparsity and for systems with fixed sparsity. The algorithm updates each 
filter weight iteratively with different gain factors to increase the rate of convergence. It uses 
the degree of sparseness to calculate the gain factor during iterations. The estimated degree of 
sparseness is calculated for the estimated weight vector. The proportionate matrix assigns 
independent gain to each filter weight while updating the filter taps. For fixed sparse systems, 
the degree of sparseness converges to the original degree of sparseness faster than the filter 
weight vector, which increases the algorithm's convergence rate. The convergence controlling 
parameter 𝜇 is crucial to the SC-PRLS's effectiveness. Therefore, Analysis of both transient 
and steady-state performance is necessary. This study investigates the performance of the mean 
square error of the SC-PRLS algorithm. Energy conservation principle is applied to calculate 
the mean square performance of transient and steady-state stages. Explicit conditions are 
obtained to ensure better performance of the algorithm. The selection of convergence 
controlling parameter μ also depends on the number of filter weights. A larger tap length 
requires higher μ for faster convergence, while lower μ is needed for lower steady-state error. 
The optimum value is 0.65, and the range of convergence controlling parameter μ is 30-65 for 
better performance. 
Key points: Analysis of SC-PRLS, convergence controlling parameter, MSE (mean square 
error), MMSE.  

2. Introduction 

Sparse system identification (SSI) has various applications where unknown systems can be 
modeled as FIR systems having finite memory, including telecommunications, control 
engineering, sensing, and acoustics [1-3]. Few applications have variable sparsity, like channel 
estimation for underwater acoustic (UWA) communication and wireless channel estimation, 
etc., where a large number of parameters and time-varying dynamics makes the channel 
impulse response (CIR) sparse [4-6]. Most sparse adaptive filtering techniques are based either 
on the zero-attractor (ZA) or proportionate update (PU) concept [3]. Zero attractor-based 
algorithms perform better for strict sparse systems, while PU-type algorithms are useful for 
relatively sparse systems [6]. The sparse aspect of the system is used by proportionate-type 
algorithms to increase convergence [7]. However, if system behavior changes from sparse to 
non-sparse or there is significant change in sparsity, the performance of PU-type algorithms 
degrades [6]. So, their improved versions were developed. Examples of PU-type algorithms 
are Proportionate normalized least mean square (PNLMS), Improved PNLMS (IPNLMS), 
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Proportionate recursive least square (PRLS), L0-PRLS, etc. [5-8]. But these algorithms do not 
work well for systems having variable sparsity. There are many practical applications where 
sparsity changes. For example, In an underwater acoustic channel movement in the position of 
transmitter or receiver, variable environmental noise, fluctuating water surface, and depth-
varying sound speed profile result in the time-varying sparseness of the system [6]. So, sparse 
controlled algorithms are much needed for applications where the degree of sparseness changes 
[4-6]. The sparse controlled-IPNLMS (SC-IPNLMS) and sparse-controlled proportionate 
recursive least square (SC-PRLS) algorithms were developed for such systems, and their 
performance was also analyzed [9-10].  
Performance analysis is available in the literature for many sparse algorithms [5-17]. White 
input signals were considered to overcome the nonlinearity problem of sparsity regularizes in 
ZA-type algorithms for transient behavior analysis [17]. Wagner presented an analytical model 
in [7] that characterizes the transient and steady-state performance for PU-type sparse adaptive 
filtering algorithms and performance study of the PNLMS method. The performance analysis 
of the compressed distributed least square algorithm is explained in [11]. Ayoub Tedjani et. al. 
in [14] compare the performance in terms of mean square error (MSE) for IPNLMS, SC-
IPNLMS, and compressive sensing based VSS-RZA-NLMS algorithm for echo cancellation. 
Zhen Qin investigated how the PRLS algorithm performed for time-invariant systems in both 
the transient and steady-state stages [6]. Z.Qin also analyzed the performance of PMCC [15],l1-
norm with PRLS [5], l1-RLS[8] and PRLS algorithms [6]. 
This work explains the performance analysis of transient and steady state errors (SSE) for SC-
PRLS. Excess MSE (EMSE) eMSExpression for the algorithm is also derived. Effect of 
convergence controlling parameter 𝜇 in EMSE is also discussed. Numerical simulations and 
experimental sparse system identification results verify theoretical results. Explicit conditions 
are developed to increase the efficiency of the SC-PRLS algorithm. 

3. SC-PRLS Algorithm 

To analyse SC-PRLS, standard system identification settings are considered. The desired 
output of the system to be identified is given as  
𝑑(𝑘) = 𝜔 𝑥(𝑘) + 𝜗(𝑘)         (1) 
Where vector 𝜔 = [𝜔  , 𝜔  , 𝜔  , ⋯ , 𝜔 ]  is the impulse response of system of unknown 
system. This unknown system is to be identified in the system identification problem. And 
input at time instant k is given by 𝑥(𝑘) = [𝑥(𝑘), 𝑥(𝑘 − 1) , 𝑥(𝑘 − 3) , ⋯ , 𝑥(𝑛 − 𝑀 + 1)] . 
The scalar 𝜗(𝑘) is additive noise.  The update equation given to track the system parameters 
in system identification problems. The update equation for estimated filter weights 𝜛(𝑘) in the 
SC-PRLS algorithm is given by  
𝜛(𝑘) = 𝜛 (𝑘 − 1) + 𝐺(𝑘 − 1)𝒦(𝑘)𝑒∗(𝑘|𝑘 − 1)      (2) 
Where 𝑒(𝑘|𝑘 − 1) is the a priori error and calculated as 
𝑒(𝑘|𝑘 − 1) = 𝑑(𝑘) − 𝜛 (𝑘 − 1)𝑥(𝑘),       (3) 

