A NEW BLOCK INTEGRATOR FOR SOLVING THIRD-ORDER ORDINARY DIFFERENTIAL EQUATIONS

Oladotun Matthew Ogunlaran ${ }^{1}$, Michael Adeyinka Kehinde ${ }^{2}$, Moses Adebowale Akanbi ${ }^{3}$, Emmanuel Idowu Akinola ${ }^{4}$
${ }^{1 *, 2,4}$ Mathematics Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria, Email:- matthew.ogunlaran@bowen.edu.ng
${ }^{3}$ Department of Mathematics; and Africa Centre of Excellence for Innovative and Transformative STEM Education (ACEITSE), Lagos State University, Ojo, Lagos State, Nigeria

*Corresponding Author: - Oladotun Matthew Ogunlaran
Mathematics Programme, College of Agriculture, Engineering and Science, Bowen
University, Iwo, Nigeria, Email: - matthew.ogunlaran@bowen.edu.ng

Abstract

A uniform order block method is formulated using collocation and interpolation techniques with Hermite polynomials as basis function for solving third order initial value problems in ordinary differential equations. The convergence and stability properties of the new method are investigated. The new method is tested on some numerical problems to demonstrate the applicability, accuracy and efficiency of the new method. Keywords: Multiderivative, Hermite Polynomials, Third Order Differential Equations, Block method.

Introduction

In this study, we considered the third order ordinary differential equation is of the form:

$$
\begin{equation*}
y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right), y(a)=\alpha, \quad y^{\prime}(a)=\beta, \quad y^{\prime \prime}(a)=\gamma, \tag{1}
\end{equation*}
$$

Where f is a continuous differentiable function.
Equation (1) is traditionally solved by reducing the problem to an equivalent system of three first order ordinary differential equations. Jennings [4], Awoyemi [5], and Jator [10, 11] are few of the authors that discussed the technique of reducing nth order ordinary differential equation (1) to a system of equations. The rigour of writing computer subroutine-sub program within the main program to get starting values is a major drawback associated with methods that solve equivalent systems of first order ordinary differential equations. According to Awoyemi [5, 6, 7], the consequence of this is extra computational effort, and computer time and storage wastage. In view of these setbacks, methods that are based on reduction approach are inefficient and might not be very suitable in application. Therefore, there is a need to develop direct methods to handle high order ordinary differential equations. Adeyeye and Zurni [2], Anake et al [3], Kuboye et al [12], Awoyemi [8], Mohammed [19] among other authors have developed methods that solve problem (1) without having to reduce it to a system of equations.

These authors used various polynomials such as such as Legendre polynomials, Power series, Lucas polynomials, Taylor series and Chebyshev polynomials as basis functions for the formulation of block methods for the solution of problem (1). Linear Multistep Methods derived from continuous schemes constitutes block methods. Block methods perform better than predictor-corrector methods in terms of accuracy and efficiency.

The focus of this paper is to formulate a four step block method through interpolation and collocation techniques for solving third order initial value problems with the Hermite polynomials as the basis functions.

Derivation of the Method

In order to solve the initial value problem (1) in the interval [a, b] based on the partition $a=x_{0}$ $\leq x_{1} \leq \cdots x_{n}=b$ with a uniform step length of $h=x_{n}-x_{n-1}, n=0,1, \cdots, N-1$,
We consider an approximate solution $Y(x)$ to the analytical solution $y(x)$ of the form:
$Y(x)=\sum_{r=0}^{7} a_{r} H_{r}\left(x-x_{n}\right)$,
Where $H_{r}(x)$ is the Probabilist's Hermite polynomial function of degree r defined as follows: $H_{r}(x)=(-1)^{r} e^{\frac{x^{2}}{2}} \frac{d^{r}}{d x^{r}} e^{-\frac{x^{2}}{2}}$.

The Hermite polynomial (3) satisfies the recurrence relation:
$H_{r+1}(x)=x H_{r}(x)-H_{r}^{\prime}(x), \quad r \geq 1$;
With the initial conditions: $H_{0}(x)=1$ and $H_{1}(x)=x$.

