

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1476

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.777969

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE
RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT

MOBILE DISTRIBUTED SYSTEMS

Ambreena Muneer1, Dr S.P.Singh2

1Research Scholar, School of Data Science and Computer Engineering, Nims University
Jaipur, Rajasthan, India, ambreenmuneer3@gmail.com

2 Professor, School of Data Science and Computer Engineering, Nims University Jaipur,
Rajasthan, India, drspsingh2511@gmail.com

Abstract
While dealing with mobile distributed frameworks, we come across some concerns like:
mobility, low bandwidth of wireless channels and lack of stable storage on mobile nodes,
disconnections, limited battery power and high failure rate of mobile nodes. These concerns
make traditional Dependable Recovery Line Compilation (IRL-accretion) techniques designed
for Distributed frameworks unsuitable for Mobile environments. In this paper, we design a
bottommost implementation algorithm for Mobile Distributed frameworks, where no
inoperable reclamation-pinpoints are stockpiled and an effort has been made to optimize the
filibustering of implementations. We propose to delay the processing of selective epistles at
the receiver end only during the IRL-accretion period. A Process is allowed to perform its
normal reckonings and send epistles during its filibustering period. In this way, we try to keep
filibustering of implementations to bare bottommost. In order to keep the filibustering time
bottommost, we collect the dependency vectors and compute the exact bottommost set in the
beginning of the algorithm. The number of implementations that take reclamation-pinpoints
is curtaild to 1) avoid awakening of Nm_Nds in doze mode of implementation, 2) curtail
thrashing of Nm_Nds with IRL-accretion activity, 3) save limited battery life of Nm_Nds and
low bandwidth of wireless channels. In coordinated IRL-accretion, if a single implementation
misses to take its reclamation-pinpoint; all the IRL-accretion effort goes waste, because, each
implementation has to abort its partially-committed reclamation-pinpoint. In order to take its
partially-committed reclamation-pinpoint, an Nm_Nd needs to transfer large reclamation-
pinpoint data to its local Nm_SS over wireless channels. The IRL-accretion effort may be
exceedingly high due to frequent terminations especially in mobile frameworks. We try to
curtail the forfeiture of IRL-accretion effort when any implementation misses to take its
reclamation-pinpoint in coordination with others
Keywords: Fault tolerance, consistent global state, coordinated IRL-accretion and mobile
frameworks .

1. INTRODUCTION

A distributed framework is one that runs on a collection of machines that do not have shared
memory, yet looks to its users like a single computer. The term Distributed frameworks is used
to describe a framework with the following characteristics: i) it consists of several computers
that do not share memory or a clock, ii) the computers communicate with each other by

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1477

exchanging epistles over a communication network, iii) each computer has its own memory
and runs its own operating framework. A distributed framework consists of a finite set of
implementations and a finite set of channels.

In the mobile distributed framework, some of the implementations are running on mobile hosts
(Nm_Nds). A Nm_Nd communicates with other nodes of the framework via a special node
called mobile support station (Nm_SS) [1]. A cell is a geographical area around a Nm_SS in
which it can support an Nm_Nd. A Nm_Nd can change its geographical position freely from
one cell to another or even to an area covered by no cell. An Nm_SS can have both wired and
wireless links and acts as an interface between the static network and a part of the mobile
network. Static network connects all Nm_SSs. A static node that has no support to Nm_Nd can
be considered as a Nm_SS with no Nm_Nd.
Checkpoint is defined as a designated place in a program at which normal implementation is
interrupted specifically to preserve the status information necessary to allow resumption of
processing at a later time. IRL-accretion is the implementation of saving the status information.
By periodically invoking the IRL-accretion implementation, one can save the status of a
program at regular intervals. If there is a failure one may restart reckoning from the last
reclamation-pinpoints thereby avoiding repeating reckoning from the beginning. The
implementation of resuming reckoning by rolling back to a saved state is called rollback
recovery. The reclamation-pinpoint-restart is one of the well-known methods to realize reliable
distributed frameworks. Each implementation stockpiles a reclamation-pinpoint where the
local state information is stored in the stable storage. Rolling back an implementation and again
resuming its execution from a prior state involves overhead and delays the overall completion
of the implementation, it is needed to make an implementation rollback to a most recent
possible state. So it is at the desire of the user for taking many reclamation-pinpoints over the
whole life of the execution of the implementation [6, 29, 30, 31].
In a distributed framework, since the implementations in the framework do not share memory,
a global state of the framework is defined as a set of local states, one from each implementation.
The state of channels corresponding to a global state is the set of epistles sent but not yet
acknowledged. A global state is said to be “consistent” if it contains no orphan epistle; i.e., a
epistle whose receive event is recorded, but its send event is lost. To recover from a failure, the
framework restarts its execution from a previous consistent global state saved on the stable
storage during fault-free execution. This saves all the reckoning done up to the last reclamation-
pinpointed state and only the reckoning done thereafter needs to be redone. In distributed
frameworks , IRL-accretion can be independent, coordinated [6, 11, 13] or quasi-synchronous
[2]. Message Logging is also used for fault tolerance in distributed frameworks [22, 29, 30,
31].
In coordinated or synchronous IRL-accretion , implementations take reclamation-pinpoints in
such a manner that the resulting global state is consistent. Mostly it follows two-phase commit
structure [6, 11, 23]. In the first phase, implementations take partially-committed reclamation-
pinpoints and in the second phase, these are made enduring. The main advantage is that only
one enduring reclamation-pinpoint and at most one partially-committed reclamation-pinpoint