Kalman gain vector is 𝒦(𝑘) =
𝒫( ) ( )

( )𝒫( ) ( )
      (4) 

And forgetting factor 𝜆 is defined in the range (0,1). Inverse of input covariance matrix is 
calculated iteratively as  
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𝒫(𝑘) = 𝜆 [𝒫(𝑘 − 1) − 𝒦(𝑘)𝑥 (𝑘)𝒫(𝑘 − 1)]      
 (5) 
The proportionate matrix G(k-1) is diagonal matrix written as  
𝐺(𝑘 − 1) = 𝑑𝑖𝑎𝑔{ℊ (𝑘 − 1), ℊ (𝑘 − 1), ⋯ , ℊ (𝑘 − 1) }     (6) 
The nth element of proportionate matrix can be calculated as  

ℊ = 𝜇
( )

+ 𝜇
( )

( )| ( )| 

‖ ( )‖
      (7) 

Where regularization parameter 𝜀  is a small positive constant 𝜀  𝜖 [−1,1] and 𝜉(𝑘) is the 
degree of sparseness that can be calculated as  

𝜉(𝑘) =
√

1 −
‖ ( )‖

‖ ( )‖
        (8) 

Where ‖. ‖  is 𝑙 - norm and ‖. ‖  is 𝑙 - norm. T 
For an impulse response of FIR filter the degree of sparseness for depends on the number of 
total taps and sum of absolute value of these taps as well as magnitude of filter coefficients. 
Therefore, it can be understood that degree of sparseness depends only on magnitude of filter 
taps (non-zero filter coefficients) and length of FIR filter.  

4. Performance Analysis of the Algorithm  

Statistically steady state behaviour and transient response of the SC-PRLS can be evaluated by 
principle of energy conservation.  
Kalman gain vector can be rearranged using equation (4) as follows 
 𝜆𝒦(𝑘) + 𝒦(𝑘)𝑥 (𝑘)𝒫(𝑘 − 1)𝑥(𝑘) = 𝒫(𝑘 − 1)𝑥(𝑘) 
𝜆𝒦(𝑘) = 𝒫(𝑘 − 1)𝑥(𝑘) − 𝒦(𝑘)𝑥 (𝑘)𝒫(𝑘 − 1)𝑥(𝑘)  
𝒦(𝑘) = 𝜆 [𝒫(𝑘 − 1) − 𝒦(𝑘)𝑥 (𝑘)𝒫(𝑘 − 1)]𝑥(𝑘)      
Using equation (5) here, Kalman gain vector can be written as 
𝒦(𝑘) = 𝒫(𝑘)𝑥(𝑘)          (9) 
Now weight update equation can be rewritten using equation (2) and (9) as 
𝜛 (𝑘) = 𝜛 (𝑘 − 1) + 𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)𝑒∗(𝑘|𝑘 − 1)               (10) 
Now, Define weight error vector ℏ (𝑘) for the SC-PRLS algorithms as 
ℏ (𝑘) = 𝜔 − 𝜛 (𝑘)                 (11) 
Where 𝜔  is impulse response vector need to be identified and 𝜛 (𝑘) is estimated impulse 
response vector by the algorithm. 
subtracting equation (10) from 𝜔  both side  
𝜔 − 𝜛 (𝑘) = 𝜔 − 𝜛 (𝑘 − 1) − 𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)𝑒∗(𝑘|𝑘 − 1)            (12) 
Using equation (11) and (12) weight error vector can be written as 
ℏ (𝑘) = ℏ (𝑘 − 1) − 𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)𝑒∗(𝑘|𝑘 − 1)              (13) 
Let, Ƹ be a Hermitian nonnegative-definite matrix, then Pre-multiplying 𝑥 (𝑘)𝒫(𝑘)𝐺(𝑘 − 1)Ƹ 
to the equation (13) both side  
𝑥 (𝑘)𝒫(𝑘)𝐺(𝑘 − 1)Ƹℏ (𝑘) = 𝑥 (𝑘)𝒫(𝑘)𝐺(𝑘 − 1)Ƹℏ (𝑘 − 1)  
                                                     −𝑥 (𝑘)𝒫(𝑘)𝐺(𝑘 − 1)Ƹ𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)𝑒∗(𝑘|𝑘 − 1)   
This can be rewritten using Hermitian matrix properties as  
[ℏ (𝑘)Ƹ𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)]∗ = [ℏ (𝑘 − 1)Ƹ𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)]∗  
                                                         −𝑥 (𝑘)(𝒫(𝑘)𝐺(𝑘 − 1)Ƹ𝐺(𝑘 − 1)𝒫(𝑘))𝑥(𝑘)𝑒∗(𝑘|𝑘 − 1)           

