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Abstract 
A measure of well-defined homogenous subsets among indicator variables on which 

multivariate data is generated is given by Kaiser-Meier-Olkin’s measure of sampling adequacy 
(KMO).  This measure relies on a subtle use of a cut-off value. This cut-off value as well as the 
expected number of dimensions in the data constitute important background information for 
dimensionality detection that is not reported in the application of dimensionality reduction 
techniques. The implication is that these techniques do not establish a priori the existence of 
dimensionality in the data, and hence could be misapplied. In this regard, the study proposes 
an automated threshold-setting approach with an algorithm that generates a data-specific 
optimal threshold from the data structure for detecting the dimensionality of multivariate data 
for more accurate results. Three different threshold settings are implemented for various 
correlation profiles of the data. The known techniques may now be useful for purposes of 
interpretation of the extracted reduced dimensions. Results are further explained using 
confirmatory factor analysis. The proposed method completely removes the challenge of 
subjectivity associated with dimensionality detection.  
KEY WORDS: DIMENSIONALITY DETECTION, KMO, SIMILARITY DETECTOR, THRESHOLD 

SETTING 

1   Introduction 
The dimensionality of a dataset has been described as the minimum number of 

unobserved traits that is needed to describe all statistical dependencies in the data (Lord & 
Novick, 1968; Zhang & Stout, 1999). From a practical point of view, the determination of 
dimensionality helps to understand the structure of the phenomenon (Pett, Lackey, Sullivan, 
2003). Performance of dimensionality assessment methods have been the focus of a number of 
notable studies (e.g., Zhang, 2016; Zupluoglu, 2013; Tabachnick & Fidell, 2001). 

Dimensionality detection in multivariate data has commonly made use of statistical 
techniques such as principal component analysis (PCA), factor analysis (FA) and item response 
theory (IRT) modelling. However, these statistical techniques do not establish the exact number 
of dimensions that exist in the data prior to their application.  In FA, for example, a value 
greater than or equal to 0.6 of the Kaiser-Meier-Olkin’s measure of sampling adequacy (KMO) 
is seen as an indication of existence of dimensionality in the data. It has been demonstrated 
(Nkansah, 2018) that for some datasets, it may be difficult to determine the dimensionality 
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even though the KMO measure may suggest that such datasets have underlying dimensions. In 
addition, the suitability criteria provided by the KMO does not also provide indication of the 
expected number of dimensions that possibly underlie the data. It is the view of this paper that 
a prior knowledge of the number of dimensions must be available so that application of the 
existing multivariate techniques may just be useful for extracting the actual dimensions. One 
does not have to extract dimensions from a dataset only to find out that those dimensions do 
not exist, or are not interpretable. Perhaps, it is this gap that has inspired further works to 
determine the dimensionality of multivariate models (Rutledge, Roger, & Lesnoff, 2021) with 
minimal error. 

Additionally, for the same data, different techniques may yield different 
dimensionalities, even where basic conditions of data size (Comrey & Lee, 1992; Nkansah, 
Zakaria & Howard, 2019) and type of data and correlation profile (van der Eijk & Rose, 2015) 
are duly considered. Even though the relative importance of the dimensions may differ from 
technique to technique, the basic number of dimensions should be the same, and this 
information is what appears unavailable.  

One of few works that specifically focus on dimensionality detection by the use of 
KMO is that by Nkansah (2018), which observed some drawbacks on the subject. In particular, 
the study uses a subjective exprimenter-specific threshold to demonstrate that the usual KMO 
is one that is obtained from the entire data and that it may not be a fair measure of a well-
defined dimensionality for the data. The demonstration in that paper obviously involves some 
computational intensity. The goal of this research, therefore, is to make more explicit the use 
of a non-subjective cut-off value for the determination of a more representative KMO value for 
a dataset by proposing an automated data-specific threshold which is generated from the data 
structure. This study also investigates the sensitivity and robustness of the method based on the 
correlation profile adopted for the data.  

The remaining sections are arranged as follows: Section 2 presents the methodology 
used for this research. The development and implementation of the algorithms are carried out 
in Section 3 with relevant codes written in R. Finally, Section 4 presents the conclusion and 
recommendation. 

