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Abstract 
Projection techniques such as variants of Principal Components and Outlier Displaying 
Components are specifically known for application in single multivariate datasets. In this paper, 
extensions are made of these techniques to dataset that is multiple multivariate time-dependent 
(MMTD) in nature. The structure of this kind of data problem is appropriately characterized to 
show that a single observation is a random matrix of dimensions r multiplicities by p several 
variables. The procedure is a two-phased approach that identifies suspect extreme observations 
and then examines their extent of extremeness. The application illustrates the determination of 
markets with extreme agricultural food commodity prices that provides useful guide for 
reducing levels of extreme high prices. 

Key words: projection techniques, market classification, multiple multivariate data, outlier 
displaying component 

1  Introduction 

The problem of assessing extreme observations in statistical data has usually been studied in 
single multivariate datasets. It means that methods that are usually used in such studies have 
not been designed and applied in multiple multivariate (MM) datasets. For example, the 
Principal Components Analysis is not primarily designed as a technique for detecting extreme 
observations. However, since it is used as a means of constructing indices, it may be used as a 
preliminary measure for detecting extreme observations. The actual challenge may be 
highlighted if it is applied in MM datasets. Similar reservations may be expressed about the 
applications of techniques that are actually designed for studying extreme observations, such 
as the Outlier Displaying Component (ODC) (Nkansah & Gordor, 2012b; 2013). The use of 
such procedures in extended multivariate data would therefore require substantial 
modifications. These two are the projection methods that are used in this work. For the ODC, 
three different variants of applications will be considered. In addition to the two main 
techniques, we deliberately include the Generalized Principal components to buttress a point.  
Since MM data has several individual multivariate datasets with varying variance-covariance 
structures, the overall features of such data become quite complex for determining specific 
extreme observations. In order to obtain a realistic effect of variations in observations on the 
original Outlier Displaying Component (ODC) (Gordor & Fieller, 1994), a modification of the 
technique has been carried out (Nkansah & Gordor, 2013). The modification enables the use of 
alternative measure of the mean vector in the estimation of the variance-covariance matrix in 
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the ODC so that results are not influenced by extreme variations in the data. The applications 
so far have been limited to single multivariate data.  
In this study, the time-dependent principal components are used as interim techniques to obtain 
suspect extreme observations. The ODCs are then used to assess the extent of extremeness of 
the suspect observation. The resulting classifications could be a subject of further examination. 
To handle MM data, an important basic problem is the appropriate characterization of 
individual observation in the dataset. In this study, a clear characterization is made of the 
general observation in such dataset at each step of the data processing and analysis. This is 
necessary to enable the tracking of the particular observation that is suspected to be extreme. 
Examples of MM data are as follows:  
(1)  Prices of same set of several commodities collected from the same set of markets for 
several years;  
(2)    Input and output cost variables of the same set of companies over a number of years;  
(3)  Measurements on a number of economic variables for the same set of countries over a 
number of years;  
(4)  Fatality counts from a number of accident sources among various age groups for a 
number of locations of a region.  

The number of years in Example 1 to 3, and locations in Example 4 provide the multiplicity of 
the multivariate data structure in the respective cases. The observation is the vector of 
measurements on the several variables for the market/company/country in Example 1 to 3, and 
age group in Example 4. In this study the term ‘‘time’’  (which may be represented by year or 
location) is used generically to represent the multiplicity of the data structure. 
 For MM data as described in the examples above, a general observation is characterized as  

pjrtnsX tjnts ,,2,1;,,2,1;,,2,1;,,)1(                (1.1) 

 
obtained on p variables from n observations for each of  r  time points. By varying the values 
of j and t, it can be deduced that the single observation Xs takes the form of a random matrix 
given as 
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Thus, an observation in the data constitutes pr   matrix, an extension of the usual vector 