(14) 
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As 𝐺(𝑛 − 1) is diagonal matrix, 𝒫(𝑘) is inverse of input correlation matrix so taking complex 
conjugate will not affect them. Because 𝐴 = [𝐴∗] = [𝐴 ]∗  
Therefore 𝐺 (𝑘 − 1) = 𝐺(𝑘 − 1)  𝑎𝑛𝑑 𝒫 (𝑘) = 𝒫(𝑘) 
Using properties of Hermitian matrix, let define new Hermitian matrixes  
Ƹ = Ƹ𝐺(𝑘 − 1)𝒫(𝑘)𝒫(𝑘),         (15) 
Ƹ = 𝒫(𝑘)𝐺(𝑘 − 1)Ƹ𝐺(𝑘 − 1)𝒫(𝑘)       (16) 
Equation (14) can be written as  
[ℏ (𝑘)Ƹ 𝑥(𝑘)]∗ = [ℏ (𝑘 − 1)Ƹ 𝑥(𝑘)]∗  − 𝑥 (𝑘)Ƹ 𝑥(𝑘)𝑒∗(𝑘|𝑘 − 1)   (17) 
Now, weighted error can be refined as a priori and p posteriori as  
Weighted a priori error  𝑒 (𝑘) = ℏ (𝑘 − 1)Ƹ 𝑥(𝑘),     (18) 
Weighted posteriori error 𝑒 (𝑘) = ℏ (𝑘)Ƹ 𝑥(𝑘)     (19) 

Now, equation (17) can be rewritten as  
 𝑒 (𝑘)∗ = 𝑒 (𝑘)∗  − 𝑥 (𝑘)Ƹ 𝑥(𝑘)𝑒∗(𝑘|𝑘 − 1)        

 𝑒 (𝑘)∗ = 𝑒 (𝑘)∗ − ‖𝑥(𝑘)‖Ƹ 𝑒∗(𝑘|𝑘 − 1)      (20) 

From equation (20), substitute  𝑒∗(𝑘|𝑘 − 1) into (13) 

ℏ (𝑘) = ℏ (𝑘 − 1) − 𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)
( )∗  ( )∗

‖ ( )‖Ƹ
   

ℏ (𝑘) +
 ( )𝒫( ) ( ) ( )∗

‖ ( )‖Ƹ
= ℏ (𝑘 − 1) +

( )𝒫( ) ( ) ( )∗

‖ ( )‖Ƹ
    (21) 

To obtain weighted energy relation, take weighted Euclidean norm of equation (21) on both 
side with respect to Ƹ 

ℏ (𝑘) +
 ( )𝒫( ) ( ) ( )∗

‖ ( )‖Ƹ Ƹ

= ℏ (𝑘 − 1) +
( )𝒫( ) ( ) ( )∗

‖ ( )‖Ƹ Ƹ

    (22) 

Note: Norm is a real number because weighted Euclidean norm ‖. ‖Ƹ  is the distance with 
respect to Ƹ. So, equation (22) can be written as 

‖ℏ (𝑘)‖Ƹ +
|  ∗( )|

‖ ( )‖Ƹ
 = ‖ℏ (𝑘 − 1)‖Ƹ +

  ∗( )

‖ ( )‖Ƹ
       (23) 

Substituting   𝑒 (𝑘) from equation (20) in (23) 

‖ℏ (𝑘)‖Ƹ +
|  ∗( )|

‖ ( )‖Ƹ
 = ‖ℏ (𝑘 − 1)‖Ƹ +

( )∗ ‖ ( )‖Ƹ
∗( | )

‖ ( )‖Ƹ
    

‖ℏ (𝑘)‖Ƹ +
|  ∗( )|

‖ ( )‖Ƹ
 = ‖ℏ (𝑘 − 1)‖Ƹ +

|  ∗( )|

‖ ( )‖Ƹ
−

                                                
‖ ( )‖Ƹ   ∗( ) 𝑘 𝑘 − 1 ( ) ∗ 𝑘 𝑘 − 1

‖ ( )‖Ƹ
+

‖ ( )‖Ƹ | ( | )|

‖ ( )‖Ƹ
  

‖ℏ (𝑘)‖Ƹ = ‖ℏ (𝑘 − 1)‖Ƹ − 𝑒(𝑘|𝑘 − 1)𝑒
∗
(𝑘) − 𝑒 (𝑘)𝑒∗(𝑘|𝑘 − 1)  

                                                                                                      +‖𝑥(𝑘)‖Ƹ |𝑒(𝑘|𝑘 − 1)|     (24) 

Now, using equation (1), (3) and (11) a priori error can be rewritten as  
𝑒(𝑘|𝑘 − 1) = 𝜔 𝑥(𝑘) + 𝜗(𝑘) − 𝜛 (𝑘 − 1)𝑥(𝑘) = [𝜔 − 𝜛 (𝑘 − 1)]𝑥(𝑘)  + 𝜗(𝑘)    
𝑒(𝑘|𝑘 − 1) = ℏ (𝑘 − 1)𝑥(𝑘) + 𝜗(𝑘)         (25) 
Putting 𝑒(𝑘|𝑘 − 1) from equation (25) and 𝑒 (𝑘) from (18) into (24) the 2nd ,3rd and 4th term 
in right hand side of equation (24) can be written as 
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‖ℏ (𝑘)‖Ƹ = ‖ℏ (𝑘 − 1)‖Ƹ − [ℏ (𝑘 − 1)Ƹ 𝑥(𝑘)]∗[ℏ (𝑘 − 1)𝑥(𝑘) + 𝜗(𝑘)] − [ℏ (𝑘 −

