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 Abstract   
   

For a connected graph G of order n ≥ 2, a set S of vertices of G, is monophonic vertex 
cover of G if S is both a monophonic set and a vertex cover of G. The minimum cardinality of 
a monophonic vertex cover of G is called the monophonic vertex covering number of G and is 
denoted by 𝑚  (G). Any monophonic vertex cover of cardinality 𝑚  (G) is a 𝑚 -set of G. 
Some general properties satisfied by monophonic vertex cover are studied. The monophonic 
vertex covering number of several classes of graphs are determined. 

Keywords: monophonic set, vertex covering set, monophonic vertex cover, monophonic 
vertex covering number. 

1. Introduction   

By a graph G = (V, E), we mean a finite undirected simple connected graph. The order and 
size of G are denoted by n and m respectively. For basic graph theoretic terminology we refer 
to Harary[12]. The distance d(u,v) between two vertices u and v in a connected graph G is the 
length of a shortest u-v path in G[4]. For a vertex v of G, the eccentricity e(v) is the distance 
between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is 
the radius, rad G and the maximum eccentricity is its diameter, diam G. The neighbourhood 
of a vertex v of G is the set N(v) consisting of all vertices which are adjacent with v. A vertex 
v is a simplical vertex or an extreme vertex of G if the subgraph induced by its neighbourhood 
N(v) is complete. A caterpillar is a tree of order 3 or more, the removal of whose end vertices 
produces a path called the spine of the caterpillar. A diametral path of a graph is a shortest path 
whose length is equal to the diameter of the graph. A tree containing exactly two non-pendent 
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vertices is called a double star denoted by 𝑆 ,  where 𝑘  and 𝑘  are the number of pendent 

vertices on these two non-pendent vertices. A graph G is called triangle free if it does not 
contain cycles of length 3. A set of vertices no two of which are adjacent is called an 
independent set. By a matching in a graph G, we mean an independent set of edges of G. A 
maximal matching is a matching M of a graph G that is not a subset of any other matching. 
The independence number β(G) of G is the maximum number of vertices in an independent set 
of vertices of G. A subset S ⊆ V (G) is a dominating set if every vertex in V−S is adjacent to at 
least one vertex in S. A set S⊆V(G) is called a global dominating set if it is a dominating set of 
both G and �̅� (the complement of G). The minimum cardinality of a dominating set in a graph 
G is called the dominating number of G and denoted by 𝛾(G). The dominating number is further 
studied in [1-3,10-11].  

A geodetic set of G is a set S⊆V(G) such that every vertex of G is contained in a geodesic 
joining some pair of vertices in S. The geodetic number g(G) of G is the minimum cardinality 
of its geodetic sets. The geodetic number of a graph was introduced in [6] and further studied 
in [5,7]. A subset S ⊆V(G) is called geodetic global dominating set of G if S is both geodetic 
and global dominating set of G. The geodetic global domination number of a graph was 
introduced in [15] and further studied in [16,17]. A chord of a path P is an edge joining two 
non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A set 
S of vertices of G is a monophonic set of G if each vertex v of G lies on an x-y monophonic 
path for some x,y∈S. The minimum cardinality of a monophonic set of G is the monophonic 
number of G and is denoted by m(G). Any monophonic set of cardinality m(G) is a minimum 
monophonic set or a monophonic basis or a m−set of G. The monophonic number of a graph 
was studied in [8,9] and discussed in [13,18]. A subset S ⊆V(G) is said to be a vertex covering 
set of G if every edge has at least one end vertex in S. A vertex covering set of G with the 
minimum cardinality is called a minimum vertex covering set of G. The vertex covering 
number of G is the cardinality of any minimum vertex covering set of G. It is denoted by 𝛼(G) 
[19]. A set of vertices of G is said to be monophonic domination set if it is both a monophonic 
set and a dominating set of G. The minimum cardinality of a monophonic domination set of G 
is called a monophonic domination number of G and denoted by  𝛾 (G). The monophonic 
domination number was studied in [14].  

  

The following theorems will be used in the sequel.   

 

Theorem 1.1.[18] Every extreme vertex of a connected graph G belongs to every monophonic 
set of G. In particular, each end vertex of G belongs to every monophonic set of G.  

  

Theorem1.2.[18] For any tree T with k end vertices, m(T)=k. In fact, the set of all end vertices 
of T is the unique monophonic set of T.   

