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Abstract 
A uniform order block method is formulated using collocation and interpolation techniques 
with Hermite polynomials as basis function for solving third order initial value problems in 
ordinary differential equations. The convergence and stability properties of the new method 
are investigated. The new method is tested on some numerical problems to demonstrate the 
applicability, accuracy and efficiency of the new method. Keywords: Multiderivative, Hermite 
Polynomials, Third Order Differential Equations, Block method. 
 
INTRODUCTION 
In this study, we considered the third order ordinary differential equation is of the form: 
 y′′′ = f(x,y,y′,y′′),y(a) = α, y′(a) = β, y′′(a) = γ, (1) 
 
Where f is a continuous differentiable function. 
Equation (1) is traditionally solved by reducing the problem to an equivalent system of three 
first order ordinary differential equations. Jennings [4], Awoyemi [5], and Jator [10, 11] are 
few of the authors that discussed the technique of reducing nth order ordinary differential 
equation (1) to a system of equations. The rigour of writing computer subroutine-sub program 
within the main program to get starting values is a major drawback associated with methods 
that solve equivalent systems of first order ordinary differential equations. According to 
Awoyemi [5, 6, 7], the consequence of this is extra computational effort, and computer time 
and storage wastage. In view of these setbacks, methods that are based on reduction approach 
are inefficient and might not be very suitable in application. Therefore, there is a need to 
develop direct methods to handle high order ordinary differential equations. Adeyeye and 
Zurni [2], Anake et al [3], Kuboye et al [12], Awoyemi [8], Mohammed [19] among other 
authors have developed methods that solve problem (1) without having to reduce it to a system 
of equations. 
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These authors used various polynomials such as such as Legendre polynomials, Power series, 
Lucas polynomials, Taylor series and Chebyshev polynomials as basis functions for the 
formulation of block methods for the solution of problem (1). Linear Multistep Methods 
derived from continuous schemes constitutes block methods. Block methods perform better 
than predictor-corrector methods in terms of accuracy and efficiency. 
 
The focus of this paper is to formulate a four step block method through interpolation and 
collocation techniques for solving third order initial value problems with the Hermite 
polynomials as the basis functions. 
DERIVATION OF THE METHOD 
In order to solve the initial value problem (1) in the interval [a,b] based on the partition a = x0 

≤ x1 ≤ ···xn = b with a uniform step length of h = xn − xn−1,n = 0,1,··· ,N − 1, 
We consider an approximate solution Y (x) to the analytical solution y(x) of the form: 

, (2) 
 
Where Hr(x) is the Probabilist’s Hermite polynomial function of degree r defined as follows: 

. (3) 
 
The Hermite polynomial (3) satisfies the recurrence relation: 

1; (4) 
 
With the initial conditions: H0(x) = 1 and H1(x) = x. 
 
To determine the values of the coefficients ar, r = 0(1)7, in equation (2), set 

, (5) 
and 

, (6) 
 
Where n is the grid index and yn+i = Y (xn+i). 
Equations (5) and (6) provide a system of eight equations whose solution gives the values of 
the coefficients ar, r = 0(1)7, which are substituted into (2) and after some algebraic 
manipulations yields a continuous scheme of the form: 

, (7) 
 
Where αi(x), βi(x), i = 0(1)4 are continuous coefficients. 
Evaluating (7) at x = xn+2,xn+4 to obtain: 

. (8) 
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(9) 
 
Now, differentiating (7) in turn with respect to x gives 

, (10) 

, (11) 
 
Evaluating equations (10) and (11) at x = xn,xn+1,xn+2,xn+3,xn+4 to get the complementary 
methods. However, equations (10), (11) and the complementary methods form the new block 
method which can be written in matrix form as: 
 

 
 
That is, 
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. 
 
ANALYSIS OF THE METHOD 
Basic properties of the block method are considered and analyzed to establish the efficiency 
and reliability of the method. The following properties are analyzed: Order, error constant, 
consistence, Zero stability and Convergence. 