1)Ƹ 𝑥(𝑘)][ℏ (𝑘 − 1)𝑥(𝑘) + 𝜗(𝑘)]∗ + ‖𝑥(𝑘)‖Ƹ |ℏ (𝑘 − 1)𝑥(𝑘) + 𝜗(𝑘)|   

= ‖ℏ (𝑘 − 1)‖Ƹ − [ℏ (𝑘 − 1)Ƹ 𝑥(𝑘)]∗ℏ (𝑘 − 1)𝑥(𝑘) − [ℏ (𝑘 − 1)Ƹ 𝑥(𝑘)]∗𝜗(𝑘) −

ℏ (𝑘 − 1)Ƹ 𝑥(𝑘)[ℏ (𝑘 − 1)𝑥(𝑘)]∗ − ℏ (𝑘 − 1)Ƹ 𝑥(𝑘)𝜗∗(𝑘) + ‖𝑥(𝑘)‖Ƹ |ℏ (𝑘 −

1)𝑥(𝑘)| + ‖𝑥(𝑘)‖Ƹ |𝜗(𝑘)| + ‖𝑥(𝑘)‖Ƹ [2|𝜗(𝑘)||𝑥 (𝑘)ℏ (𝑘 − 1)|]  

‖ℏ (𝑘)‖Ƹ = ‖ℏ (𝑘 − 1)‖Ƹ − ℏ (𝑘 − 1)𝑥(𝑘)𝑥 (𝑘)Ƹ ℏ (𝑘 − 1)

− 𝜗(𝑘)𝑥 (𝑘)Ƹ ℏ (𝑘 − 1) − ℏ (𝑘 − 1)Ƹ 𝑥(𝑘)𝑥 (𝑘)ℏ (𝑘 − 1)

− ℏ (𝑘 − 1)Ƹ 𝑥(𝑘)𝜗∗(𝑘) 
+ℏ (𝑘 − 1)‖𝑥(𝑘)‖Ƹ 𝑥(𝑘)𝑥 (𝑘)ℏ (𝑘 − 1) + ‖𝑥(𝑘)‖Ƹ |𝜗(𝑘)|  

                                        +‖𝑥(𝑘)‖Ƹ [2|𝜗(𝑘)||𝑥 (𝑘)ℏ (𝑘 − 1)|]        (26) 

By applying statistical expectations 𝐸[. ] both side on equation (26) and considering the 
following assumptions. 
“(Assumption 1: The noise 𝜗(𝑘) is independent to input vector 𝑥(𝑚) for ∀𝑚 .  it can be defined 

as a gaussian sequence with zero mean and variance  𝜎   Which is independent and identically 
distributed. 
Assumption 2: Under slow adaptions the regressor 𝑥 (𝑘) and the filter weight vector  
𝜛(𝑘 − 1) are uncorrelated.)” [4]  
 

𝐸[‖ℏ (𝑘)‖Ƹ] = 𝐸[‖ℏ (𝑘 − 1)‖Ƹ] − 𝐸 ℏ (𝑘 − 1)𝑥(𝑘)𝑥 (𝑘)Ƹ ℏ (𝑘 − 1) −

                                 𝐸 𝜗(𝑘)𝑥 (𝑘)Ƹ ℏ (𝑘 − 1)  − 𝐸[ℏ (𝑘 − 1)Ƹ 𝑥(𝑘)𝑥 (𝑘)ℏ (𝑘 − 1)] −

                         𝐸[ℏ (𝑘 − 1)Ƹ 𝑥(𝑘)𝜗∗(𝑘)] + 𝐸 ℏ (𝑘 − 1)‖𝑥(𝑘)‖Ƹ 𝑥(𝑘)𝑥 (𝑘)ℏ (𝑘 − 1) +

                        𝐸 ‖𝑥(𝑘)‖Ƹ |𝜗(𝑘)| + 𝐸 2|𝜗(𝑘)|‖𝑥(𝑘)‖Ƹ |𝑥 (𝑘)ℏ (𝑘 − 1)|     

From assumption one and two, 𝐸[𝑥(𝑘)𝜗(𝑘)] = 0 , 𝐸[|𝜗(𝑘)| ] = 𝜎 , and  𝐸[𝑥(𝑘)ℏ (𝑘 −

1)] = 0 therefore,  

𝐸[‖ℏ (𝑘)‖Ƹ] = 𝐸[‖ℏ (𝑘 − 1)‖Ƹ] − 𝐸 ‖ℏ (𝑘 − 1)‖
( ) ( )Ƹ

− 𝐸 ‖ℏ (𝑘 −

1)‖
Ƹ ( ) ( ) +  𝐸 ‖ℏ (𝑘 − 1)‖

‖ ( )‖Ƹ ( ) ( ) + 𝜎 𝐸 ‖𝑥(𝑘)‖Ƹ                                   

 𝐸[‖ℏ (𝑘)‖Ƹ] = 𝐸 ‖ℏ (𝑘 − 1)‖
Ƹ ( ) ( )Ƹ Ƹ ( ) ( ) ‖ ( )‖Ƹ ( ) ( ) +

 𝜎 𝐸 ‖𝑥(𝑘)‖Ƹ     

𝐸[‖ℏ (𝑘)‖Ƹ] = 𝐸 ‖ℏ (𝑘 − 1)‖Ƹ + 𝜎 𝐸 ‖𝑥(𝑘)‖Ƹ           (27) 