2  Methodology  
As noted in the introduction, this work is motivated by the work of Nkansah (2018) on the 
computation of the KMO. The summary of the generalized rule prescribed in that study for 
determining the expected dimensions in multivariate data is presented in order to highlight (in 
Remark 1)  the main drawbacks on the general use of the KMO. The underlying concepts of 
the KMO are orders zero and one correlation coefficients. This section examines related 
concepts that border on the construction of homogenous sets that yields well-defined 
dimensions from a given set of variables.   

A GENERALIZED RULE FOR DETERMINING EXPECTED DIMENSIONS 

Suppose a multivariate dataset is generated on a set of p variables ),,,( 21 pXXX X  

with a given correlation profile. On the basis of the level of correlation coefficients, a cut-off 
value of   is fixed for which variables may be considered to belong together if their pair-wise 
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correlation coefficient exceeds . First, take the pair ),,( ji xx  ),,2,1(, pIji   with the 

highest correlation coefficient. Let this pair be labelled as the set  vu xxS ,1   and the index 

set ),(1 vuI  . If the correlation coefficients  11, \,, IIiIkr
ik xx  , then 1Sxi  , 

otherwise, 1Sxi  . The sets 
1S  and 

1I  are updated each time. Now, if ,, 
ik xxr  for some 

1Ik   and some 
1\ IIi  , then we obtain a final first homogeneous set },,,{

1211 giii xxxS   

with index set IiiiI g  },,,{ 1211  . 

We attempt to form the qth set qS  from the elements 
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meets the cut-off value Thus, we obtain },{
21 ddq xxS  , and the index set },{ 21 ddIq  .  Now, 

if ,, 
ik xxr  for some qIk and some qIIi \  then we obtain the final qth homogeneous set

 
gqdddq xxxS ,,,

21
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then lS  is the last set of homogeneous variables and there are a total of l dimensions underlining 

the correlation matrix.  
Remark 1 

The procedure outlined is influenced by a subjective experimenter-specific fixed cut-
off value,   by which variables may be considered to belong together if their pair-wise 
correlation coefficient exceeds it.  The problem of subjectivity would be resolved by generating 
a data-specific threshold 𝛿଴ that serves as a cut-off value.  

There are some variables that are likely to contaminate the measure of homogeneity in 

the data. These are elements identified in 1lS  with indexed set lT  and are not found in any of 

the homogeneous sets. The new procedure would screen the variables to include only those 
that are identified with a particular homogeneous group.  

 
CONFIRMATORY FACTOR ANALYSIS 

The test of adequacy of m-factor model for data on p indicator variables is equivalent 
to the test of the hypothesis 

pppmmppp
oH


 ΨΛΛρ:    against   

pppmmppp
aH


 ΨΛΛρ:             (2.1) 

The matrices ΛΛ   and Ψ  are respectively, the reproduced correlation matrix based on the 
model and diagonal matrix of specific variances. The null hypothesis means that the m factors 

are adequate in approximating the original correlation matrix. If oH  is rejected, it means that 

the factor model does not significantly represent the underlying dimensions of the correlation 

.
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matrix. Under oH , the maximum of the likelihood function is obtained with xμ ˆ and 

ΨΛΛΣ ˆˆˆˆ  , where the estimates Λ̂  and Ψ̂  are given in standards texts (e.g., Johnson & 

Wichern, 2014; Anderson, 2003). The hypothesis oH  is thus rejected at   level of 

significance if 

  )(
ˆˆˆ

ln)542(1 2
])[(6

1
2

2
1 

mpmp
n

mpn 



S

ψΛΛ
                   (2.2) 

provided n  and  )( pn   are large, and nS  is the sample variance-covariance matrix. 

Remark 2 
In this study, it will be observed that, for the same data, several factor models may be 

significant (i.e., oH  will not be rejected) for a number of values of m. The proposed algorithm 

helps in this case, to decide on the optimal value of m that gives the most plausible factor 
solution.   