observation in the case of a single multivariate data. In subsequent sections, the element in 
Equation (1.1) and the subset data of the kth time point will be represented in various ways. The 
characterization, as well as most parts of the presentation, is made with the background of 
MATLAB language.  
Usually, variants of GARCH modelling approach are used in studies on extremes in agricultural 
commodity prices, particularly to determine factors of such events (e.g., Algieri & Leccadito, 
2021; van Oordt & Stork, 2021). Such approach is also used in a few studies (e.g., Abokyi & 
Asiedu, 2021) that have made use of rather limited portions of the same data as used in this 
paper.   
The determination of extreme locations based on time periods (that may be non-consecutive) 
could be more suitably carried out using direct computational methods.  The objective of this 
work is therefore to extend the use of the stated projection methods for single multivariate data 
to multiple multivariate data in order to provide a one-dimensional assessment of the extent of 
extremeness. The ultimate intent is to present perspectives for monitoring data with MM 
structure, alternative to conventional methods of spatial statistical techniques that could 
understandably be laborious for such data structure. It will be demonstrated that for data of this 
nature, multiple techniques would be required in a single study to obtain coherent results, as 
results based on isolated application of individual techniques could be inconsistent.  

 
Along with the varying variance-covariance structure components of the data problem is the 
challenge of increasing variations over time. Table 1 shows the sample sum of squares and 
corresponding variance in our illustrative price data (of the type of Example 1 above) for each 

of five years. The variance is obtained as the trace )(tr kS , where Sk is the variance-covariance 

matrix of data for the kth year. 
The table shows increasing variation in prices over the years, which may be assigned to either 
or both of two causes: (1) General increases in prices across almost all markets each year; (2) 
Increases in prices in one or a few markets each year.  
The table buttresses the observation that the pattern of crop production (Ritchie & Roser, 2020), 
which has been on sharp increase particularly since the 2000s (except for legumes and nuts) has 
not resulted in a decline or stable prices over the same period, and constitutes a good motivation 
for studies in the area. The motivation is also driven by price projections in reports of 
monitoring institutions such as the FAO (2008; 2018) and OECD (2012). These reports, among 

Table 1: Variations in the illustrative data 

Year Sum of Squares Variance 

1 5102609.5   5845.44 

2 5104660.9   10517.78 

3 6100223.2   22470.00 

4 6109098.2   32331.11 

5 6105747.7   84163.33 

Total 7103980.1   30792.95 
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others, indicate the impact of climate change on global crop production particularly on food-
insecure areas of sub-Saharan Africa. 
 The paper proceeds by presenting extensions of existing methodology to MM data in 
Section 2. Various aspects are presented in MATLAB codes. Section 3 then presents the results 
of application of the extended methods. Effort is made to obtain and present results that are 
consistent with all the various methods used. The last portion of this section gives a brief 
discussion of results. In Section 4, conclusion is made with relevant recommendation. 

2  Description of Methods 
Description of Time-dependent Displaying Techniques 
The Outlier Displaying Component 
For a single multivariate data  ppn XXXX ,,, 21  , the Outlier Displaying Component 

(Gordor & Fieller, 1999) is given by  

)(1 xxSβ  
 ,                     (2.1) 

assuming that x  is a known outlier, and S is the sum of squares and cross-product (SSCP) 

matrix. It is later shown (Nkansah & Gordor, 2012b) that a better display of the observation x  

is obtained by the vector 

 )( )(
1
)()(  xxSβ  

                 (2.2) 

called the Modified One Outlier Displaying Component (M1-ODC). In the M1-ODC,  )(S  and 

the vector )(x  are, respectively, the corresponding matrix and vector in Equation (2.1) 

computed with x  deleted from the data.  

