ISSN: 1004-9037 https://sjcjycl.cn/

DOI: 10.5281/zenodo.7778429

Ω -TRANSFORM OF WEIGHTED WAVE PACKET FRAMES FOR $L^2(\mathbb{R})$

ASHOK KUMAR SAH1, UMESH CHAND2, ROVIN KUMAR3

ABSTRACT. The purpose of this paper is to propose some type of transform $\Omega = (\omega_{\rho,\sigma,\tau,\eta,\mu,\nu})$ and for the weighted wave packet coefficient we have both necessary and sufficient conditions by applying Ω on $g \in L^2(\mathbb{R})$.

1. Introduction

A frame for Hilbert spaces was introduced by Duffin and Schaeffer [5]. A system $\{g_k\}$ is called *frame* for Hilbert spaces \mathscr{H} if there exists constants $0 < \alpha \le \beta < \infty$ such that

$$\alpha \|g\|^2 \le \sum_{i=1}^{\infty} |\langle g, g_i \rangle|^2 \le \beta \|g\|^2$$
, for all $g \in \mathcal{H}$. (1.1)

Here, $\alpha > 0$ is called *lower* frame bound and $\beta > 0$ is called *upper* frame bound. The upper inequality in (1.1) holds for \mathcal{H} then $\{g_i\}$ is called a Bessel sequence. The best bound for frame is defined by

$$\alpha_0 = \inf\{\beta : \beta > 0 \text{ satisfy (1.1)}\}\$$

 $\beta_0 = \sup\{\alpha : \alpha > 0 \text{ satisfy (1.1)}\}\$

In the case $\alpha = \beta$ and $\alpha = \beta = 1$ then $\{g_k\}$ would be called *tight frame* and normalized tight frame for \mathcal{H} respectively. The synthesis operator $\mathcal{T}: \ell^2 \to \mathcal{H}$ given by

$$\mathscr{T}(\{d_i\}) = \sum_{i=1}^{\infty} d_i g_i, \{d_i\} \in \ell^2$$

of the frame. The analysis operator is the adjoint $\mathscr{T}^*:\mathscr{H}\to\ell^2$ defined by

$$\mathscr{T}^*(g) = \{\langle g, g_i \rangle\}.$$

The frame operator is the composition of $\mathscr T$ and $\mathscr T^*$; $\mathscr U=\mathscr T\mathscr T^*:\mathscr H\to\mathscr H$ defined by

$$\mathscr{U}(g) = \sum_{i=1}^{\infty} \langle g, g_i \rangle g_i, g \in \mathscr{H}.$$

2010 Mathematics Subject Classification. Primary 42C15; Secondary 42C30, 42B35.
Key words and phrases. Frames, Weighted Transform, Wave packet system.

and is the invertible, positive and continuous operator on \mathcal{H} . For each vector $g \in \mathcal{H}$ we have the expansion:

$$g = \mathscr{U}\mathscr{U}^{-1}g = \sum_{i=1}^{\infty} \langle \mathscr{U}^{-1}g, g_i \rangle g_i. \tag{1.2}$$

There is an unconditional convergence of the series given in (1.2) for all $g \in \mathcal{H}$ and the scalars $\langle \mathcal{U}^{-1}g, g_i \rangle$ are called *frame coefficients*. One may refer to [2, 3, 6, 12] for basic theory in frames.

The Wave Packet System was introduced by Cordoba and Fefferman [3] using dilation, modulation, and translation of Gaussian functions. In the past few years, several authors have studied wave packet systems, including [1, 4, 7, 8, 9, 10, 11].

We define and notate the terms and notations that will be used in this paper: Assume g is a Lebesgue integrable function of complex value on \mathbb{R} that is Banach space satisfying

$$||g||_p = \left(\int_{\mathbb{R}} |g(u)|^p du\right)^{\frac{1}{p}} < \infty,$$

where $1 \leq p < \infty$. The inner product on $L^2(\mathbb{R})$ is defined by

$$\langle g, h \rangle = \int_{R} g(u) \overline{h(u)} du,$$

where, the conjugate of h denoted by \overline{h} .