THE KAISER-MEIER-OLKIN’S MEASURE OF SAMPLING ADEQUACY 
The Kaiser-Meier-Olkin's Measure of Sampling Adequacy (KMO) is a detection metric 

for determining the degree to which the indicators of a dimension are homogeneous in a 
multivariate data. KMO value within the interval [0.6, 1.0]  is a good measure (Rencher, 2002; 
Kaiser, 1974). The guide for interpreting KMO measure (Kaiser, 1974) is well-known. In this 
study, the KMO index is stated as 







ji
ij

ji
ij rpr

KMO
221

1 ,             (2.3) 

where 2
ijr  is the square of the observed correlation coefficient (OCC) between any pair of 

variables ),( ji xx  and 2
ijpr  is the corresponding partial correlation coefficient (PCC). In 

Equation (2.3), the proposed methodology for computing the KMO is based on a comparison 
of the size of the OCC and PCC.  

ORDER STATISTICS CORRELATION COEFFICIENT 

Let  pkinjxx kjij ,,2,1,;,,2,1,),(    be n observations on any two variables from the set X . 

By rearranging pair-wisely the observations on the two variables with respect to the magnitudes 

of ,ix  we obtain two new sets of data   ),( )( jkji xx  where   )()2()1( niii xxx   are the order 

statistics of ix   and       nkkk xxx ,,, 21   are the associated concomitants of kx . The order 

statistics correlation coefficient may be defined for ),( yx  as  


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and has the usual basic properties of a correlation coefficient. 

3  Development and Implementation of Dimensionality Detection Algorithms 
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The proposed dimensionality detection methods are similarity measures which hinge on 
correlation profiles. The study employs the Pearson’s correlation and Order statistic profiles. 
In the implementation, attention is focused on identifying two sets of indicators that could 
create distortions in assessing factor-suitability: variables that do not influence any dimension; 
and those that influence multiple dimensions 
SIMILARITY BASED DIMENSIONALITY DETECTOR 

Consider n observations made on a p-variate random variable, Y  = 𝑌ଵ, 𝑌ଶ, … , 𝑌௉.
 
Let 𝐶௒ denote 

a p× p matrix of pairwise similarity measures based on Y. The number of dimensions 
underlying the data is at most the number of variables defining the data. It is also possible that 
the variables are inter-related in some simple or complex sense. This relationship may be 
informative about the intrinsic dimension underlying the data and hence, an appealing basis for 
building a dimensionality detection scheme for detecting dimensions in such data. The 
similarity-based algorithm for detecting dimension is outlined in the given algorithm, with the 

following conversion for notation: N(x) denotes the number of variables in X. and iYY \  

denotes the remaining variables without Yi, pi ,,2,1  . 

ALGORITHM  

Initialization: Data: Y  = 𝑌ଵ, 𝑌ଶ, … , 𝑌௉. Set threshold, δ = δ0 

Compute similarity matrix, CY = ),,,()( 21 pYYYY   . 

Compute lower triangular matrix of CY ,  DY 

Compute fundamental spanning set, Sf  = {(𝑌௜, 𝑌௃) : D  = max (DY ) , i ≠ 𝑗 }. 

Set mf = N(Sf), κ=0. 

Compute reduced dataset, 

Y ∗ = Y \ Sf = Y \ (Yi, Yj), i ≠ 𝑗  

Set n∗ = p − mf , Hs = Sf  and Hns = NULL 

Do while n∗ > 2 

1. DYk,Sf   = DYk,Yi ,  DYk,Yj , Yk ∈ Y ∗ 

2. if DYk,Sf ≥ δ0 

• Sf = {(Yi, Yj, Yk)} 

• mf = N (Sf ) 

• Hs = Sf 

• Y ∗ = Y ∗ \ Yk 
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AUTOMATED THRESHOLD SETTINGS 

The use of threshold is primal in dimensionality detection since the generation 
as well as the detection of homogeneous sets from a given multivariate dataset is 
threshold driven. It is important to note that not all thresholds will yield homogeneous 
set. Also, it is likely that a single threshold may generate multiple homogeneous 
sets. Three automated threshold setting algorithm procedures are specified as follows: 