 

Throughout this paper G denotes a connected graph with at least two vertices. 
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2. MONOPHONIC VERTEX COVER  

Definition2.1.  Let G be a connected graph of order n ≥2. A set S of vertices of G is a 
monophonic vertex cover of G if S is both a monophonic set and a vertex cover of G. The 
minimum cardinality of a monophonic vertex cover of G is called the monophonic vertex 
covering number of G and is denoted by 𝑚 (G). Any monophonic vertex cover of cardinality 
𝑚  (G) is a 𝑚 -set of G.  

 

Example2.2. For the graph G given in Figure 2.1, S = {𝑣 , 𝑣 } is a minimum monophonic set 
of G so that m(G) = 2 and S′ = {𝑣 , 𝑣 , 𝑣 } is a minimum monophonic vertex cover of G so that 
𝑚  (G)=3. Thus the monophonic number is different from the monophonic vertex covering 
number of a graph G.   

  

Figure 2.1 G 
Remark 2.3. For the graph G given in Figure 2.2, S= {𝑣 , 𝑣 } is a minimum monophonic set 
of G so that m(G) = 2. S is also a minimum monophonic dominating set of G so that 𝛾 (G)=2. 
S′= {𝑣 , 𝑣 , 𝑣 } is a minimum monophonic vertex cover of G so that 𝑚  (G)=3. Hence the 
monophonic vertex covering number of a graph is different from the monophonic number and 
monophonic dominating number of a graph G.   

 

Figure 2.2 G 

 
Theorem 2.4. For any connected graph G, 2 ≤ max {𝛼(G), m(G)} ≤ 𝑚  (G) ≤ n.   
 
Proof of theorem 2.4. Any monophonic set of G needs at least 2 vertices. Then 2 ≤max{𝛼(G), 
m(G)}. From the definition of monophonic vertex cover of G, we have, max {𝛼(G), m(G)} ≤ 
𝑚  (G). Clearly V(G) is a monophonic vertex cover of G. Hence 𝑚  (G)≤n. Thus 2 ≤ max 
{𝛼(G), m (G)} ≤ 𝑚  (G) ≤ n.   
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Remark 2.5. The bounds in Theorem 2.4 are sharp. For the complete graph 𝐾 , 𝑚  (𝐾 ) = 4. 
The bounds are strict in Figure 2.3 as 𝛼(G)=2, m(G)=3, 𝑚  (G)=4. Here 2<3<4<5.    

 

Figure 2.3 G 

 

Remark 2.6. Clearly union of a vertex covering set and a monophonic set of G is a monophonic 
vertex cover of G. In Figure 2.1, S = {𝑣 , 𝑣 , 𝑣 } is a monophonic vertex cover and in Figure 
2.2, S= {𝑣 , 𝑣 , 𝑣 , 𝑣 } is a monophonic vertex cover.   

  

Figure 2.4 G 

Thus 2 ≤ max {𝛼(G), m(G)} ≤ 𝑚  (G) ≤ min {𝛼(G)+m(G), n }.   

For the graph G in Figure 2.4, we observe that 𝑆 = {𝑣 , 𝑣 , 𝑣 } is a  minimum vertex cover of 
G so that α(G) = 3,  𝑆   = {𝑣 , 𝑣 , 𝑣 , 𝑣 } is  a  minimum  monophonic  set of G so that m(G)=4 
and 𝑆 = {𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣  } = 𝑆 ∪ 𝑆  is a 𝑚 -set of G and so 𝑚  (G) = 6 < n =7.   
 
Theorem 2.7. Each extreme vertex of G belongs to every monophonic vertex cover of G. In 
particular, each end vertex of G belongs to every monophonic vertex cover of G. 
 
Proof of theorem 2.7. From the definition of 𝑚 -set, every 𝑚 -set of G is a m-set of G. Hence 
the result follows from Theorem 1.1. 
 
Corollary2.8. For any graph G with k extreme vertices, max{2, k} ≤ 𝑚  (G) ≤ n.   
 
Proof of corollary 2.8. The result follows from Theorem 2.4 and Theorem 2.7.  
  
Corollary 2.9. Let 𝐾 , (n≥3) be a star. Then 𝑚  (𝐾 , ) = n −1.  

   

Proof of corollary 2.9. Let x be the centre and S = {𝑣 , 𝑣 , … , 𝑣  } be the set of all extreme 
vertices of 𝐾 , (n ≥ 3). Clearly S is a minimum monophonic vertex cover of 𝐾 , (n≥3) by 

Theorem 2.7. Hence 𝑚  (𝐾 , ) = n−1. 
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Corollary2.10. For the complete graph 𝐾 (n≥2), 𝑚  (𝐾 )=n.   
  