Here are the unitary operators on $L^2(\mathbb{R})$ defined by :

Translation $\leftrightarrow T_a g(u) = g(u-a), a \in \mathbb{R}$.

Modulation $\leftrightarrow E_b g(u) = e^{2\pi i b t} g(u), b \in \mathbb{R}.$

Dilation
$$\leftrightarrow D_a g(u) = \frac{1}{\sqrt{|a|}} g(\frac{u}{a}), \ a \neq 0, a \in \mathbb{R}$$

For a > 0, $b, c \in \mathbb{R}$ and $g \in L^2(\mathbb{R})$, We know that

$$(D_{a_{\eta}}g\hat{)} = D_{a_{\eta}^{-1}}\hat{g}, (E_{b}g\hat{)} = T_{b}\hat{g}, (T_{c}g\hat{)} = E_{-c}\hat{g},$$

 $(D_{a_{\eta}}T_{b\mu}E_{c_{\nu}}g\hat{)} = D_{a_{\eta}^{-1}}E_{-b\mu}T_{c_{\nu}}\hat{g}.$

2. Ω - transform of weighted wave packet frames for $L^2(\mathbb{R})$

Definition 2.1. Assume $\phi \in L^2(\mathbb{R})$, $b \neq 0$, $\{c_{\nu}\}_{{\nu} \in \mathbb{Z}} \subset \mathbb{R}$ and $\{a_{\eta}\}_{{\mu} \in \mathbb{Z}} \subset \mathbb{R}^+$. A weighted wave packet system is one with the form $\{w_{\eta,{\mu},{\nu}}D_{a_{\eta}}T_{b\mu}E_{c_{\nu}}\phi\}_{\eta,{\mu},{\nu} \in \mathbb{Z}}$.

Definition 2.2. If a weighted wave packet system $\{w_{\eta,\mu,\nu}D_{a_{\eta}}T_{b\mu}E_{c_{\nu}}\phi\}_{\eta,\mu,\nu\in\mathbb{Z}}$ form a frame for $L^{2}(\mathbb{R})$, i.e., assume there exits constants $a_{0} > 0$ and $b_{0} > 0$, we have

$$a_0 \|g\|^2 \le \sum_{j\eta,\mu,\nu \in \mathbb{Z}} |\langle g, w_{\eta,\mu,\nu} D_{a_\eta} T_{b\mu} E_{c_\nu} \phi \rangle|^2 \le b_0 \|g\|^2$$
, for all $g \in L^2(\mathbb{R})$, (2.1)

then we say that $\{w_{\eta,\mu,\nu}D_{a\eta}T_{b\mu}E_{c\nu}\phi\}_{\eta,\mu,\nu\in\mathbb{Z}}$ is a weighted wave packet frame.

The constant values $a_0 > 0$ and $b_0 > 0$ which refer to the lower frame bound and upper frame bounds for $\{w_{\eta,\mu,\nu}D_{a_\eta}T_{b\mu}E_{c_\nu}\phi\}_{\eta,\mu,\nu\in\mathbb{Z}}$, respectively. If upper

. .

inequality in (2.1) hold then the system $\{w_{\eta,\mu,\nu}D_{a_{\eta}}T_{b\mu}E_{c_{\nu}}\phi\}_{\eta,\mu,\nu\in\mathbb{Z}}$ is called the Weighted wave packet Bessel sequence for $L^{2}(\mathbb{R})$ with bound b_{0} .