To determine the values of the coefficients $a_{r}, r=0(1) 7$, in equation (2), set
$\sum_{r=0}^{7} a_{r} H_{r}\left(x-x_{n}\right)=y_{n+i}, i=0,1,3$,
and
$\sum_{r=0}^{7} a_{r} H_{r}^{\prime \prime \prime}\left(x-x_{n}\right)=f_{n+i}, i=0(1) 4$,
Where n is the grid index and $y_{n+i}=Y\left(x_{n+i}\right)$.
Equations (5) and (6) provide a system of eight equations whose solution gives the values of the coefficients $a_{r}, r=0(1) 7$, which are substituted into (2) and after some algebraic manipulations yields a continuous scheme of the form:
$Y(x)=\sum_{i=0}^{4} \alpha_{i}(x) y_{n+i}+h^{3} \sum_{i=0}^{4} i_{i}(x) f_{n+i}$,

Where $\alpha_{i}(x), \beta_{i}(x), i=0(1) 4$ are continuous coefficients.
Evaluating (7) at $x=x_{n+2, x_{n+4}}$ to obtain:

$$
\begin{align*}
& y_{n+3}+3 y_{n+2}-3 y_{n+1}+y_{n}=\frac{h^{3}}{240}\left(-f_{n}-116 f_{n+1}-126 f_{n+2}+4 f_{n+3}-f_{n+4}\right) \\
& y_{n+4}-2 y_{n+3}+2 y_{n+1}-y_{n}=\frac{h^{3}}{120}\left(f_{n}+56 f_{n+1}+126 f_{n+2}+56 f_{n+3}+f_{n+4}\right) . \tag{8}
\end{align*}
$$

(9)

Now, differentiating (7) in turn with respect to x gives
$Y^{\prime}(x)=\sum_{i=0}^{4} \alpha_{i}^{\prime}(x) y_{n+i}+h^{2} \sum_{i=0}^{4} \beta{ }_{i}^{\prime}(x) f_{n+i}$,
$Y^{\prime \prime}(x)=\sum_{i=0}^{4} \alpha_{i}^{\prime \prime}(x) y_{n+i}+h^{2} \sum_{i=0}^{4}{ }_{i}^{\prime \prime}(x) f_{n+i}$,
Evaluating equations (10) and (11) at $x=x_{n}, x_{n+1}, x_{n+2}, x_{n+3}, x_{n+4}$ to get the complementary methods. However, equations (10), (11) and the complementary methods form the new block method which can be written in matrix form as:

$$
\begin{equation*}
A Y_{m}=B Y_{m-1}+h^{3}\left[C f_{n}+D F_{m}\right] \tag{12}
\end{equation*}
$$

That is,
$\left(\begin{array}{cccccccccccc}-3 & 3 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -9 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -3 & 0 & -1 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 9 & 0 & -5 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 0 & 0 \\ 15 & 0 & -7 & 0 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 0 \\ 3 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\ 3 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\ 3 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 3 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3\end{array}\right)\left(\begin{array}{l}y_{n+1} \\ y_{n+2} \\ y_{n+3} \\ y_{n+4} \\ h y_{n+1}^{\prime} \\ h y_{n+2}^{\prime} \\ h y_{n+3}^{\prime} \\ h y_{n+4}^{\prime} \\ h^{2} y_{n+1}^{\prime \prime} \\ h^{2} y_{n+2}^{\prime \prime} \\ h^{2} y_{n+3}^{\prime 2} \\ h^{2} y_{n+4}^{\prime \prime}\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{cccccccccccc}
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -8 & 0 & 0 & 0 & -6 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
y_{n-3} \\
y_{n-2} \\
y_{n-1} \\
y_{n} \\
h y_{n-3}^{\prime} \\
h y_{n-2}^{\prime} \\
h y_{n-1}^{\prime} \\
h y_{n}^{\prime} \\
h^{2} y_{n-3}^{\prime \prime} \\
h^{2} y_{n-2}^{\prime \prime} \\
h^{2} y_{n-1}^{\prime \prime} \\
h^{2} y_{n}^{\prime \prime}
\end{array}\right)
\end{aligned}
$$

Analysis of the Method

Basic properties of the block method are considered and analyzed to establish the efficiency and reliability of the method. The following properties are analyzed: Order, error constant, consistence, Zero stability and Convergence.
Definition (Local Truncation Error)
According to Lambert [13], the local truncation error associated with the third order linear multistep method:

$$
\begin{equation*}
\sum_{i=0}^{k} \alpha_{i} y_{n+i}=h^{3} \sum_{i=0}^{k} \beta_{i} f_{n+i} \tag{13}
\end{equation*}
$$