Proof of corollary 2.10. We have every vertex of the complete graph 𝐾 (n≥2) is an extreme 
vertex. Then by Theorem 2.7, the vertex set is the unique monophonic vertex cover of 𝐾 . 
Then 𝑚 (𝐾 ) = n.   

  
Theorem2.11. If G is a connected graph of order n ≥ 2, then  

(i) 𝑚  (G) = 2 if and only if G is either 𝐾  or 𝐾 , (n≥3).  

(ii) 𝑚  (G) = n if and only if G = 𝐾 (n≥2).   
 
Proof of theorem 2.11. 
   

(i) Let 𝑚  (G)=2. Let S = {u,v} be a minimum monophonic vertex cover of G. We claim 
that G = 𝐾  or 𝐾 ,  (n ≥ 3). Suppose that G = 𝐾 . Then there is nothing to prove.  If 

not, then n ≥ 3 and since S  =  {u, v} is  a  𝑚  -set of G, u and v cannot be adjacent in 
G. Let W= V − S. We claim that every vertex of W is adjacent to both u and v and no 
two vertices of W are adjacent. Suppose there is a vertex w ∈ W such that w is adjacent 
to at most one vertex in S. Then w lies on a u-v monophonic path of length at least 3. 
Let P: u =𝑣 , 𝑣 , 𝑣 , … , 𝑣 = 𝑤, 𝑣 , … , 𝑣 = 𝑣 be a u-v monophonic. Then the edges 
in E(P)- {𝑣 𝑣 , 𝑣 𝑣 } are not covered by any of the vertices u and v, which is a 
contradiction to S is a 𝑚  -set. Hence every vertex of W is adjacent to both u and v. 
Suppose there exist vertices 𝑤 , 𝑤  ∈ W such that 𝑤  and 𝑤  are adjacent. Since every 

vertex of W is adjacent to both u and v and S = {u,v} is a 𝑚 - set of G, 𝑤  and 𝑤  lie 

on the u-v monophonic paths u𝑤  v and u𝑤  v respectively. Then the edge 𝑤 𝑤  is not 

covered by any of vertices of S, which is a contradiction to S is a 𝑚  - set of G. Hence 
no two vertices of W are adjacent in G. Thus G is the complete bi partite graph 𝐾 ,  

(n≥3) with the partite sets S and W.  
Conversely assume that G = 𝐾  or 𝐾 ,  (n ≥ 3). If G = 𝐾 , then by Corollary 2.10, 

𝑚  (𝐾 ) = 2. If not, let G = 𝐾 ,  (n ≥ 3). Let U = {𝑢 𝑢 } and W = {𝑤 , 𝑤 , … , 𝑤 } 

be the bipartition of G. Clearly every vertex 𝑤 (1≤i≤n−2) lies on the monophonic path 
𝑢 𝑤 𝑢  and the vertices 𝑢  and 𝑢  cover all the edges of G. Hence U is a monophonic 
vertex cover of G and so 𝑚  (G)=2.   

(ii) Assume that G = 𝐾  (n≥2). Then by Corollary 2.10, 𝑚  (G) = n.  Conversely assume 
that 𝑚 (G) = n. We claim that G = 𝐾  (n≥2). For n=2, the result holds from (i). Let n 
≥ 3. Suppose there exist two non-adjacent vertices u and v in G. Let a vertex x be 
adjacent to u lying on a u-v monophonic.  Then V(G)−{x} is a monophonic vertex 
cover of G, which is a contradiction to 𝑚 (G) =n. Thus G=𝐾 .   

  
Theorem.2.12. For a connected graph G with m(G) ≥ n−1, 𝑚  (G) = m(G).   
 
Proof of theorem 2.12. Let G be a connected graph with m(G) ≥ n − 1. Then by Theorem 2.4, 
m(G) ≤ 𝑚 (G) ≤ n. Now, if m(G) = n, then 𝑚 (G) = n. Hence 𝑚  (G) = m(G). If m(G) = n− 
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1, then let S = {𝑥 , 𝑥 , … , 𝑥 } be a minimum monophonic set of G. Let x ∉ S be a vertex of 
G. Then any edge 𝑥𝑥  (1≤i≤n−1) lies on a monophonic path joining pair of vertices of S and 
every edge of G has at least one end point in S. Hence S is a minimum monophonic vertex 
cover of G and so 𝑚  (G) = m(G).   