𝛿ଵ = [𝑎ଵ, 𝑎ଵ + 𝛼ଵ, 𝑎ଵ + 2𝛼ଵ, …, 𝑎௡] 
𝛿ଶ = [𝑎ଵ, 𝑎ଵ + 𝛼ଶ, 𝑎ଵ + 2𝛼ଶ,…,𝑎௡] 

𝛿ଷ = [𝛿ଵ ≥ 𝛿ଵ
෩ ] 

𝛼ଶ =
௔೙ି௔భ

௞ఋ
 ;   where 𝛼ଵ = 0.01,   𝛼ଶ =

௔೙ି௔భ

௞ఋ
       𝑎ଵ = min (𝐷௒) 

𝑎௡ = max (𝐷௒)  

𝛿ଵ
෩ = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝛿ଵ 
We set 𝑘𝛿 = 12 

 
AUTOMATED THRESHOLD SETTING 1 (𝜹𝟏) 

The algorithm picks the lowest pairwise correlation, generates series of thresholds using 
a step value of 0.01 until all values in the correlation matrix are accommodated. The algorithm 
is then used to generate homogeneous sets for each of the thresholds. Since multidimensionality 
is expected, some thresholds could yield more than one homogeneous set. The KMO values 
are then calculated for each homogeneous set for each threshold.  

AUTOMATED THRESHOLD SETTING TWO (𝜹𝟐) 

The correlation profile used is the Pearson’s correlation which is normally distributed. 
Statistically, majority (about 99.7%) of the data points lie 3 standard deviations about the mean. 
This gives 6 standard deviations; we add an allowance of 2 standard deviations to cater for the 
rest of the data points. The algorithm then uses a step value of the ratio of the range for the 
correlation matrix to the resultant standard deviation to generate series of thresholds. The 
dimensionality detection algorithm is then used to generate homogeneous sets for each of the 
thresholds. Since multidimensionality is expected some thresholds could yield more than one 

• n∗ = p − mf 

3. else 

• Hns = Yk 

• Y ∗ = Y ∗ \ Yk 

• n∗ = N (Y ∗) 

4.  Go to step 1 . Otherwise return Hs, Hns, 𝐶௒ 
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homogeneous set. The KMO values are then calculated for each homogeneous set that 
corresponds to each threshold.  

AUTOMATED THRESHOLD SETTING THREE (𝜹𝟑) 

This procedure is based on Threshold Setting 1. Statistically the correlation matrix used which 
hinges on Pearson’s correlation is symmetric. The algorithm determines the median for 
thresholds generated using automated Threshold Setting I and selects those thresholds that are 
at least equal to the median. This is similar to the usage of the lower triangular matrix of the 
correlation matrix. For each of these thresholds, homogeneous sets are then generated along 
with the respective KMO values.   

Implementation I 
Figure 3.1 shows the plots of KMOs against the various thresholds generated by the  

algorithms for Dataset 1 (Johnson & Wichern, 2014; Anderson, 2003; Nkansah, 2018) that 
concerns performance of sales personnel employees of a marketing company. For Threshold 
Setting I, for example, the threshold values are 0.15(0.01)0.94. 

 
FIGURE 3.1: Plot of implementation FOR DATASET 1 

 
Although there are a couple of saturation points, the interest is in the one that 

corresponds to the highest KMO. It could be observed that the highest saturation points for all 
three graphs corresponding to the highest KMO lie within [0.6, 0.85]. This means that any 
threshold within this range could be the optimal threshold for dimensionality detection for this 
dataset.  
For each threshold, we obtain the number of homogeneous sets along with corresponding KMO 
values and the number of variables in each set. Table 3.1 shows some specific thresholds with 
corresponding KMO values and the number of homogeneous sets, in addition to the number of 
variables in each set, generated for the respective threshold value based on Threshold Setting 
I. 
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Table 3.1: Dimensionality detection for Dataset 1 