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1478

is required to be stored. In the case of a fault, implementations rollback to last reclamation-
pinpointed state.
The coordinated IRL-accretion protocols can be classified into two types: filibustering and
non-filibustering. In filibustering algorithms, some filibustering of implementations stockpiles
place during IRL-accretion [4, 11, 24, 25] In non-filibustering algorithms, no filibustering of
implementations is required for IRL-accretion [5, 12, 15, 21]. The coordinated IRL-accretion
algorithms can also be classified into following two categories: bottommost-implementation
and all implementation algorithms. In all-implementation coordinated IRL-accretion
algorithms, every implementation is required to take its reclamation-pinpoint in an initiation
[6], [8]. In bottommost-implementation algorithms, bottommost interacting implementations
are required to take their reclamation-pinpoints in an initiation [11].
In bottommost-implementation coordinated IRL-accretion algorithms, an implementation Pi
stockpiles its reclamation-pinpoint only if it a member of the bottommost set (a subset of
interacting implementation). An implementation Pi is in the bottommost set only if the
reclamation-pinpoint initiator implementation is transitively dependent upon it. Pj is directly
dependent upon Pk only if there exists m such that Pj receives m from Pk in the current IRL-
accretion interval [CI] and Pk has not stockpiled its enduring reclamation-pinpoint after
sending m. The ith CI of an implementation denotes all the reckoning performed between its
ith and (i+1)th reclamation-pinpoint, including the ith reclamation-pinpoint but not the (i+1)th
reclamation-pinpoint.

In bottommost-implementation IRL-accretion protocols, some inoperable reclamation-
pinpoints are stockpiled or filibustering of implementations stockpiles place. In this paper, we
propose a bottommost-implementation coordinated IRL-accretion algorithm for non-
deterministic mobile distributed frameworks , where no inoperable reclamation-pinpoints are
stockpiled. An effort has been made to curtail the filibustering of implementations and the
forfeiture of IRL-accretion effort when any implementation misses to take its reclamation-
pinpoint in coordination with others.
Rao and Naidu [26] proposed a new coordinated IRL-accretion protocol combined with
selective sender-based epistle logging. The protocol is free from the problem of lost epistles.
The term ‘selective’ implies that epistles are logged only within a specified interval known as
active interval, thereby reducing epistle logging overhead. All implementations take
reclamation-pinpoints at the end of their respective active intervals forming a consistent global
reclamation-pinpoint. Biswas & Neogy [27] proposed a IRL-accretion and failure recovery
algorithm where mobile hosts save reclamation-pinpoints based on mobility and movement
patterns. Mobile hosts save reclamation-pinpoints when number of hand-offs exceed a
predefined handoff threshold value. Neves & Fuchs [18] designed a time based loosely
synchronized coordinated IRL-accretion protocol that removes the overhead of
synchronization and piggybacks integer csn (reclamation-pinpoint sequence number). Gao et
al [28] developed an index-based algorithm which uses time-coordination for consistently IRL-
accretion in mobile computing environments. In time-based IRL-accretion protocols, there is
no need to send extra coordination epistles . However, they have to deal with the

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1479

synchronization of timers. This class of protocols suits to the applications where
implementations have high epistle sending rate.