For any function $\phi \in L^2(\mathbb{R})$, we consider the system of functions $\{\phi_{\eta,\mu,\nu}\}_{\eta,\mu,\nu\in\mathbb{Z}} \subset L^2(\mathbb{R})$ as

$$\{\phi_{\eta,\mu,\nu}(\varsigma) := w_{\eta,\mu,\nu}D_{a_{\eta}}T_{b\mu}E_{c_{\nu}}\phi(\varsigma) : \eta,\mu,\nu \in \mathbb{Z}, \varsigma \in \mathbb{R}\}$$
 (2.2)

When (2.2) is transformed using the Fourier transform, we get

$$\hat{\phi}_{\eta,\mu,\nu}(\xi) = w_{\eta,\mu,\nu}a_{\eta}^{-1/2}\hat{\phi}(a_{\eta}^{-1}\xi - c_{\nu})e^{2\pi i\mu ba_{\eta}^{-1}\xi}$$

The Plancheral theorem gives

$$d_{\eta,\mu,\nu} = \langle g, \phi_{\eta,\mu,\nu} \rangle = \int_{\mathbb{R}} g(\varsigma) \overline{\phi_{\eta,\mu,\nu}}(\varsigma) d\varsigma, \quad g \in L^{2}(\mathbb{R})$$
 (2.3)

The system defined in (2.2) is called a wave packet frame for $L^2(\mathbb{R})$ if there exists positive constants γ and δ such that

$$\gamma \|g\|^2 \le \sum_{\eta,\mu,\nu \in \mathbb{Z}} |\langle g, \phi_{\eta,\mu,\nu} \rangle|^2 \le \delta \|g\|^2$$
, for all $g \in L^2(\mathbb{R})$.

The constant values γ and δ which refer to the lower and upper frame bounds. If $\gamma = \delta = 1$ then for every function $g \in L^2(\mathbb{R})$ can be written as

$$g(\varsigma) = \sum_{\eta,\mu,\nu \in \mathbb{Z}} d_{\eta,\mu,\nu} \phi_{\eta,\mu,\nu}(\varsigma)$$
 (2.4)

where $d_{\eta,\mu,\nu} = \langle g, \phi_{\eta,\mu,\nu} \rangle$ are given by (2.3), and it is called weighted wave packet coefficient for the expansion (2.4).

Definition 2.3. The Ω-transform of $\{s_{\eta,\mu,\nu}\}_{\eta,\mu,\nu\in\mathbb{Z}}$ for an infinite matrix $\Omega = (\omega_{\rho,\sigma,\tau,\eta,\mu,\nu})$ is defined by $\sum_{\eta,\mu,\nu\in\mathbb{Z}} \omega_{\rho,\sigma,\tau,\eta,\mu,\nu} s_{\eta,\mu,\nu}$.

Theorem 2.4. Suppose an infinite matrix $\Omega = (\omega_{\rho,\sigma,\tau,\eta,\mu,\nu})$ whose elements are of the form $e_{\rho,\sigma,\tau,\eta,\mu,\nu} = \langle \phi_{\rho,\sigma,\tau}, \phi_{\eta,\mu,\nu} \rangle$ and for $g \in L^2(\mathbb{R})$, the following conditions hold

- (1) $\sum_{\eta,\mu,\nu} \phi_{\eta,\mu,\nu} \int_{\mathbb{R}} g(\xi) \overline{\phi_{\eta,\mu,\nu}(\xi)} d\xi = 1$
- (2) $\lim_{\rho,\sigma,\tau\to\infty} \phi_{\rho,\sigma,\tau}(\varsigma) = 0$.

Then Ω -transformation converges on C_0 for the weighted wave packet coefficients $\{d_{\eta,\mu,\nu}\}$.

Proof. For $g \in L^2(\mathbb{R})$, considering that a matrix of infinite elements has the form $\langle \phi_{\eta,\mu,\nu}, \phi_{\rho,\sigma,\tau} \rangle$ and as defined in (2.3), $\{d_{\eta,\mu,\nu}\}$ is the weighted wave packet coefficient. Then

$$\begin{split} \omega_{\rho,\sigma,\tau,\eta,\mu,\nu} d_{\eta,\mu,\nu} &= \langle \phi_{\eta,\mu,\nu}, \phi_{\rho,\sigma,\tau} \rangle \langle g, \phi_{\eta,\mu,\nu} \rangle \\ &= \int_{\mathbb{R}} \phi_{\eta,\mu,\nu}(\varsigma) \overline{\phi_{\rho,\sigma,\tau}}(\varsigma) d\varsigma \int_{\mathbb{R}} g(\varsigma) \overline{\phi_{\eta,\mu,\nu}}(\varsigma) d\varsigma \\ &= \int_{\mathbb{R}} g(\varsigma) \overline{\phi_{\rho,\sigma,\tau}}(\varsigma) d\varsigma \int_{\mathbb{R}} \phi_{\eta,\mu,\nu}(\varsigma) \overline{\phi_{\eta,\mu,\nu}}(\varsigma) d\varsigma. \end{split}$$