SN/ 

Threshold 

No. of 
hom. sets 

No. of var  

 in hom. set 

   KMO 

[1]  0.15 1 6 0.6995 

[2]  0.16 1 6 0.6995 

[27]  0.41 1 6 0.6995 

[28] 0.42 1 5 0.7571 

[36]  0.50 1 5 0.7571 

[43] 0.57 1 5 0.7571 

[44] 0.58 2 4, 2 0.8587    0.50000 

[70]  0.84 2 4, 2 0.8587    0.50000 

[71] 0.85 2 3, 2 0.7848    0.50000 

[78] 0.92 2 3, 2 0.7848    0.50000 

[79] 0.93 3 2, 2, 2 0.50   0.50    0.50 

 
 
The table shows that the highest number of homogenous set given by any threshold is 

3, an indication that the dimensionality cannot exceed 3, if it exists. However, dimensionality 
does not exist in this data since no threshold yields a unique highest KMO value. Consistent 
with this result, the highest number of variables (6) for a homogenous set does not generate the 
highest KMO. The claim of a lack of dimensionality in the data is further buttressed with CFA. 

CONFIRMATORY TEST OF MODEL ADEQUACY FOR DATASET 1  

Since the highest expected number of dimensions for the data does not exceed three, 
the CFA is therefore carried out for a maximum of three factor solutions in Dataset 1. Thus, we 
test the adequacy of one, two and three factor models equivalent to one, two and three 
dimensions. The result of the test is given in Table 3.2. As indicated earlier, each threshold 
within the highest saturation point could yield different factor solutions.  

 

Table 3.2: Significance test of factor models for Dataset 1 

Model Chi-Square   Df Sig. 

1 162.715 14 0.000 
2 117.114 8 0.000 
3 61.651 3 0.000 

 
In Table 3.2, no specific factor solution is seen to fit the data due to the small p-values 

on the basis of the hypotheses stated in Equation (2.1). This confirms that there is no unique 
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homogeneous set that has the highest number of variables and hence no unique highest KMO. 
It implies that this data may not be practically suitable for factor extraction. 
IMPLEMENTATION II  

Figure 3.2 shows the plots of KMOs against the various thresholds generated by the 
algorithm for Dataset 2 (Nkansah, 2018) that concerns performance of high school students in 
nine subjects. For this data, only Threshold Setting III converges as a result of challenges of 
negative correlation coefficients. The threshold values obtained are 0.38(0.1)0.75.  

 
 FIGURE 3.2: PLOT OF IMPLEMENTATION FOR DATASET 2 

 
Figure 3.2 shows that there is a saturation point between [0.42, 0.63]. However, the range does 
not contain the highest KMO (0.8242). It could therefore be observed that a threshold of 0.38 
is the unique optimal threshold that corresponds to the highest KMO. There is therefore a clear 
dimensionality in this dataset. Table 3.3 displays some specific thresholds with corresponding 
KMO values and the number of homogeneous sets, in addition to the number of variables in 
each set, generated for the respective threshold value based on Threshold Setting I. Consistent 
with this result, the highest number of variables (6) for a homogenous set given by a unique 
threshold (0.38) generates the highest KMO. The table also shows that the highest number of 
homogenous sets given by the thresholds is 4, an indication that there are four possible 

Table 3.3: Dimensionality detection for Dataset 2 

SN/ 
Threshold 

No. of 
hom. sets 

No. of var 
in hom. set 

  KMO 

[1]  0.38 2 6, 2 0.8242  0.5000 

[2]  0.39 2 5, 2 0.7942  0.5000 

[3]  0.40 2 5, 2 0.7942  0.5000 

[4] 0.41 3 4, 2, 2 0.8058  0.5000  0.5000 

[13]  0.50 3 4, 2, 2 0.8058  0.5000  0.5000 

[23] 0.60 3 4, 2, 2 0.8058  0.5000  0.5000 

[24] 0.61 3 3, 2, 2 0.7202  0.5000  0.5000 

[25]  0.62 3 3, 2, 2 0.7202  0.5000  0.5000 
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[26] 0.63 4 2, 2, 2, 2 0.50   0.50   0.50  0.50 

[38] 0.75 4 2, 2, 2, 2 0.50   0.50   0.50  0.50 

 
dimensions that underlie the data. The claim of an existing dimensionality in the data is further 
buttressed with CFA. 