Where  Ƹ = Ƹ − 𝑥(𝑘)𝑥 (𝑘)Ƹ − Ƹ 𝑥(𝑘)𝑥 (𝑘) + ‖𝑥(𝑘)‖Ƹ 𝑥(𝑘)𝑥 (𝑘)       (28) 

Replacing Ƹ  in equation (28) from (15)  
Ƹ =Ƹ + ‖𝑥(𝑘)‖Ƹ 𝑥(𝑘)𝑥 (𝑘) − 𝑥(𝑘)𝑥 (𝑘)𝒫(𝑘)𝐺(𝑘 − 1)Ƹ − Ƹ𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)𝑥 (𝑘)  

                    (29) 
The weight error vector ℏ (𝑘) and proportionate matrix 𝐺(𝑘 − 1) depends on estimated 
impulse response vector 𝜛 (𝑘) and degree of sparseness. If long system impulse response is 
considered and/or the SC-PRLS algorithm gets converge then for time index 𝑘 to 𝑘 + 1, 
proportionate matrix 𝐺(𝑘 − 1) does not changes significantly because degree of sparseness 
also converges to optimum value 𝜉∗, which is the degree of sparseness for the system to be 
identified (whose impulse response vector is 𝜔 ) [18-19]. Therefore, from equation (29) and 
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(27), it can be assumed that weight error vector ℏ (𝑘 − 1) is nearly independent of Ƹ . Hence, 

𝐸 ‖ℏ (𝑘 − 1)‖Ƹ ≈ ‖ℏ (𝑘 − 1)‖ [Ƹ ] can be used in equation (27). 

𝐸[‖ℏ (𝑘)‖Ƹ] ≈ ‖ℏ (𝑘 − 1)‖ [Ƹ ] + 𝜎 𝐸 ‖𝑥(𝑘)‖Ƹ               (30) 

Further, for theoretical analysis, the approximations of standard RLS can be followed here also. 
As Auto covariance matrix is approximated to steady state mean value. Similarly, 
𝐸[𝐺(𝑘 − 1)]can be replaced to steady state value of proportionate matrix 𝐺. This  𝐺 can be 
constructed by calculated its elements by formula given below 

ℊ =
( )

1 −
∗

+ (2 + 𝜉∗)
( )| | 

‖ ‖
                (31) 

This equation can be used to calculate theoretical value of proportionate matrix and excess 
mean square error value. 

5. Derivation of excess mean square error (EMSE) 

Based on the above approximations and assumption 1, the term 𝐸[Ƹ ] and 𝐸 ‖𝑥(𝑘)‖Ƹ  can be 

simplified as 
E[Ƹ ] ≈ Ƹ + 𝐸[‖𝑥(𝑘)‖Ƹ 𝑥(𝑘)𝑥 (𝑘)] − E[𝑥(𝑘)𝑥 (𝑘)](1 − 𝜆)ℛ 𝐺Ƹ  

                                                                                            −Ƹ𝐺(1 − 𝜆)ℛ 𝐸[𝑥(𝑘)𝑥 (𝑘)]     

E[Ƹ ] ≈ Ƹ + 𝐸[‖𝑥(𝑘)‖( )ℛ Ƹ ( )ℛ 𝑥(𝑘)𝑥 (𝑘)] − (1 − 𝜆)𝐺Ƹ − Ƹ𝐺(1 − 𝜆)         (32) 

𝐸 ‖𝑥(𝑘)‖Ƹ ≈ (1 − 𝜆) 𝑡𝑟(𝐺ℛ 𝐺Ƹ)                 (33)  

Now equation (30) can be written as 

𝐸[‖ℏ (𝑘)‖Ƹ] ≈ ‖ℏ (𝑘 − 1)‖ [Ƹ ] + 𝜎 (1 − 𝜆) 𝑡𝑟(𝐺ℛ 𝐺Ƹ)             (34) 

As 𝑘 → ∞, steady state error or excess mean square error (EMSE) will be given by 2nd term. 
This expression is quite complicated still we can understand that EMSE will depend only on 
noise power, forgetting factor and optimum value of proportionate matrix 𝐺. The optimum 
value proportionate matrix can be calculated by equation (30). Therefore, it depends on 
convergence control parameter and degree of sparseness of system to be identified. 
Further, equation (20) can be written as 
 𝑒 (𝑘)∗ = 𝑒 (𝑘)∗  − 𝑥 (𝑘)𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)𝑒∗(𝑘|𝑘 − 1)            (35) 

 equation (21) can be written as  

ℏ (𝑘) +
 ( )𝒫( ) ( ) ( )∗

( ) ( )𝒫( ) ( )
= ℏ (𝑘 − 1) +

( )𝒫( ) ( ) ( )∗

( ) ( )𝒫( ) ( )
             (36) 

Taking weighted Euclidean norm with respect to Ƹ (𝐺(𝑘 − 1)𝒫(𝑘))  on both side of 
equation (36) 