It is necessary to point out the features of the matrix and vectors involved in the displaying 
component for purposes of providing extensions for this study. Originally, the SSCP matrix S 
and mean vector x  in Equations (2.1) and (2.2) are based on data that is single multivariate in 
nature. Thus, S and x   are of dimensions pp  and 1p , respectively. Now, suppose there are 

measurements   pkkkpn XXXX ,,, 21  ,   rk ,,2,1   for r time points (or years). This 

yields )( pnr  matrix of multivariate observations, and the dimension of x  remains 

unchanged. Each observation x   is now a matrix of dimension )( pr   given in Equation (1.1), 

and which is denoted by the code 

 ):,)1(():,2():,():,()(  nrnnrp  XXXXX            (2.3) 

The nature of the dataset presents two ways of computing the matrix, S. It can be measured as 
the total SSCP based on the entire )( pnr dataset. However, this can unduly enhance the 

projection of the suspect outlier in a year that has a very high variation in iX . A fair projection 

could be obtained by using the pooled SSCP matrix. Thus, consider the years as constituting r 
groups and denote the year by a categorical variable, T. Let )(T  be the year of observation, 

 . The frequency of all year classes is n. The within-year SSCP matrix for the kth year is 
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Dropping the index i for the variable, we have  
 

    1xX1xXW )()()()(  kkkkk ,              (2.5) 

  
where )1,(ones n1 . The pooled within-year SSCP is then given by  
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


r

k
kkkkpooled

1

)()()()( 1xX1xXS                   (2.6) 

For this study therefore, the M1-ODC will be extended to a multiple modified 1-ODC (MM1-
ODC) given as 

)( )(
)(1

)()( 


 XXSβ  
             (2.7) 

 
Based on the pooled SSCP, Equation (2.7) may then be given as  
 

)( )(
)(1

)()( 


 XXSβ  
pooledp ,                (2.8) 

 

where the mean matrix in Equation (2.8) is now  )( rp  matrix  rxxxX ,,, 21)(   obtained 

without the suspect outlier observation, )(X ,  and  kx   is the mean vector for data in Year k.  

It is noted that the pooled SSCP itself is used advisedly as it may not yield results that are 
consistent with those based on individual group (year) data for a particular technique. 
Principal Components 

We shall denote the variables by )19(,,,, 21 pXXX p   for convenience. The 

representations of iX   can be seen in Table A2. Denote the ith  principal component (PC) of 

the kth year by iky  defined as 

.
1

j

p

j
ikjik xay 



                 (2.9) 

For purposes of plausible interpretation, it is usually necessary to identify the influential 

indicators in the formation of iky  by a large weight, .ija  However, the nature of the data may 

not facilitate this. For example, Table A2 is the first two PCs 12y  and 22y , extracted from data 

on Year 2 based on the variance-covariance matrix. Only 6x  is influential on 12y , which is as a 

result of high variation in that item. The second PC, 22y , cannot be attributed to any of the 

variables since ,,2 ja j   are low. Since the real importance of jx  in Equation (2.9) can be 

influenced by its variation, we would rather obtain iky  in terms of the loadings and expressed 

as a factor component as 



DETECTION OF EXTREME OBSERVATIONS IN MULTIPLE MULTIVARIATE DATA USING PROJECTION TECHNIQUES: APPLICATION 
TO FOOD PRICE DATA 

 
Journal of Data Acquisition and Processing Vol. 38 (3) 2023      7350 

rkqixlf j

p

j
ikjik ,,2,1;,,2,1;

1

 


          (2.10)     Values 

ikjl  are the loadings with 


p

j
ikjl

1

2  equal to the eigenvalue i  of ikf  and represents the variation 

in the data explained by the component. The weight in Equations (2.9) and (2.10) are connected 
by  

 
i

xij
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Denote by imkf  the ith factor component score for market m in Year k. The vector of factor 

scores is given by  

,1
1 qpppp 


 LRzf                       (2.12) 

where ,1LR
 which we denote by C  is the factor score coefficient matrix and R and L are the 

correlation and loading matrix, respectively. The vector z gives the standardised values of the 
random variables. In Equation (2.12), we may have 

,
1

j

p

j
ijimk zcf 



                      (2.13) 

where 
jx

jij
j s

xx
z


 .  If 0ijc  and large, and jij xx   for some  j },,,{ 21 ghhh H , then  

imkf  could be high and positive. Now let the remaining items in market m be ,mtx .\ HXt   

Then, we can split Equation (2.13) into two components as 

  



HXH \t

titj
j

ijimk zczcf                      (2.14) 

In the second summand in Equation (2.14), ,0titzc
 since 0itc  and 0 tit xx  for some t. 