Is defned by the difference operator

$$
\begin{equation*}
L[y(x): h]=\sum_{i=0}^{k}\left[\alpha_{i} y\left(x_{n}+i h\right)-h^{3} \beta_{i} y^{\prime \prime \prime}\left(x_{n}+i h\right)\right], \tag{14}
\end{equation*}
$$

Where $y(x)$ is an arbitrary function, continuously differentiable on [a,b]. Expanding (14) in Taylor series about point x leads to the expression:

$$
\begin{equation*}
L[y(x): h]=C_{0} y(x)+C_{1} h y^{\prime}(x)+C_{2} h^{2} y^{\prime \prime}(x)+\cdots+C_{p} h^{p} y^{(p)}(x)+\cdots C_{p+3} h^{p+3} y^{(p+3)}(x) \tag{15}
\end{equation*}
$$

Where $C_{0}, C_{1}, C_{2}, \cdots, C_{p}, \cdots, C_{p+2}$ are obtained as follows:
$C_{0}=\sum_{i=0}^{k} \alpha_{i} \quad C_{1}=\sum_{i=1}^{k} i \alpha_{i} \quad C_{2}=\frac{1}{2!} \sum_{i=1}^{k} i^{2} \alpha_{i} \quad \cdots$
$C_{q}=\frac{1}{q!}\left[\sum_{i=1}^{k} i^{q} \alpha_{i}-q(q-1)(q-2) \sum_{i=1}^{k} i_{i} i^{q-3}\right]_{(16)}$

Therefore, the method (13) is of order p if
$C 0=C 1=C 2=\cdots=C p=C p+1=C p+2=0$ and $C p+3 \models 0$.
The constant $C_{p+3} \neq 0$ is called the error constant and $C_{p+3} h^{p+3} y^{(p+3)}(x)$ is the principal local truncation error at x_{n}. Using the above definition, the block method (12) is of order $p=5$ and the error constant
$C_{p+3}=\left[\frac{1}{480}, \frac{1}{30240}, \frac{13}{560}, \frac{-1}{1120}, \frac{-623}{5000000}, \frac{1}{1120}, \frac{-13}{560}, \frac{59}{1344}, \frac{83}{6720}, \frac{1171}{2240}, \frac{83}{6720}, \frac{-59}{1344}\right]^{T}$.

Consistency

The linear multistep method (12) is of order $p=5 \geq 1$. Hence, the new block method is consistent following Jator [11].

Zero Stability
Upon the normalization of equation (12), we obtain
$A_{0}^{*} Y_{m}=A_{1}^{*} Y_{m-1}+h^{3}\left[B_{0}^{*} f_{n}+B_{1}^{*} F_{m}\right]$,
Where
$A_{0}=\left(\begin{array}{llllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{lllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
Now,
$\rho(r)=\operatorname{det}\left(r A_{0}^{*}-A_{1}\right)$ as $h \rightarrow 0$.
Solving for r in the equation
$\rho(r)=r^{11}(r-1)=0 \Rightarrow r=0,1$.

Therefore, the new block method is zero stable.

Convergence of the Method
The block method (12) is convergent since it satisfies the necessary and sufficient condition of consistency and zero stability following Henrici [9].

Numerical Examples

To investigate the efficiency of the method, we apply the new method to solve some test problems.

Example 4.1

Solve the initial value problem:
$y^{\prime \prime \prime}+y^{\prime}=0 ; y(0)=0, y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=2 . \quad h=0.1$.
Analytical Solution is $y(x)=2(1-\cos x)+\sin x$.
Source: Anake et al [3].

Example 4.2

Solve the initial value problem:
$y^{\prime \prime \prime}=e^{x} ; \quad y(0)=3, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=5 . \quad h=0.1$.
Analytical Solution is $y(x)=2+2 x^{2}+e^{x}$.
Source: Olabode and Yusuph [16].

Example 4.3

Solve the non linear initial value problem:
$y^{\prime \prime \prime}=y^{\prime}\left(2 x y^{\prime \prime}+y^{\prime}\right) ; y(0)=1, \quad y^{\prime}(0)=0.5, \quad y^{\prime \prime}(0)=0 . \quad h=0.01$.

Analytical Solution is

$$
y(x)=1+\frac{1}{2} \log \left(\frac{2+x}{2-x}\right) .
$$

Source: Adoghe and Omole [17].