‖ℏ (𝑘)‖Ƹ +
|𝔢∗ ( )|

( )Ƹ ( )
= ‖ℏ (𝑘 − 1)‖Ƹ +

𝔢∗ ( )

( )Ƹ ( )
          (37) 

A priory error can also be written as  
𝔢 (𝑛) = ℏ (𝑘 − 1)𝑥(𝑘)              (39) 
𝔢 (𝑛) = ℏ (𝑘)𝑥(𝑘)               (40) 

Using equation (25), (35) and (40) in (37) to eliminate 𝔢    
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‖ℏ (𝑘)‖Ƹ +
|𝔢∗ (𝑘)|

𝑥 (𝑘)Ƹ 𝑥(𝑘)

= ‖ℏ (𝑘 − 1)‖Ƹ

+
|𝔢∗ (𝑘) − 𝑥 (𝑘)𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)(ℏ (𝑘 − 1)𝑥(𝑘) + 𝜗(𝑘))∗|

𝑥 (𝑘)Ƹ 𝑥(𝑘)
 

‖ℏ (𝑘)‖Ƹ

= ‖ℏ (𝑘 − 1)‖Ƹ +
|𝔢∗ (𝑘)|

𝑥 (𝑘)Ƹ 𝑥(𝑘)

+
|𝔢∗ (𝑘) − 𝑥 (𝑘)𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)ℏ (𝑘 − 1)𝑥 (𝑘) − 𝑥 (𝑘)𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)𝜗∗(𝑘)|

𝑥 (𝑘)Ƹ 𝑥(𝑘)
 

= ‖ℏ (𝑘 − 1)‖Ƹ −
|𝔢∗ (𝑘)|

𝑥 (𝑘)Ƹ 𝑥(𝑘)

+
|𝔢∗ (𝑘) − 𝑥 (𝑘)𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)𝔢∗ (𝑘) − 𝑥 (𝑘)𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)𝜗∗(𝑘)|

𝑥 (𝑘)Ƹ 𝑥(𝑘)
 

‖ℏ (𝑘)‖Ƹ + 2 − 𝑥 (𝑘)Ƹ 𝑥(𝑘) |𝔢∗ (𝑘)|  

= ‖ℏ (𝑘 − 1)‖Ƹ + 𝑥 (𝑘)Ƹ 𝑥(𝑘)|𝜗(𝑘)| − 2(1

− 𝑥 (𝑘)Ƹ 𝑥(𝑘)𝔢∗ (𝑘)𝜗∗(𝑘))  

‖ℏ (𝑘)‖Ƹ + 2 − 𝑥 (𝑘)Ƹ 𝑥(𝑘) |𝔢∗ (𝑘)|  = ‖ℏ (𝑘 − 1)‖Ƹ +

𝑥 (𝑘)Ƹ 𝑥(𝑘)|𝜗(𝑘)| − 2(1 − 𝑥 (𝑘)Ƹ 𝑥(𝑘))𝔢∗ (𝑘)𝜗∗(𝑘)      (41) 
Taking statistical expectations operation on both side and taking assumption 1by considering 
input and the system noise are independent. Then it can be written as 

𝐸[‖ℏ (𝑘)‖Ƹ ] + 𝐸[ 2 − 𝑥 (𝑘)Ƹ 𝑥(𝑘) |𝔢∗ (𝑘)| ]  = 𝐸[‖ℏ (𝑘 − 1)‖Ƹ ] +

𝐸[𝑥 (𝑘)Ƹ 𝑥(𝑘)|𝜗(𝑘)| ]         (42) 

At the steady state stage, i.e. 𝑘 → ∞ , 𝐸[‖ℏ (𝑘)‖Ƹ ] = 𝐸[‖ℏ (𝑘 − 1)‖Ƹ ]so the following 

equation holds 

lim
→

𝐸[ 2 − 𝑥 (𝑘)Ƹ 𝑥(𝑘) |𝔢∗ (𝑘)| ]  = lim
→

𝐸[𝑥 (𝑘)Ƹ 𝑥(𝑘)|𝜗(𝑘)| ]  

lim
→

𝐸[ 2 − 𝑥 (𝑘)𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘) |𝔢∗ (𝑘)| ]  = lim
→

𝐸[𝑥 (𝑘)𝐺(𝑘 −

1)𝒫(𝑘)𝑥(𝑘)|𝜗(𝑘)| ]            (43) 
Given any matrix  𝑊 ∈ 𝑅 , and any random  𝑢 ∈ 𝑅  with  𝐸[𝑢𝑢 ] = 𝐼, we 
have   𝐸[𝑢 𝑊𝑢] = 𝑡𝑟(𝑊). (Proof: expand the expectation directly.) 

lim
→

[2 − 𝐸[𝑡𝑟[𝑥 (𝑘)𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)]]|𝔢∗ (𝑘)| ]  

= lim
→

𝐸[𝑡𝑟[𝑥 (𝑘)𝐺(𝑘 − 1)𝒫(𝑘)𝑥(𝑘)]|𝜗(𝑘)| ] 

(2 − 𝑡𝑟[𝐺𝒫ℛ])  lim
→

𝐸[|𝔢∗ (𝑘)| ]  = lim
→

𝐸[𝑡𝑟[𝐺𝒫ℛ]|𝜗(𝑘)| ] 