Therefore, a high positive score reflects a market that has high prices with respect to ., Hjx j

Similarly, a high negative score that reflects a market with low prices may be described.  We 
subsequently obtain the first q PCs for each year data and denote the resulting scores as 

]sign,[ 1 qkikIkk ffff    ,               (2.15) 

which is )( qnr  matrix. The sign of the factor score helps to determine the correct label of the 

suspect outlier market. For the purpose of generating composite graph on all scores 
simultaneously for all years, the direction of interpretation must be the same for all PCs. 
However, this is not the case for time-dependent component scores which is caused by 

inconsistency in sign. This is particularly noted for 1k   on PC1. To resolve this, we define the 

sign of ikf  in Year k as follows: 
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for the set I of years for which ikf  has sign inconsistency. The value of   is a reasonably chosen 

loading which serves as a cut-off for determining those jx  that influence the formation of ikf . 

Usually 5.0  (Frempong et al., 2017; Nkansah, 2018). By this treatment, the resulting score 
signs are in line with those of other years.  
However, this rule is not applicable to certain years. For those years there is the incidence of 
contrasting components in which some groups of indicators have high positive loadings whilst 
others have high negative loadings. In this case, a high positive score would mean that the 
market is high-priced on items that have positive loadings but low-priced on those with negative 
loadings. On the other hand, a high negative score could mean that the market is high-priced on 
items with negative loadings but low-priced on items with positive loadings. 
Generalized Principal Components 
In order to enhance projection of extreme observations in ordinary PCA, the generalized 
principal component analysis (GPCA) may be used. The GPCA is based on the eigenvectors of 

the product matrix  
1*SS  associated with the q largest eigenvalues, where S is the usual 

variance-covariance matrix and *S  is defined as 
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and *x  is a vector of medians, MXXX
M

2
 and  K  is a decreasing function defined as 

).exp()( huuK   We set  1.0h  (Caussinus & Ruiz, 1990).  The computation of *S  therefore 

assigns less weight to an observation that is distant from the centre of the data than those that 

are close. The projection pursuit (Caussinus & Ruiz-Gazen, 1993) of  ik GPZ  ,   ri ,,2,1   

of standardized data   kZ  of the kth year onto the ith component  iGP  of the product matrix 

1*SS  is expected to yield clearer extreme observations. The GPCA is included in this study 
particularly to determine how it yields other extreme observations than those obtained from 
PCA. For both the PCA and GPCA, we label an observation as having a level of extremeness 
based on the following guide on the index value C of its projection. 

Table 2: Interpretation of component values 

Limits of Index  Representation 

    3C  Extremely High 

    32  C  High 

22  C  Moderate 

23  C  Low 

   3C  Extremely Low 

 
The cut-off values for classification based on principal components is ultimately informed by 
what could also appropriately constitute an extreme value on the basis of other projection 
methods. 
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Table 3 presents the summary and interpretation of basic notations that have been used 
frequently in the paper. 
 

Table 3: Summary of basic notations and interpretations 

Notation  Interpretation 

 X  Initial pn  data matrix  

 kX  pn  data matrix for the kth year  

 x  1p  data vector for observation  in a single multivariate data 

 )(x  1p  mean vector with observation   deleted from data 

 )(X  pr   data matrix for observation  in MM data 

 S  Sum of squares cross-product (SSCP) matrix in ODC, but may 
also represent variance-covariance matrix in principal 
components and measures of statistical distance 

S  Weighted variance-covariance matrix used for computing GPCA 

)(S  SSCP matrix with observation   deleted from data 

β  Original ODC based on observation   as suspect outlier 

 )(β  Modified ODC (M1-ODC) based on observation   as suspect 
outlier deleted from data 

)(pβ  M1–ODC based on pooled SSCP matrix with observation   
deleted  

)(pooledS  Pooled SSCP matrix with observation    deleted 

imkf  
The ith component score for market m in Year k. 