Thus,

$$\sum_{\eta,\mu,\nu\in\mathbb{Z}}\omega_{\rho,\sigma,\tau,\eta,\mu,\nu}d_{\eta,\mu,\nu}=\sum_{\eta,\mu,\nu\in\mathbb{Z}}\int_{\mathbb{R}}\int_{\mathbb{R}}\phi_{\rho,\sigma,\tau}(\varsigma)\overline{\phi_{\eta,\mu,\nu}}(\varsigma)g(\xi)\overline{\phi_{\eta,\mu,\nu}}(\xi)d\varsigma d\xi.$$

By (1) and (2), we get

$$\lim_{\rho,\sigma,\tau\to\infty} \sum_{\eta,\mu,\nu\in\mathbb{Z}} \omega_{\rho,\sigma,\tau,\eta,\mu,\nu} c_{\eta,\mu,\nu} = \lim_{\rho,\sigma,\tau\to\infty} \int_{\mathbb{R}} \phi_{\rho,\sigma,\tau}(\varsigma) d\varsigma = 0.$$

The proof is thus complete.

Theorem 2.5. Suppose that non-negative infinite matrix $\Omega = (\omega_{\rho,\sigma,\tau,\eta,\mu,\nu})$ with $\sum_{\rho,\sigma,\tau\in\mathbb{Z}} \|\phi_{\rho,\sigma,\tau}\|^2 = 1$ and let $d_{\eta,\mu,\nu}$ are coefficients associated with the weighted wave packet series expansion defined in (2.4). Then, for all $g \in L^2(\mathbb{R})$ we have

$$\gamma_{\phi} \|g\|^2 \le \sum_{\rho, \sigma, \tau \in \mathbb{Z}} |\langle \Omega g, \phi_{\rho, \sigma, \tau} \rangle|^2 \le \delta_{\phi} \|g\|^2.$$

Here Ωg signifies the Ω -transformation of $g \in L^2(\mathbb{R})$, $0 < \gamma_\phi \le \delta_\phi < \infty$.

Proof. Consider, $g(\varsigma) = \sum_{\eta,\mu,\nu \in \mathbb{Z}} \langle g, \phi_{\eta,\mu,\nu} \rangle \phi_{\eta,\mu,\nu}(\varsigma)$. Applying Ω-transform on g, we obtain

$$\Omega g(\varsigma) = \sum_{\rho,\sigma,\tau \in \mathbb{Z}} \langle \Omega g, \phi_{\rho,\sigma,\tau} \rangle \phi_{\rho,\sigma,\tau}(\varsigma).$$

Therefore,

$$\sum_{\rho,\sigma,\tau\in\mathbb{Z}} |\langle \Omega g, \phi_{\rho,\sigma,\tau} \rangle|^2 \le \sum_{\rho,\sigma,\tau\in\mathbb{Z}} \int_{\mathbb{R}} |\Omega g(\varsigma)|^2 |\overline{\phi_{\rho,\sigma,\tau}(\varsigma)}|^2 d\varsigma$$

$$\le ||\Omega||^2 ||g||^2 \sum_{\rho,\sigma,\tau\in\mathbb{Z}} ||\phi_{\rho,\sigma,\tau}||^2.$$

Thus, we have

$$\sum_{\rho,\sigma,\tau \in \mathbb{Z}} |\langle \Omega g, \phi_{\rho,\sigma,\tau} \rangle|^2 \le \delta_{\phi} ||g||^2, \qquad (2.5)$$

where $\delta_{\phi} > 0$.