Example 4.4

Solve the linear initial value problem:
$y^{\prime \prime \prime}+5 y^{\prime \prime}+7 y^{\prime}+3 y=0 ; y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=-1 . \quad h=0.1$.
Analytical Solution is $y(x)=e^{-x}+x e^{-x}$.
Source: Sagir [18].

Example 4.5

Solve the linear initial value problem:
$y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0 ; y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=-1 . \quad h=0.01$.
Analytical Solution is $y(x)=\cos x$.
Source: Sagir [18].

Absolute errors in the solutions of Examples 4.1, 4.2, 4.3, 4.4 and 4.5 based on the new method are respectively presented in Tables 1, 2, 3, 4 and 5 in comparison with existing methods in literature.

Table 1: Absolute Errors for Example 4.1

x	New Method	Awoyemi [5]	Olabode [15]	Anake et al [3]	Adeyefa [1]
0.1	6.1893E-11	-	$1.6654 \mathrm{E}-08$	$1.6088 \mathrm{E}-09$	$\begin{aligned} & 2.3300 \mathrm{E}- \\ & 10 \end{aligned}$
0.2	$3.9807 \mathrm{E}-10$	$8.8507 \mathrm{E}-07$	$3.8095 \mathrm{E}-07$	$1.0387 \mathrm{E}-08$	$\begin{aligned} & 1.4670 \mathrm{E}- \\ & 09 \end{aligned}$
0.3	$9.6861 \mathrm{E}-10$	-	$1.5664 \mathrm{E}-07$	$2.9572 \mathrm{E}-08$	$4.800 \mathrm{E}-09$
0.4	$1.8043 \mathrm{E}-09$	$6.6921 \mathrm{E}-06$	$3.9865 \mathrm{E}-06$	$2.3147 \mathrm{E}-07$	$\begin{aligned} & 1.1230 \mathrm{E}- \\ & 08 \end{aligned}$
0.5	$2.7321 \mathrm{E}-09$	-	7.9597E-06	4.5420E-07	$\begin{aligned} & 2.1767 \mathrm{E}- \\ & 08 \end{aligned}$
0.6	$3.8183 \mathrm{E}-09$	$2.3718 \mathrm{E}-05$	$1.3680 \mathrm{E}-05$	$1.4746 \mathrm{E}-06$	$\begin{aligned} & 3.7500 \mathrm{E}- \\ & 08 \end{aligned}$
0.7	5.0297E-09	-	$2.1195 \mathrm{E}-05$	$2.8734 \mathrm{E}-06$	$\begin{aligned} & 6.3733 \mathrm{E}- \\ & 08 \end{aligned}$
0.8	6.3766E-09	5.5181E-05	$3.0396 \mathrm{E}-05$	4.6826E-06	$\begin{aligned} & 9.2767 \mathrm{E}- \\ & 08 \end{aligned}$
0.9	7.7337E-09	-	4.1008E-05	6.9217E-06	$\begin{aligned} & 1.2910 \mathrm{E}- \\ & 07 \end{aligned}$
1.0	$9.0876 \mathrm{E}-09$	$1.0338 \mathrm{E}-05$	5.2605E-05	$9.5974 \mathrm{E}-06$	$\begin{aligned} & 1.7573 \mathrm{E}- \\ & 07 \end{aligned}$

Conclusion

In this paper, we have constructed a direct 4 -step multiderivative integrator which is efficient and suitable for solving third order ordinary differential equations. The method has

Table 2: Absolute Errors for Example 4.2

x	New Method	Olabode Yusuph [16]	and Obarhua and Kayode [14]
0.1	$4.0986 \mathrm{E}-$ 11	$7.5647 \mathrm{E}-11$	$4.6567 \mathrm{E}-11$