 
Remark.2.13. The converse of Theorem 2.12 need not be true. For the graph in Figure 2.5, S 
= {𝑣 , 𝑣 } is both a m-set of G and a 𝑚 -set of G. Hence 𝑚  (G)= m(G) =2 but m(G) < n−1.   

 

Figure 2.5 G 

 

Theorem.2.14. For a connected graph G of order n ≥ 2, 𝑚 (G) = m(G) if and only if there 
exists a minimum monophonic set of G such that V (G) – S is either empty or an independent 
set.   

 

Proof of theorem 2.14. Assume that 𝑚 (G) = m(G). Let S = {𝑣 , 𝑣 , … , 𝑣 } be a minimum 
monophonic vertex cover of G. Then S is also a minimum monophonic set of G. If n=k, then 
V(G)– S is empty. Let n >k. If not, there exist two vertices u, v ∈ V (G) – S such that uv ∈ 
E(G). Then the edge uv has none of its end vertices in S, which is a contradiction. Hence there 
exists a minimum monophonic set of G such that V(G)-S is either empty or an independent set.   

Conversely assume that there exists a minimum monophonic set of G such that V(G)– S is 
either empty or an independent set.  Let S = {𝑣 , 𝑣 , … , 𝑣 } so that m(G)=|S|. Suppose V(G)– 
S is empty. Then n=k and S=V(G). Hence S is a minimum monophonic vertex cover of G so 
that 𝑚 (G) = m(G). If not, let V(G)– S be independent. Then every edge of G has at least one 
end in V(G)−(V(G)−S) = S and so S is a vertex cover of G. Thus S is a minimum monophonic 
vertex cover of G.  Thus 𝑚 (G) = m(G).   
   

Theorem.2.15. For the cycle 𝐶 (n≥4), 𝑚  (𝐶 ) = .  

 
Proof of theorem 2.15. Let 𝐶 : 𝑣1 𝑣2 …  𝑣𝒏 𝑣1be a cycle of order n. Here S = 

{v , v , v , … , v } is a minimum monophonic vertex cover of 𝐶 . Hence 𝑚 (𝐶 ) = .   

  
Theorem.2.16. Let T be a tree of order n≥2. Then the following statements are equivalent.   
(1) 𝑚  (T)=m(T).   

(2) T is a star.   
(3) 𝛼(T)=1.   
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(4) The set of all end vertices of T is a vertex cover of T.   
 
Proof of theorem 2.16. Let S be the set of all end vertices of T. Since T is a tree, from the 
Theorem 1. 2, we have, S is the unique m-set of T.   
(1) ⇒ (2) Assume that 𝑚  (T) = m(T ).We claim that T is a star. If not, then diam T ≥ 3. Then 
T has at least one edge other than the end edges. Let S′ be the set of all edges of T which are 
not end edges. Then clearly no edges of S′ have its end vertices in S. Hence S is not a vertex 
cover of T. By Theorem 2.7, any monophonic vertex cover of T contains S. Hence 𝑚  (T) > 
|S| = m(T), which is a contradiction to 𝑚 (T)=m(T).   

(2) ⇒(3) Assume that T is a star. If n=2, then an end vertex of T will cover the edge of T. If n 
≥ 3, then the cut vertex of T will cover all the edges in T. Hence α(T)=1.   
(3) ⇒(4)Assume that α(T)=1.Then there exists a vertex say x in T such that x is an end vertex 
of all the edges in T. Hence all the edges in T are the end edges in T and so S forms a vertex 
cover of T.   
(4) (1) Assume that S is a vertex cover of T. Then by Theorem 1.2, S is a m-set of T and by 
Theorem 2.7, S is a 𝑚 -set of T. Hence 𝑚  (T)=m(T).   
   
Remark 2.17. The results in Theorem 2.16 are not equivalent for any connected graph G of 
order n ≥ 2. For the graph G in Figure 2.6, S= {𝑣 , 𝑣 , 𝑣 } is both m-set and𝑚 -set of G. So 
𝑚 (G) = m(G) = 3. Also, S is a minimum vertex covering set and so α(G)=3. And here G is 
not a star.   
         

    

Figure 2.6 G 

   

3. Conclusion   
In this paper we analyzed the monophonic vertex covering number of a graph. It is more 
interesting to continue my research in this area and it is very useful for further research.    
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