(2 − 𝑡𝑟[𝐺𝒫ℛ])  lim
→

𝐸[|𝔢∗ (𝑘)| ]  = 𝑡𝑟[𝐺𝒫ℛ]  lim
→

𝐸[|𝜗(𝑘)| ] 

(2 − 𝑡𝑟[𝐺𝒫ℛ])  lim
→

𝐸[|ℏ (𝑘 − 1)𝑥(𝑘)| ]  = 𝑡𝑟[𝐺𝒫ℛ]  lim
→

𝐸[|𝜗(𝑘)| ] 

During the steady state, 𝒫 = (1 − 𝜆)ℛ  and   lim
→

𝐸[|ℏ (𝑘 − 1)𝑥(𝑘)| ] = 𝐸𝑀𝑆𝐸  

𝐸𝑀𝑆𝐸 =
( ) [ ]  

( ) [ ]
       (44) 
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As per the definition trace is defined for square matrix only and it can be calculated as sum of 
its main diagonal elements. The proportionate matrix 𝐺 has only diagonal elements. So, It’s 
the trace of proportionate matrix 𝐺 can be given as 

𝑡𝑟[𝐺]  = 𝜇  

𝐸𝑀𝑆𝐸 =
( )  

( )
        (45) 

Theoretically EMSE will be given by equation (44) that can be verified by simulated results. 
6. Simulated results  

The sparse system identification model was considered for simulation. The proposed SC-PRLS 
was implemented for sparse system identification. In SC-PRLS, each filter coefficient 
converges individually, depending on the gain factor. The gain factors are the elements of the 
proportionate metrics. The gain distributing factors depends on the degree of sparseness and 
convergence controlling factor 𝜇. Simulated results verify the proven convergence of SC-
PRLS. Convergence controlling factor 𝜇 can control the performance of the algorithm. The 
EMSE is derived for the algorithm, and simulations for the SC-PRLS algorithm verify the 
theoretical findings. By changing the value of 𝜇 from 15 to 90, simulation tests were carried 
out in order to verify the theoretically calculated EMSE for the SC-PRLS algorithm. 
For the SC-PRLS algorithm's theoretical EMSE evaluation, the simulation experiments were 
conducted by varying the value of 𝜇 from 15 to 90. The desired sparse system to be identified 
is considered as 𝜔 = [1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1] . The input 
signal calculated by a function x=awgn(x,SNR,'measured');Where SNR =40, and x is generated 
by random function and desired signal was generated by d=conv(x, 𝜔 ); 
d=awgn(d1,SNR,'measured'). Figure 1 shows that algorithm is able to estimate the unknown 
system very fast. Quickly it is able to track the impulse response of the sparse system to be 
identified. 

 
Figure 1. The Impulse response of unknown system and Estimated response by SC-PRLS 
algorithm. 
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The SC-PRLS algorithm is fast converging as seen in figure 2, which shown how MSE is 
converging. The convergence starts at nearly 160 iterations. Steady State Error is about 40 db. 
Further, the effect of Convergence controlling parameter  𝜇 is shown in figure 3, where it can 
be observed that steady state error is decrease when 𝜇 is reduced but after a particular range of 
𝜇 the rate of convergence starts increasing.  

 
Figure 2. Mean Square Error of SC-PRLS v/s no. of iterations 
To select the convergence controlling factor 𝜇 there is needs to trade-off between SSE and rate 
of convergence. By observing figure 3 the optimum range of 𝜇 need to select. The range of 𝜇 
is decided as 25-95, where steady state error is in the range of 35-45 db and convergence starts 
at 200-400 iterations. 

 
Figure 3. The effect of convergence controlling factor 𝜇 on Mean Square Error (MSE) for SC-
PRLS 
As no.of taps increase in adaptive filter the previously developed PRLS algorithms do not 
perform well. So observe the limitations simi.ar study is dene for SC-PRLS also and the 
observations are recorded in table1. 
No of filter weights Value of 𝜇 Convergence starts at Steady state value in dB 
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20 50 400 -42 

50 50 400 -35 

100 50 600 -30 

100 40 500 -30 

200 38 1000 -20 

200 35 800 -20 

200 30 750 -22 

200 27 800 -22 

200 25 1000 -24 

200 20 1600 -25 

300 30 1000 -18 

300 25 1200 -20 

300 35 1800 -18 

300 32 1200 -18 

400 32 1400 -12 

400 30 1500 -14 

400 25 1300 -15 

400 20 2500 -18 

500 25 1800 -12 

500 27 1200 -12 

500 30 2200 -10 

Table1: effect of 𝜇 on convergence and steady state error when no of filter weights are changed 
from 20 to 500 by fixing the value of convergence controlling factor at 𝜇 = 50. 
When the number of filter weights are increased from 20 to 500, the starting point of 
convergence changed from 400 to 2200 iteration and steady state error changes from -42db to 
-10db. So, it can be concluded that the SC-PRLS algorithm converges for increased number of 
filter weights. If convergence controlling factor 𝜇 if fixed then performance is decreased for 
large no of filter taps. Further, the SC-PRLS algorithm performance can be improved by 
increasing the convergence controlling factor 𝜇  when no. of taps increases significantly.  
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S.No Value of 𝛼  for SC-PRLS 
while maintain 𝛼 =0.015 for 
PRLS 