0.2	$\begin{aligned} & 2.6433 \mathrm{E}- \\ & 10 \end{aligned}$	$1.8398 \mathrm{E}-09$	4.2286E-10
0.3	$\begin{aligned} & 6.4459 \mathrm{E}- \\ & 10 \end{aligned}$	$4.4240 \mathrm{E}-09$	$1.5120 \mathrm{E}-09$
0.4	$\begin{aligned} & 1.2072 \mathrm{E}- \\ & 09 \end{aligned}$	$1.0359 \mathrm{E}-08$	$3.7373 \mathrm{E}-09$
0.5	$\begin{aligned} & 1.8641 \mathrm{E}- \\ & 09 \end{aligned}$	$1.1299 \mathrm{E}-08$	$1.3518 \mathrm{E}-08$
0.6	$\begin{aligned} & 2.7826 \mathrm{E}- \\ & 09 \end{aligned}$	$1.4610 \mathrm{E}-08$	$1.3518 \mathrm{E}-08$
0.7	$\begin{aligned} & 3.9248 \mathrm{E}- \\ & 09 \end{aligned}$	$2.0530 \mathrm{E}-08$	$2.2162 \mathrm{E}-08$
0.8	$\begin{aligned} & 5.3288 \mathrm{E}- \\ & 09 \end{aligned}$	1.9508E-08	$3.4130 \mathrm{E}-08$
0.9	$\begin{aligned} & 6.8630 \mathrm{E}- \\ & 09 \end{aligned}$	$1.0843 \mathrm{E}-08$	$5.0123 \mathrm{E}-08$
1.0	$\begin{aligned} & 8.7771 \mathrm{E}- \\ & 09 \end{aligned}$	$1.5410 \mathrm{E}-08$	7.0907E-08

Table 3: Absolute Errors for Example 4.3

x	New Method	Adoghe and Omole [17]
0.1	$4.6655 \mathrm{E}-19$	$2.2204 \mathrm{E}-16$
0.2	$3.0159 \mathrm{E}-18$	$0.0000 \mathrm{E}+00$
0.3	$7.3211 \mathrm{E}-18$	$1.9984 \mathrm{E}-15$
0.4	$1.3713 \mathrm{E}-17$	$1.4211 \mathrm{E}-14$
0.5	$2.1632 \mathrm{E}-17$	$5.5511 \mathrm{E}-14$
0.6	$3.5882 \mathrm{E}-17$	$1.6409 \mathrm{E}-13$
0.7	$5.5473 \mathrm{E}-17$	$3.8813 \mathrm{E}-13$
0.8	$8.1610 \mathrm{E}-17$	$7.9980 \mathrm{E}-13$
0.9	$1.1047 \mathrm{E}-16$	$1.5010 \mathrm{E}-12$
1.0	$1.5037 \mathrm{E}-16$	$2.6241 \mathrm{E}-12$

Shown acceptable solution and the method performed better and converges faster than some existing methods.

Table 4: Absolute Errors for Example 4.4

x	New Method	Sagir [18]
0.1	$1.5505 \mathrm{E}-10$	$\begin{aligned} & 6.4300 \mathrm{E}- \\ & 08 \end{aligned}$
0.2	$8.5291 \mathrm{E}-10$	$\begin{aligned} & 2.7200 \mathrm{E}- \\ & 08 \end{aligned}$
0.3	$1.74460 \mathrm{E}-09$	$\begin{aligned} & 3.0500 \mathrm{E}- \\ & 08 \end{aligned}$
0.4	$2.7843 \mathrm{E}-09$	$\begin{aligned} & 8.9800 \mathrm{E}- \\ & 08 \end{aligned}$
0.5	3.3548E-09	$\begin{aligned} & 4.4260 \mathrm{E}- \\ & 07 \end{aligned}$
0.6	$3.7430 \mathrm{E}-09$	$\begin{aligned} & 7.7260 \mathrm{E}- \\ & 07 \end{aligned}$
0.7	$3.9305 \mathrm{E}-09$	$\begin{aligned} & 1.9523 \mathrm{E}- \\ & 06 \end{aligned}$
0.8	$4.02890 \mathrm{E}-09$	$\begin{aligned} & 1.0274 \mathrm{E}- \\ & 06 \end{aligned}$
0.9	3.7452E-09	$\begin{aligned} & 1.3509 \mathrm{E}- \\ & 06 \end{aligned}$
1.0	$3.3243 \mathrm{E}-09$	$\begin{aligned} & 1.3470 \mathrm{E}- \\ & 05 \end{aligned}$

Table 5: Absolute Errors for Example 4.5

x	New Method	Sagir [18]	Adeyefa $[1]$		
0.01	$3.4648 \mathrm{E}-19$	$1.9990 \mathrm{E}-07$	$1.7460 \mathrm{E}-$ 07		
0.02	$2.2405 \mathrm{E}-18$	$1.9560 \mathrm{E}-07$	$4.1500 \mathrm{E}-$ 07		
0.03	$5.4885 \mathrm{E}-18$	$1.3651 \mathrm{E}-07$	$1.4021 \mathrm{E}-$ 06		
0.04	$1.0313 \mathrm{E}-17$	$2.5210 \mathrm{E}-07$	$3.2914 \mathrm{E}-$ 06		
0.05	$1.5886 \mathrm{E}-17$	$1.3039 \mathrm{E}-06$			$6.3483 \mathrm{E}-$
:---					
06					