For each $g \in L^2(\mathbb{R})$, we get

$$f(\varsigma) = \left[\sum_{\rho,\sigma,\tau \in \mathbb{Z}} |\langle \Omega g, \phi_{\rho,\sigma,\tau} \rangle|^2 \right]^{-\frac{1}{2}} g(\varsigma).$$

Clearly,

$$\langle \Omega f, \phi_{\rho,\sigma,\tau} \rangle = \left[\sum_{\rho,\sigma,\tau \in \mathbb{Z}} |\langle \Omega g, \phi_{\rho,\sigma,\tau} \rangle|^2 \right]^{-\frac{1}{2}} \langle \Omega g, \phi_{\rho,\sigma,\tau} \rangle.$$

Thus,

$$\sum_{\rho,\sigma,\tau \in \mathbb{Z}} |\langle \Omega g, \phi_{\rho,\sigma,\tau} \rangle|^2 \le 1.$$

Assume there exist constant $\lambda > 0$ such that $||\Omega g||^2 \le \lambda$, then

$$\left[\sum_{\rho,\sigma,\tau\in\mathbb{Z}} |\langle \Omega g, \phi_{\rho,\sigma,\tau} \rangle|^2\right]^{-1} \|g\|^2 \le \frac{\Omega}{\|\gamma\|^2} = \gamma_{\phi} > 0.$$

Therefore,

$$\gamma_{\phi} \|g\|_{2}^{2} \leq \sum_{\rho,\sigma,\tau \in \mathbb{Z}} |\langle \Omega g, \phi_{\rho,\sigma,\tau} \rangle|^{2}.$$
 (2.6)

From (2.5) and (2.6), gives

$$\gamma_{\phi} ||g||^2 \le \sum_{\rho, \sigma, \tau \in \mathbb{Z}} |\langle \Omega g, \phi_{\rho, \sigma, \tau} \rangle|^2 \le \delta_{\phi} ||g||^2$$
.

The proof is thus complete.

References

- Christensen, O., Rahimi, A.: Frame properties of wave packet systems in L²(ℝ), Adv. Comput. Math. 29 (2008), 101–111.
- Christensen, O.: Frames and Bases, An Introductory Course, Birkhäuser, Boston, 2008.
- Cordoba, A., Fefferman, C.: Wave packets and Fourier integral operators, Comm. Partial Differential Equations, 3 (11), 979–1005 (1978).
- Czaja, W., Kutyniok, G. and Speegle, D.: The Geometry of sets of prameters of wave packets, Appl. Comput. Harmon. Anal. 20 (2006), 108–125.
- Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72, 341–366 (1952).
- Heil, C.: A Basis Theory Primer, Expanded edition. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York (2011).
- Hernández, E., Labate, D., Weiss, G., Wilson, E.: Oversampling, quasi-affine frames and wave packets, Appl. Comput. Harmon. Anal., 16, 111–147 (2004).
- Labate, D., Weiss, G., Wilson, E.: An approach to the study of wave packet systems, Contemp. Math., 345, 215–235 (2004).
- Sah, A. K., Kumar, R.: Perturbation of irregular Weyl-Heisenberg wave packet frames in L²(R), Osaka Journal of Mathematics, 54(4) (2017), 789-799.
- Sah, A. K., Vashisht, L. K.: Irregular Weyl-Heisenberg wave packet frames in L²(ℝ), Bull. Sci. Math. 139 , 61–74 (2015).
- Sah, A. K., Vashisht, L. K.: On Hilbert Transform of wave packet system for L²(R), Poincare Journal of Analysis and Applications, 1 (2014), 9–17.
- R. Young, An introduction to nonharmonic Fourier series, Academic Press, New York (revised first edition 2001).
- Department of Mathematics, Dr. R.M.L.S. College, B.R.A. Bihar University, Muzaffarpur, Bihar-842001, India.

Email address: ashokmaths2010@gmail.com

² Department of Mathematics, Maharaj Singh College, Saharanpur, UP-247001, India.

Email address: umathematics@gmail.com

³ Department of Mathematics, IIMT College of Management, Greater Noida, UP-201306, India.

Email address: drrovinkr9393@gmail.com