2. THE PROPOSED IRL-ACCRETION SCHEME

 2.1 Basic Idea
 The proposed scheme is based on keeping track of direct dependencies of implementations.
Similar to [4], initiator implementation collects the direct dependency vectors of all
implementations, computes bottommost set, and sends the reclamation-pinpoint request along
with the bottommost set to all implementations. In this way, filibustering time has been
significantly reduced as compared to [11].
During the period, when an implementation sends its dependency set to the initiator and
receives the bottommost set, may receive some epistles , which may add new members to the
already computed bottommost set [25]. In order to keep the computed bottommost set intact,
We have classified the epistles , acknowledged during the filibustering period, into two types:
(i) epistles that alter the dependency set of the receiver implementation (ii) epistles that do not
alter the dependency set of the receiver implementation. The epistles in point (i) need to be
delayed at the receiver side [25]. The epistles in point (ii) can be processed normally. All
implementations can perform their normal reckonings and send epistles during their
filibustering period. When an implementation buffers a epistle of former type, it does not
implementation any epistle till it receives the bottommost set so as to keep the proper sequence
of epistles acknowledged. When an implementation gets the bottommost set, it stockpiles the
reclamation-pinpoint, if it is in the bottommost set. After this, it receives the buffered epistles ,
if any. The proposed bottommost-implementation filibustering algorithm forces zero
inoperable reclamation-pinpoints at the cost of very small filibustering.
In bottommost-implementation synchronous IRL-accretion , the initiator implementation asks
all communicating implementations to take partially-committed reclamation-pinpoints. In this
scheme, if a single implementation misses to take its reclamation-pinpoint; all the IRL-
accretion effort goes waste, because, each implementation has to abort its partially-committed
reclamation-pinpoint. In order to take the partially-committed reclamation-pinpoint, an
Nm_Nd needs to transfer large reclamation-pinpoint data to its local Nm_SS over wireless
channels. Due to frequent terminations, total IRL-accretion effort may be exceedingly high,
which may be undesirable in mobile frameworks due to scarce resources. Frequent
terminations may happen in mobile frameworks due to exhausted battery, abrupt
disconnection, or bad wireless connectivity. Therefore, we propose that in the first phase, all
concerned Nm_Nds will take mutable reclamation-pinpoint only. Mutable reclamation-
pinpoint is stored on the memory of Nm_Nd only. In this case, if some implementation misses
to take reclamation-pinpoint in the first phase, then Nm_Nds need to abort their mutable
reclamation-pinpoints only. The effort of taking a mutable reclamation-pinpoint is negligible
as compared to the partially-committed one. When the initiator comes to know that all relevant
implementations have stockpiled their mutable reclamation-pinpoints, it asks all relevant
implementations to come into the second phase, in which, an implementation converts its

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1480

mutable reclamation-pinpoint into partially-committed one. In this way, by increasing small
synchronization epistle overhead, we try to reduce the total IRL-accretion effort.

2.2 The Proposed Bottommost-implementation IRL-accretion Algorithm

The The initiator Nm_SS sends a request to all Nm_SSs to send the dd_set vectors of the
implementations in their cells. All dd_set vectors are at Nm_SSs and thus no initial IRL-
accretion epistles or responses travels wireless channels. On receiving the dd_set [] request, a
Nm_SS records the identity of the initiator implementation (say mss_ida) and initiator Nm_SS,
sends back the dd_set [] of the implementations in its cell, and sets g_chkpt. If the initiator
Nm_SS receives a request for dd_set [] from some other Nm_SS (say mss_idb) and mss_ida is
lower than mss_idb,the, current initiation with mss_ida is discarded and the new one having
mss_idb is continued. Similarly, if a Nm_SS receives dd_set requests from two Nm_SSs, then
it discards the request of the initiator Nm_SS with lower mss_id. Otherwise, on receiving
dd_set vectors of all implementations, the initiator Nm_SS computes min_vect [], sends
mutable reclamation-pinpoint request along with the min_vect [] to all Nm_SSs. When an
implementation sends its dd_set [] to the initiator Nm_SS, it comes into its filibustering state.
An implementation comes out of the filibustering state only after taking its mutable
reclamation-pinpoint if it is a member of the bottommost set; otherwise, it comes out of
filibustering state after getting the mutable reclamation-pinpoint request.