CONFIRMATORY TEST OF MODEL ADEQUACY FOR DATASET 2 

Since the highest expected number of dimensions does not exceed four, the CFA is 
carried out for a maximum of four factor solutions in Dataset 2.  Thus, we test the adequacy of 
one to four factor models equivalent to one to four dimensions. As indicated earlier, if a dataset 
generates an optimal threshold for dimensionality detection, then this threshold should 
automatically yield an optimal factor solution.   

Table 3.4: Significance test of factor models for Dataset 2 

Model      Chi-Square        Df Sig. 

1 41.949 27 0.033 

2 18.505 19 0.489 

3 10.144 12 0.603 

4 2.584 6 0.859 

 From the table, Model 2 is the least-fitting factor solution since the p-value begins to 
get greater than 0.05 with a two-factor solution model. It also shows that factor solutions 
containing two factors or more are all suitable. However, since the unique threshold of 0.38 
with the highest KMO identifies two homogenous sets, the 2-factor solution is the best.  

IMPLEMENTATION OF ORDER STATISTICS ALGORITHM PROCEDURE 

The algorithm generates the correlation matrix for the set of p variables,  

pXXX ,,, 21     and returns the order statistics for the variables )()2()1( ,,, pXXX  . For the 

ordered variables, the correlation matrix is then generated for the application of the 
dimensionality detection algorithm. The implementation is carried using Dataset 1 and yields 
threshold values 0.31(0.01)0.94 for Threshold Setting I, for example.  
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FIGURE 3.3: Plot of implementation FOR DATASET 1 BASED ON ORDER STATISTIC PROFILE 

 
Figure 3.3 shows a plot of KMOs against the corresponding thresholds. It could be 

observed that there is no unique threshold, and that the highest saturation point for all three 
graphs lie within [0.6, 0.85]. Thus, any threshold within this range could be optimal for 
dimensionality detection for this dataset. 

Table 3.5 shows specific thresholds with corresponding KMO values and the number of 
homogeneous sets generated for the respective threshold value based on Threshold Setting I. 

 

Table 3.5: Dimensionality detection for Dataset 1 

SN/ 

Threshold 

No. of 
hom. sets 

  KMO 

[1]  0.31 1 0.6995 

[2]  0.32 1 0.6995 

[14]  0.44 1 0.6995 

[20]  0.50 1 0.7571 

[21] 0.51 2 0.8587   0.5000 

[54] 0.84 2 0.8587   0.5000 

[57]  0.89 2 0.7848    0.5000 

[64]  0.94 3 0.50  0.50   0.50 

 
 
Similar results are obtained for Pearson’s correlation. It is also observed that the same 

number of variables are obtained in each homogenous set for each cut-off for both the Pearson’s 
correlation and that of order statistics. These results further confirm that there is no 
dimensionality in this dataset. The lack of a threshold value with unique highest KMO 
buttresses the other methods that the data lacks dimensionality.  

4  Summary, Conclusion and Recommendation 
Usually, a rather covert threshold has hitherto been used for dimensionality detection 

which may lead to misleading results. The study has presented automated threshold settings 
using an algorithm that generates a data-specific optimal threshold from the data structure for 
detecting the exact dimensionality of multivariate data for more accurate results. The proposed 
method would serve as the basis for the application of the well-known statistical tools which 
may now be useful for purposes of interpretation of the extracted reduced dimensions. 

The result has shown that though a dataset could be identified to have dimensionality 
by exploratory methods, there may practically not be any underlying dimensionality. It is also 
clearly demonstrated that dimensionality detection is threshold sensitive. It is therefore 
reasonable to allow the data structure to generate its own optimal threshold suitable for 
determining its dimensions. 
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It is acknowledged that studies on the subject could be sensitive to the likely presence 
of extreme values. The study could therefore be extended to take care of these extremes in the 
data, an approach that is expected to further save computational time. Further threshold settings 
may also be examined to meet the challenge posed by negative correlations. 
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