),;( SxxU  Statistical distance of observation   from the mean x  based on 
variance matrix,  S  

:),)1(( nt X  Data vector in (or row of) X  for observation   in the tth year 

 
Assessment of Significance of Extremeness and Implementation Procedure 

It has been shown (Nkansah & Gordor, 2013) that based on 1
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
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where   1
)(1
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
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
SA Itrn

n
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1
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
 xxxxA n

n
I  

(Nkansah & Gordor, 2013; 

Barnett & Lewis, 1994). Since ),;(),;( )()()( SxxSxx  UU  , it means that if an observation is 

found to be significantly extreme on the pooled reduced SSCP, )(S , then it is necessarily 

significantly extreme on the pooled S. It is therefore reliable to determine the significance of 

extreme observation by the distinctness of its projection based on )(S . 

The main steps for executing the procedures in the study are summarized in Figure 1.  

 
Figure 1: Flowchart for execution of the methods 

 

3  Application to Price of Local Food Price Data 

The data used is price data obtained from 91 markets on 19 local food items that covers eight 
main categorizations of local foodstuff, namely: Cereals, Roots and Tubers, Vegetables, Pulses, 
Fish, Spices, Oil and Fruits. The data covers five non-consecutive years from 2008 to 2015, and 
are obtained from the Statistical, Research and Information Directorate (SRID) of the Ministry 
of Food and Agriculture (MoFA), Accra, Ghana. (See Appendix for distribution of markets.) 
Preliminary Detection of Extreme-Priced Markets 
The multiple nature of the multivariate data requires consistency checks. One way is to present 
useful background information of the data so that the eventual results would be one that agree 
with the background. Relevant aspects of descriptive statistics of the prices of food items are 
summarized in Table 4. In the table, some important observations could be made regarding 
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markets (e.g., 17, 68, 65) that are frequently associated with the minimum and/or maximum 
prices of respective food items. 
However, a market cannot be labeled yet as extreme priced merely on the basis of descriptive 
statistics on a few individual commodity variables. Similarly, there could be markets that are 
not identified by the basic statistics that could emerge as important extreme priced markets. 
In Table 4, it may be easy to identify market 65 as extreme since it has the highest number of 
maximum prices of items (five of them) but has a minimum price in one. The performance of 
this market may be examined from another perspective. Figure 2 is a display of scores 

)5,,2,1;3,2,1(,  kiikf  for the first three principal component factors for each of the five 

years. Displays of scores for components beyond three do not show clear extremes. In Figure 
2, we can identify observation 65 as suspect extreme (high) in Year 1 and extreme (low) in Year 
4 on PC1. On PC2, it is quite high in Year 4, and does not however feature on PC 3.  
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See Figure A1 for geographical distribution of market numbers  
 