Definition (Local Truncation Error) 
According to Lambert [13], the local truncation error associated with the third order linear 
multistep method: 

 
 
Is defned by the difference operator 
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Where y(x) is an arbitrary function, continuously differentiable on [a,b]. Expanding (14) in 
Taylor series about point x leads to the expression: 

 
 
Where C0,C1,C2,··· ,Cp,··· ,Cp+2 are obtained as follows: 

 

(16) 
 
Therefore, the method (13) is of order p if 
C0 = C1 = C2 = ··· = Cp = Cp+1 = Cp+2 = 0 and Cp+3 ≠ 0. 
 
The constant Cp+3 ̸= 0 is called the error constant and Cp+3hp+3y(p+3)(x) is the principal local 
truncation error at xn. Using the above definition, the block method (12) is of order p = 5 and 
the error constant 

 
 

Consistency 
The linear multistep method (12) is of order p = 5 ≥ 1. Hence, the new block method is 
consistent following Jator [11]. 
 

Zero Stability 
Upon the normalization of equation (12), we obtain 

, (18)  
Where  

 
Now, 

) as h → 0. (19) 
 
Solving for r in the equation 
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ρ(r) = r11(r − 1) = 0 ⇒ r = 0,1. 
 
Therefore, the new block method is zero stable. 
 

Convergence of the Method 
The block method (12) is convergent since it satisfies the necessary and sufficient condition of 
consistency and zero stability following Henrici [9]. 
 
NUMERICAL EXAMPLES 
To investigate the efficiency of the method, we apply the new method to solve some test 
problems. 
 
Example 4.1 
Solve the initial value problem: 
y′′′ + y′ = 0; y(0) = 0,y′(0) = 1, y′′(0) = 2. h = 0.1. 
Analytical Solution is y(x) = 2(1 − cosx) + sinx. 
Source: Anake et al [3]. 
 
Example 4.2 
Solve the initial value problem: 
y′′′ = ex; y(0) = 3, y′(0) = 1, y′′(0) = 5. h = 0.1. 
Analytical Solution is y(x) = 2 + 2x2 + ex. 
Source: Olabode and Yusuph [16]. 
 
Example 4.3 
Solve the non linear initial value problem: 
y′′′ = y′(2xy′′ + y′); y(0) = 1, y′(0) = 0.5, y′′(0) = 0. h = 0.01. 

Analytical Solution is                            . 
Source: Adoghe and Omole [17]. 
 
Example 4.4 
Solve the linear initial value problem: 
y′′′ + 5y′′ + 7y′ + 3y = 0;y(0) = 1, y′(0) = 0, y′′(0) = −1. h = 0.1. 
Analytical Solution is y(x) = e−x + xe−x. 
Source: Sagir [18]. 
 
Example 4.5 
Solve the linear initial value problem: 
y′′′ − y′′ + y′ − y = 0;y(0) = 1, y′(0) = 0, y′′(0) = −1. h = 0.01. 
Analytical Solution is y(x) = cosx. 
Source: Sagir [18]. 
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Absolute errors in the solutions of Examples 4.1, 4.2, 4.3, 4.4 and 4.5 based on the new method 
are respectively presented in Tables 1, 2, 3, 4 and 5 in comparison with existing methods in 
literature. 
 
 
Table 1: Absolute Errors for Example 4.1 

x New Method Awoyemi [5] Olabode [15] Anake et al [3] Adeyefa 
[1] 