On receiving the mutable reclamation-pinpoint request along with the min_vect [], a Nm_SS,
say Nm_SSj, stockpiles the following actions. It sends the mutable reclamation-pinpoint
request to Pi only if Pi belongs to the min_vect [] and Pi is running in its cell. On receiving the
reclamation-pinpoint request, Pi stockpiles its mutable reclamation-pinpoint and informs
Nm_SSj. On receiving positive response from Pi, Nm_SSj updates p-csni, resets filibusteringi,
and sends the buffered epistles to Pi, if any. Alternatively, If Pi is not in the min_vect [] and
Pi is in the cell of Nm_SSj, Nm_SSj resets filibusteringi and sends the buffered epistle to Pi,
if any. For a disconnected Nm_Nd, that is a member of min_vect [], the Nm_SS that has its
disconnected reclamation-pinpoint, converts its disconnected reclamation-pinpoint into the
required one.
During filibustering period, Pi implementations m, acknowledged from Pj, if following
conditions are met: (i) (!buferi) i.e. Pi has not buffered any epistle (ii) (m.psn <=csn[j]) i.e. Pj
has not stockpiled its reclamation-pinpoint before sending m (iii) (dd_seti[j]=1) Pi is already
dependent upon Pj in the current CI or Pj has stockpiled some enduring reclamation-pinpoint
after sending m.
Otherwise, the local Nm_SS of Pi buffers m for the filibustering period of Pi and sets bufferi.

When a Nm_SS learns that all of its implementations in bottommost set have stockpiled their
mutable reclamation-pinpoints or at least one of its implementation has missed to
reclamation-pinpoint, it sends the response epistle to the initiator Nm_SS. In this case, if some
implementation misses to take mutable reclamation-pinpoint in the first phase, then Nm_Nds
need to abort their mutable reclamation-pinpoints only. The effort of taking a mutable

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1481

reclamation-pinpoint is negligible as compared to the partially-committed one. When the
initiator comes to know that all relevant implementations have stockpiled their mutable
reclamation-pinpoints, it asks all relevant implementations to come into the second phase, in
which, an implementation converts its mutable reclamation-pinpoint into partially-committed
one.
 Finally, initiator Nm_SS sends commit or abort to all implementations. On receiving
abort, an implementation discards its partially-committed reclamation-pinpoint, if any, and
undoes the updating of data structures. On receiving commit, implementations, in the min_vect
[], convert their partially-committed reclamation-pinpoints into enduring ones. On receiving
commit or abort, all implementations update their dd_set vectors and other data structures.

2.3 An Example
 We explain the proposed bottommost-implementation IRL-accretion algorithm with the help
of an example. In Figure 1, at time t1, P4 initiates IRL-accretion implementation and sends
request to all implementations for their dependency vectors. At time t2, P4 receives the
dependency vectors from all implementations (not shown in the Figure 1) and computes the
bottommost set (min_vect[]) which is {P3, P4, P5}. P4 sends min_vect[]to all implementations
and stockpiles its own mutable reclamation-pinpoint. An implementation stockpiles its mutable
reclamation-pinpoint if it is a member of min_vect[]. When P3 and P5 get the min_vect[], they
find themselves in the min_vect[]; therefore, they take their mutable reclamation-pinpoints.
When P0, P1 and P2 get the min_vect [], they find that they do not belong to min_vect [],
therefore, they do not take their mutable reclamation-pinpoints.

An implementation comes into the filibustering state immediately after sending the dd_set[].
An implementation comes out of the filibustering state only after taking its mutable
reclamation-pinpoint if it is a member of the bottommost set; otherwise, it comes out of
filibustering state after getting the mutable reclamation-pinpoint request. P4 receives m4 during
its filibustering period. As dd_set4[5]=1 due to m3, and receive of m4 will not alter dd_set4[];
therefore P4 implementations m4. P1 receives m5 from P2 during its filibustering period;
dd_set1[2]=0 and the receive of m5 can alter dd_set1[]; therefore, P1 buffers m5. Similarly, P3
buffers m6. P3 implementations m6 only after taking its mutable reclamation-pinpoint. P1

implementation m5 after getting the min_vect [].P2 implementations m7 because at this
movement it not in the filibustering state. Similarly, P3 implementations m8. At time t3, P4
receives responses to mutable check point requests from all relevant implementations (not
shown in the Figure 1) and concerns partially-committed reclamation-pinpoint request to all
implementations. A implementation in the bottommost set converts its mutable reclamation-
pinpoint into partially-committed one. Finally, at time t4, P4 receives responses to partially-
committed reclamation-pinpoint requests from all relevant implementations (not shown in the
Figure 1) and concerns the commit request.

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1482

3. Evaluation of the proposed bottommost-implementation IRL-accretion
algorithm
3.1. Computation of average filibustering time and average number of epistles stalled
A The mobile distributed framework considered has N Nm_Nds and M Nm_SSs. Each Nm_SS
is a fixed host that has wired and wireless interface. The two Nm_SSs are connected using a
2Mbps communication link. Each Nm_Nd or Nm_SS has one implementation running on it.
The length of each framework epistle is 50 bytes. The average delay on static network for
sending framework epistle is (8*50*1000)/(2*1000000) = 0.2ms. The filibustering time is
2*0.2=0.4ms. In the proposed algorithm, selective incoming epistles at an implementation are
stalled during its filibustering period. We consider the worst case in which all incoming epistles
are stalled. Blocking period in the proposed scheme is negligibly small; therefore the number
of epistles stalled in the algorithms is insignificant.