Table 4: Extreme Priced Markets Based on Descriptive Statistics  

Commodities Minimum Priced Market Maximum Priced Market  

Root and  Tubers   

Yam white  29, 44, 65, 63, 60 1, 3, 52, 14 

Cassava  8, 17, 19, 16 49, 65, 51, 89 

Plantain (Apentu) 17, 16, 34, 14 59, 71, 46, 65 

Gari  16, 44, 19, 77, 4 9, 21, 86, 10 

   
Vegetables   

Tomato  12, 17, 83, 11 48, 60, 70 

Garden egg  87, 58, 13, 63 65, 55, 51, 48 

   
Cereal   

Local Rice 6, 17, 19 87, 53, 1, 7 

Imported Rice 77, 34, 57 41, 21 

Maize  68 77, 10, 35, 53 
   

Oil   

Palm oil 87, 29, 21, 26 63, 79, 40 
   
Fruit   

Orange  39, 3, 63, 6 65, 69 

Banana  39, 17, 10, 20 70, 69, 56 
   
Fishes   

Smoked herring  29, 50, 76 69, 55, 67, 71 

Koobi  82, 60, 12 23, 22, 78, 7 

Egg  19, 40, 1, 6 65, 61, 55 
   
Spices   

Dried pepper  12, 19, 59, 60 43, 69, 89 

Onion 68, 86, 63, 21 46, 41, 11, 56 
   

Pulses   
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                             Figure 2: Scatterplots of scores of Components 1, 2  and 3 for all years 
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What constitutes the data problem is how to eventually categorize such an observation. 
Examination of all projections on the first five )5( q  factors that meet the cut-off values 

)22(  CC )  in addition to most frequent markets in Table 4 gives the set of typical suspect 

outliers as }47,55,83,14,46,56,17,90,89,54,68,13,69,65{L .  Denote this set simply by 

},,,{ 21 lllL  .  It is worth noting that 17, which is most consistently low-priced, does not 

feature as extreme in any of the plots. It is observed that the eigenvalues of the Generalized PCs 
are not too distinctly different, and the resulting suspect extreme observations are almost the 
same as those based on PCA. 
Detection of Extreme-Priced Markets Using Displaying Components 

Denote the extracted data for the kth year with code   pnknkk :1,:1)1(  XX  from the 

entire dataset X. The projection of an observation is obtained by  )(βXY . In particular, the 

projection of )(X  from x  is the element of  Y given by  

 ),91)1(()3,912()2,91()1,()( rrrp   YYYYy   

The projection of all observations  L  based on the total sum of squares and cross-product 
(SSCP) and the pooled SSCP matrix are given in Tables 5 and 6, respectively. Markets 65 in 
Year 4, and 14 and 83 in Year 5 show extremely large distances indicating high price levels in 
those years. We also note that market 17 is very consistent among the lowest priced each year. 
As noted in Section 1, the projected values in Table 5 are highly affected in those years with 
wide variations.  

Table 5: Projected values from general mean of suspect outlying markets based 
on total SSCP matrix 

  Year 

No.   1 2 3 4 5 

1 65 13.9311 3.0370 13.8802 263.9890 47.7801 

2 69 6.6609 23.7912 11.0015 13.9365 58.8302 

3 13 1.9278 1.3535 19.6604 16.1751 27.4488 

4 68 2.7572 21.6740 7.7632 13.0138 58.9821 

5 54 3.9404 7.6739 16.7003 11.0493 37.3578 

6 89 4.2535 3.7267 15.0472 25.1642 23.7623 

7 90 4.7164 3.0395 14.4356 20.6649 49.0961 

8 17 1.9614 0.6981 8.4387 14.5450 55.0455 

9 56 5.2528 3.0540 24.3344 30.9917 64.3164 

10 46 1.8222 6.4996 17.8794 23.3667 20.0537 

11 14 4.9814 2.6910 16.4266 52.9580 138.6904 

12 83 2.1387 1.8405 9.2228 3.4933 114.7280 
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Table 6: Projected values from general mean of suspect outlying markets based 
on pooled SSCP matrix 