0.1 6.1893E-11 – 1.6654E-08 1.6088E-09 
2.3300E-
10 

0.2 3.9807E-10 8.8507E-07 3.8095E-07 1.0387E-08 
1.4670E-
09 

0.3 9.6861E-10 – 1.5664E-07 2.9572E-08 4.800E-09 

0.4 1.8043E-09 6.6921E-06 3.9865E-06 2.3147E-07 
1.1230E-
08 

0.5 2.7321E-09 – 7.9597E-06 4.5420E-07 
2.1767E-
08 

0.6 3.8183E-09 2.3718E-05 1.3680E-05 1.4746E-06 
3.7500E-
08 

0.7 5.0297E-09 – 2.1195E-05 2.8734E-06 
6.3733E-
08 

0.8 6.3766E-09 5.5181E-05 3.0396E-05 4.6826E-06 
9.2767E-
08 

0.9 7.7337E-09 – 4.1008E-05 6.9217E-06 
1.2910E-
07 

1.0 9.0876E-09 1.0338E-05 5.2605E-05 9.5974E-06 
1.7573E-
07 

 
CONCLUSION 
In this paper, we have constructed a direct 4 –step multiderivative integrator which is efficient 
and suitable for solving third order ordinary differential equations. The method has  
 
Table 2: Absolute Errors for Example 4.2 

x New 
Method 

Olabode and 
Yusuph [16] 

Obarhua and 
Kayode [14] 

0.1 
4.0986E-
11 

7.5647E-11 4.6567E-11 
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0.2 
2.6433E-
10 

1.8398E-09 4.2286E-10 

0.3 
6.4459E-
10 

4.4240E-09 1.5120E-09 

0.4 
1.2072E-
09 

1.0359E-08 3.7373E-09 

0.5 
1.8641E-
09 

1.1299E-08 1.3518E-08 

0.6 
2.7826E-
09 

1.4610E-08 1.3518E-08 

0.7 
3.9248E-
09 

2.0530E-08 2.2162E-08 

0.8 
5.3288E-
09 

1.9508E-08 3.4130E-08 

0.9 
6.8630E-
09 

1.0843E-08 5.0123E-08 

1.0 
8.7771E-
09 

1.5410E-08 7.0907E-08 

 
Table 3: Absolute Errors for Example 4.3 

x New Method Adoghe and Omole [17] 

0.1 4.6655E-19 2.2204E-16 

0.2 3.0159E-18 0.0000E+00 

0.3 7.3211E-18 1.9984E-15 

0.4 1.3713E-17 1.4211E-14 

0.5 2.1632E-17 5.5511E-14 

0.6 3.5882E-17 1.6409E-13 

0.7 5.5473E-17 3.8813E-13 

0.8 8.1610E-17 7.9980E-13 

0.9 1.1047E-16 1.5010E-12 

1.0 1.5037E-16 2.6241E-12 

Shown acceptable solution and the method performed better and converges faster than some 
existing methods. 
 
Table 4: Absolute Errors for Example 4.4 
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x New Method Sagir [18] 

0.1 1.5505E-10 
6.4300E-
08 

0.2 8.5291E-10 
2.7200E-
08 

0.3 1.74460E-09 
3.0500E-
08 

0.4 2.7843E-09 
8.9800E-
08 

0.5 3.3548E-09 
4.4260E-
07 

0.6 3.7430E-09 
7.7260E-
07 

0.7 3.9305E-09 
1.9523E-
06 

0.8 4.02890E-09 
1.0274E-
06 

0.9 3.7452E-09 
1.3509E-
06 

1.0 3.3243E-09 
1.3470E-
05 

 
Table 5: Absolute Errors for Example 4.5 

x New Method Sagir [18] Adeyefa 
[1] 

0.01 3.4648E-19 1.9990E-07 
1.7460E-
07 

0.02 2.2405E-18 1.9560E-07 
4.1500E-
07 

0.03 5.4885E-18 1.3651E-07 
1.4021E-
06 

0.04 1.0313E-17 2.5210E-07 
3.2914E-
06 

0.05 1.5886E-17 1.3039E-06 
6.3483E-
06 
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0.06 2.3064E-17 3.0280E-06 
1.0822E-
05 

0.07 3.1654E-17 3.3453E-06 
1.6945E-
05 

0.08 4.1878E-17 1.2405E-06 
2.4934E-
05 

0.09 5.2909E-17 1.3290E-06 
3.4989E-
05 

0.10 9.5609E-17 1.7180E-05 
1.0525E-
04 
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