 Remark 

1 𝛼 >0.925 Performance of SC-PRLS is worse than RLS 

2 𝛼 =0.925 Performance of SC-PRLS is similar to RLS 

3 𝛼 =0.85 convergence of SC-PRLS is not better than 
PRLS but Steady state error is near to RLS 

4 𝛼 =0.75 Convergence and steady state error of SC-PRLS 
is better than PRLS, but steady state error of SC-
PRLS is not better than RLS 

5 Optimum value 𝛼 = 0.65 Convergence and steady state error both are 
better than PRLS 

6 𝛼 =0.4 Performance of SC-PRLS is similar to PRLS 

7 𝛼 <0.4 performance of SC-PRLS is worse than PRLS 

Table 2: performance comparation of SC-PRLS and PRLS for different values of 𝛼 . 

Further the performance of SC-PRLS algorithm was compared with PRLS and RLS for the 
SSI. The summary of the comparison is given in the table 2. The performance of the 
algorithms depends on 𝛼  and convergence controlling factor 𝜇. The performance changes 
when the value of 𝛼  changes. For comparison optimum values are chosen for PRLS 
algorithm and 𝛼   values changes for SC-PRLS. 

Optimum value is fund to be 𝛼 = 0.65 for SC-PRLS. If 𝛼  is increased from optimal value 
then performance of SC-PRLS degrades and at 𝛼 = 0.925, it performs similar to RLS. 
While of 𝛼  is decreased below optimum then also performance degrades and at 𝛼 = 0.4, 
it performs similar to PRLS. The convergence controlling factor also affects the performance 
of PRLS and SC-PRLS, the observations are reported in table 3. This is still topic of detailed 
discussion as by changing the value convergence controlling factor 𝜇 the performance for 
both the algorithms is changing. But comparison, convergence controlling factor at 𝜇 =

0.015 is chosen for PRLS where it was giving good results and for SC-PRLS, 𝜇 is varied. It 
can be observed from the table that if 𝜇<75 the performance of SC-PRLS supersede the 
PRLS. At 𝜇=75 both the algorithms have similar performance in both SSE and rate of 
convergence. Below 𝜇<28 rate convergence supersedes for PRLS. While for 𝜇<75 
performance of SC-PERLS is better than PRLS. the SSE is improving for smaller values of 𝜇 
but after some point rater of convergence increases. The optimum value of 𝜇=35 for SC-
PRLS. Although, this optimum point changes with number of filter taps.  
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S.No Value of 𝜇 for SC-
PRLS while maintain 
𝜇=0.015 for PRLS 

 Remark 

1 𝜇>75 Performance of PRLS is better than SC-PRLS 

2 𝜇=75 Performance of SC-PRLS is similar to PRLS 

3 𝜇<75 Performance of SC-PRLS is better than PRLS 

4 𝜇=40 Performance of SC-PRLS is better than PRLS 

5 𝜇<28 Convergence of PRLS is better than SC-PRLS but steady 
state error is better for SC-PRLS 

6 Optimum value 𝜇 = 35 Convergence and steady state error both are better than 
PRLS 

Table 3: performance comparation of SC-PRLS and PRLS with respect to 𝜇 

The performance of SC-PRLS were also compared with PRLS algorithms for SSI in terms of 
𝜇 and 𝛼  . The optimum values of  𝜇 is in found in the rage of 30-75 it depends on number 
of filter taps. The optimum  𝛼  is 0.65 for the SC-PRLS. Further, theoretically findings also 
verified by simulation results. 

 
Figure 4. Comparison of theoretical EMSE with Experimental EMSE for different values of 
𝜇  

The Figure 4 shown the comparison between theoretical findings and practical observations of 
Excess Mean Square Error (EMSE) for different values of the convergence controlling factor 
𝜇. It can be observed from the simulated results that practical performance of the algorithm 
matches with theoretical findings for a range of 𝜇 = 30 − 75 more precisely 𝜇 = 40 − 60 is 
optimum range. 

7. Conclusion 
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The SC-PRLS algorithm is designed to perform better than PRLS and robust performance in 
variable sparsity. The convergence of the algorithms is also proved in the paper and validated 
by simulated results. The SSE behavior and transient response of SC-PRLS algorithm is 
calculated by the principle of energy conservation. Further, the expression for EMSE was also 
derived and validated by experimental results. For simulation, the algorithm was implemented 
in sparse systems identification. The algorithm quickly tracks the unknown sparse system’s 
impulse response. The performance of the algorithms depends on the  𝛼  and convergence 
controlling parameter μ. The optimum value of  𝛼  is 0.65. The performance varies with μ, 
which needs to change whenever there is a change in the number of filter weights used in the 
algorithms. For a particular range of convergence controlling parameter μ, the performance of 
the SC-PRLS algorithm meets the theoretical analysis and performs better than PRLS. This 
range is decided by comparing the performance in terms of MSE, convergence rate, and EMSE 
for different values of μ. Therefore, μ should be chosen from (30-70) for better performance. 
Further, there is future scope to formulate a relationship between the number of filter weights 
and convergence controlling parameter μ for optimum performance. 
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