  Year 

No.   1 2 3 4 5 

1 65 0.0889 0.0147 0.0488 0.5605 0.1112 

2 69 0.0320 0.0538 0.0076 -0.0096 0.1256 

3 13 0.0011 -0.0058 0.0252 0.0040 -0.0263 

4 68 0.0047 0.0402 -0.0093 -0.0251 0.0818 

5 54 0.0085 0.0299 0.0276 0.0120 0.0411 

6 89 0.0282 0.0273 0.0542 0.0829 -0.0465 

7 90 0.0224 0.0222 0.0566 0.0743 0.1814 

8 17 -0.0003 -0.0035 -0.0205 -0.0227 0.0642 

9 56 0.0309 0.0221 0.0508 0.0721 0.2349 

10 46 0.0132 0.0191 0.0784 0.0719 0.0201 

11 14 0.0174 0.0054 0.0344 0.1245 0.3768 

12 83 0.0109 0.0093 0.0155 -0.0005 0.3061 

13 55 0.0151 0.0219 0.0624 0.1424 0.2570 

14 47 0.0142 0.0175 0.0699 0.0818 0.1005 

 
The large distances are reduced by the pooling process in Table 6 which introduces negative 
projections as indications of much lower prices in those markets than the mean prices. It should 
be noted that the projections are measures of distances of the observation from the indicated 
centre of the data. 

The observation matrix  )(X  may not be extreme in all the r values in the vector )(Y . Suppose 

it is extreme particularly in the value   knk ,))1( Y  in the kth year. This value is then 

projected among all values in that year using the MM1-ODC given in Equation (2.7). 
Now, we exclude the outlying MMTD observation from the data over all years by excluding 

every nth observation beginning from X  by the following set of r codes: 

  )1(,,1,0;][:,;  rjjnj TXT  

The data is now reduced to )( rn   in size with each year containing )1( n  data points. The 

reduced data for the kth year after deleting )(X  is 

 pnknkk :1,)1(:1)1()1()(\ TX             (3.1) 

The mean vector of this reduced dataset is  )(\)(\2)(\1)(\ ,,,  rk XXXX  , which is a )1( p  

mean vector for the reduced data of size )1( n  in Year k and (\) means set-minus. The SSCP 

matrix of data in Equation (3.1)  is 

    1xX1xXW )(\)(\)(\)(\)(\  kkkkk             (3.2) 
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The corresponding pooled SSCP matrix similar to that in Equation (2.6) is constructed as 

   



r

j
jjjjpooled

1
)(\)(\)(\)(\)( 1xX1xXS             (3.3) 

The projected values of suspect observations in set L is obtained by  )(pβXQ  . The projection 

of )(X  from  )(x  are the elements of Q given by 

 ),)1(()3,2()2,()1,()( rnrnnrp   QQQQQ   

Now, for each suspect outlier, we examine the corresponding elements )(LQ  which are given in 

Table 7. From the table, market 17 is low-priced in general. Another low-priced market is 68. 
However, the significance of extremeness of a suspect market is better appreciated in a plot 
along with the projection of all other observations. The multiple one-dimensional plots of 
projected values using  17,65  as suspect extremes are given in Figures 3 and 4, respectively. 

Figure 3 shows that the spread of prices in Year 4 is wider than any of the other years compared 
on the same scale. It identifies market 65 as the most outlying in that year but not extreme in 
the other years. Year 2 produced the least varied prices. The actual spread in each year may be 
ascertained by separate plots. 

Table 7: Projected values from )(x  of suspect outlying markets based on pooled 

reduced SSCP matrix 

  Year 

No.   1 2 3 4 5 

1 65 0.0967 0.0161 0.0540 1.4144 0.1443 

2 69 0.0341 0.0573 0.0090 -0.0085 0.1490 

3 13 0.0010 -0.0061 0.0261 0.0039 -0.0293 

4 68 0.0044 0.0422 -0.0107 -0.0267 0.0928 

5 54 0.0089 0.0315 0.0287 0.0124 0.0460 

6 89 0.0291 0.0281 0.0579 0.0900 -0.0471 

7 90 0.0232 0.0232 0.0624 0.0837 0.2093 

8 17 -0.0007 -0.0044 -0.0225 -0.0257 0.0704 

9 56 0.0329 0.0234 0.0609 0.0789 0.2821 

10 46 0.0136 0.0198 0.0831 0.0773 0.0224 

11 14 0.0188 0.0056 0.0385 0.1574 0.5466 

12 83 0.0115 0.0096 0.0155 -0.0010 0.3990 

13 55 0.0156 0.0225 0.0799 0.1586 0.3415 

14 47 0.0145 0.0181 0.0750 0.0891 0.1123 
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Figure 3: Multivariate projection of prices for all years using 65 as suspect outlying market 