0.06	$2.3064 \mathrm{E}-17$	$3.0280 \mathrm{E}-06$	$1.0822 \mathrm{E}-$ 05
0.07	$3.1654 \mathrm{E}-17$	$3.3453 \mathrm{E}-06$	$1.6945 \mathrm{E}-$ 05
0.08	$4.1878 \mathrm{E}-17$	$1.2405 \mathrm{E}-06$	$2.4934 \mathrm{E}-$ 05
0.09	$5.2909 \mathrm{E}-17$	$1.3290 \mathrm{E}-06$	$3.4989 \mathrm{E}-$ 05
0.10	$9.5609 \mathrm{E}-17$	$1.7180 \mathrm{E}-05$	$1.0525 \mathrm{E}-$ 04

Funding: Not applicable.

Informed consent statement: Not applicable.

Data availability statement: Not applicable.
Conflict of interest: The authors declare no conflict of interest.

References

1. Adeyefa, E. O. A model for solving first, second and third order ivps directly. International Journal of Applied and Computational Mathematics 7, 4 (2021), 1-9.
2. Adeyeye, O., and Omar, Z. Solving third order ordinary differential equations using onestep block method with four equidistant generalized hybrid points. IAENG International Journal of Applied Mathematics 49, 2 (2019), 1-9.
3. Anake, T., Adesanya, A., Oghonyon, G., and Agarana, M. Block algorithm for general third order ordinary differential equation. Icastor J. Math. Sci 7, 2 (2013), 127-136.
4. Arthur, D. Matrix computation for engineers and scientists, by jennings alan, ppxv, $330 . £$ 10•50. 1977. sbn 0471994219 (wiley). The Mathematical Gazette 61, 418 (1977), 309310.
5. Awoyemi, D. On some continuous linear multistep methods for initial value problems. Unpublished doctoral dissertation, University of Ilorin, Ilorin, Nigeria (1992).
6. Awoyemi, D. A class of continuous methods for general second order initial value problems in ordinary differential equations. International journal of computer mathematics 72, 1 (1999), 29-37.
7. Awoyemi, D. A new sixth-order algorithm for general second order ordinary differential equations. International journal of computer mathematics 77, 1 (2001), 117-124.
8. Awoyemi, D. A p-stable linear multistep method for solving general third order ordinary differential equations. International Journal of Computer Mathematics 80, 8 (2003), 985991.
9. Hanrici, P. Discrete variable methods in ode, 1966.
10. Jator, S. Improvements in adams-moulton methods for first order initial value problems. Journal of the Tennessee Academy of Science 76, 2 (2001), 57-57.
11. Jator, S. A sixth order linear multistep method for the direct solution of $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$. International journal of pure and applied Mathematics 40, 4 (2007), 457-472.
12. Kuboye, J., Elusakin, O., and Quadri, O. Numerical algorithms for direct solution of fourth order ordinary differential equations. Journal of the Nigerian Society of Physical Sciences (2020), 218-227.
13. Lambert, J. D., and Lambert, J. D. Computational methods in ordinary differential equations, vol. 5. John Wiley \& Sons Incorporated, 1973.
14. Obarhua, F. O., et al. Symmetric hybrid linear multistep method for general third order differential equations. Open Access Library Journal 3, 04 (2016), 1.
15. Olabode, B. An accurate scheme by block method for the third order ordinary differential equation. Pacific journal of science and technology 10, 1 (2009), 136-142.
16. Olabode, B., and Yusuph, Y. A new block method for special third order ordinary differential equations. Journal of Mathematics and statistics 5, 3 (2009), 167.
17. Osa, A. L., and Olaoluwa, O. E. A fifth-fourth continuous block implicit hybrid method for the solution of third order initial value problems in ordinary differential equations. Applied and Computational Mathematics 8, 3 (2019), 50-57.
18. Sagir, A. On the approximate solution of continuous coefficients for solving third order ordinary differential equations. International Journal of Mathematical and Computational Sciences 8, 1 (2014), 67-70.
19. Saqlain, M., Irshad, W., Bashir, U., and Murtaza, G. Numerical solutions for third order ordinary differential equation by differential transform method \& elzaki transform method. Scientific Inquiry and Review 2, 4 (2018), 01-12.