 
Figure 4: Multivariate projection of prices for all years using 17 as suspect outlying market 

Figure 4 shows that price levels are more spread out for all years based on market 17 as suspect 
outlier. This means that prices in 17 are substantially lower than those of all other markets but 
does not constitute an extreme low priced market as it does not stick out clearly from the rest 
(even though it has minimum prices for several items). Graphical illustrations are given for only 
these two observations as they constitute the only identified typically extreme observations in 
the data that are worth examining for significance. 
 
Discussion 
A few of the findings are in line with results in the literature. In particular, the study has revealed 
that one of the most low-priced markets is market 68. This market is found to be consistently 
the lowest priced in Maize over the entire study period. Gage et al. (2012) rather report that 
most of the Maize reported in the study area is produced in the northern part of the country. 
This study has identified the specific location where the commodity may be obtained. It is also 
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found that Maize is a major influential indicator of the dimensions that have been determined 
in the form of time-dependent principal components (see Table A1). This means that a major 
component of the expenditure of consumers of local food items is taken by Maize. The relative 
importance of Maize, which is buttressed by similar findings in the literature, is not evident in 
Year 5 (2015). This observation is interestingly consistent with the break in the movement in 
prices of all staple products reported by Cudjoe et al. (2008). It is observed that dominant 
dimensions that influence the formation of components for preliminary detection of suspect 
extreme observations are Roots and Tubers, and Fishes and Fruits. This could be useful 
information for reducing levels of extreme high prices. 
It is worth noting that an observation is not declared extreme simply on the basis of recording 
the lowest or highest values over a number of time periods. One of the typical examples of such 
observations is market 21. A major step in the procedure ensures that the direction of 
interpretation is the same for all time-dependent PCs. This requires some amount of interaction 
time with the data. 

4  Conclusion 
Various projection techniques have been explained and used to illustrate the extent of 
extremeness of MM observation. A key step is the characterization of MM observation as a 
matrix, rather than a vector for which notable projection methods are usually noted for. The 
structure of these techniques has therefore been appropriately extended and are applied to 
identify an observation that is extreme over specific time periods within the range of the data 
coverage. The two main approaches adopted in this work could be fused into one automated 
procedure to considerably reduce execution time for the proposed method.  
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Appendix 

 
Figure A1: Map of Ghana showing distribution of study markets in dots 

 
Table A1: Labels of Extracted Principal Components 

Years PC1 PC2 PC3 PC4 PC5 

Year 1 Roots and Tubers, 
Garden Eggs,  

Fruits and Fishes, 

Cereals, Yam, 
Tomato, Pulses 

Spices Gari, Oil Imp Rice 

Year 2 Roots and Tubers, 
Fruits, Fishes, Oil 

Maize, Tomato 
Yam, Gari, 
Spices, Pulses 

Pulse,  

Local Rice 

Dry Pepper, 
Imp Rice, 
Oil 

Garden  

Eggs 

Year 3 Maize, Yam,  

Vegetable, /Fruits, 
Fishes 

Spices, Pulses Roots and Tubers, 
Vegetables, Egg 

Pulse, Oil, 
Local Rice, 
Koobi 

Cereal,     
Gari 

Year 4 Maize, Yam, Spices, 
Vegetables, Pulses 

Oil, Egg Root and tubers, 
Garden Eggs 

Onion, Gari, 
Local Rice 

Fishes 
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Year 5 Roots and Tubers, 
Fruits, Fishes 

Tomato,  

Onion 

White Cowpea, 
Fishes, Cereals 

Dry Pepper, 
Gari, Pulses 

Oil, Egg 

       

 