Message Sending Rate 0.001 0.01 0.1 1 10
Average No. of Messages stalled
in the proposed Scheme

4*10-7 4*10-6 4*10-5 4*10-4 4*10-3

Table 1:Average number of epistles stalled during IRL-accretion

m2

m6

m0

m3 t2
t1

P5

P4

P3

P2

P1

m

m1

Tentative Checkpoint
Permanent Checkpoint

Control Messages Message processed normally

 Message buffered/delayed
 at receiver end

Mutable Checkpoint

m5

t3

m7

P0

m8

Figure 1 An Example of the proposed Protocol

t4
m4

t2

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1483

3.2 Performance of the proposed bottommost-implementation algorithm
We use the following notations for performance analysis of the algorithms:
Nmss: number of Nm_SSs.
Nmh: number of Nm_Nds.
Cpp: cost of sending a epistle from one implementation to another
Cst: cost of sending a epistle between any two Nm_SSs.
Cwl: cost of sending a epistle from an Nm_Nd to its local Nm_SS (or vice versa).
Cbst: cost of broadcasting a epistle over static network.
Csearch: cost incurred to locate an Nm_Nd and forward a epistle to its current local Nm_SS,
from a
 source Nm_SS.
Tst: average epistle delay in static network.
Twl: average epistle delay in the wireless network.
Tch: average delay to save a reclamation-pinpoint on the stable storage. It also includes the
time to
 transfer the reclamation-pinpoint from an Nm_Nd to its local Nm_SS.
N: total number of implementations
Nmin: number of bottommost implementations required to take reclamation-pinpoints.
Nmut: number of inoperable mutable reclamation-pinpoints [5].
Nind: number of inoperable induced reclamation-pinpoints [15].
Nmutp number of inoperable mutable reclamation-pinpoints [12]
h: height of the IRL-accretion tree in Koo-Toueg [11] algorithm.

Tsearch: average delay incurred to locate an Nm_Nd and forward a epistle to its current local
Nm_SS.
The Blocking Time:
During the time, when a Nm_SS sends the dd_set [] vectors and receives the reclamation-
pinpoint request, all the implementations in its cell remain in the filibustering period. During
the filibustering, an implementation can perform its normal reckonings, send epistles and
partially receive them. In the proposed scheme, filibustering period of an implementation is
2Tst.
The Synchronization epistle overhead:
In worst case, it includes the following:
The initiator Nm_SS broadcasts send dd_set [], take_mutable_chkpt(), take_partially-
committed_chkpt() and commit() epistles to all Nm_SSs:
4Cbst.
The reclamation-pinpoint request epistle from initiator implementation to its local Nm_SS and
its response: 2Cwireless.
All Nm_SSs send dd_set [] of their implementations and response to mutable and partially-
committed reclamation-pinpoint request: 3Nmss*Cst.
Nm_SSs send reclamation-pinpoint and commit requests to relevant implementations and
receive response epistles
: 5Nmh* Cwl.

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1484

Total Message Overhead : 4Cbst+ 2Cwireless +3Nmss*Cst+ 5Nmh* Cwl.
 Number of implementations taking reclamation-pinpoints: In our algorithm, only
bottommost number of implementations is required to reclamation-pinpoint.

3.3 Comparison with other algorithms:

The Koo-Toueg [11] algorithm is a bottommost-implementation coordinated IRL-accretion
algorithm for distributed frameworks . It requires implementations to be stalled during IRL-
accretion . IRL-accretion includes the time to find the bottommost interacting
implementations and to save the state of implementations on stable storage, which may be too
long.
 In Cao-Singhal algorithm [4], filibustering time is reduced significantly as compared to
[15].
P. Kumar [25] finds the problem with algorithm [4]. The algorithms proposed in [5, 12, 15] are
non-filibustering, but they suffer from inoperable reclamation-pinpoints. In the proposed
scheme, the synchronization epistle is on higher side. We add two extra phases, one to collect
the dependency vectors and another to take the mutable reclamation-pinpoints. First phase is
added to compute the exact bottommost set in the beginning of the protocol to curtail the
filibustering time as in [4] & [25]. In order to curtail the forfeiture of IRL-accretion effort
when any implementation misses to take its reclamation-pinpoint in coordination with others,

 Cao-
Singhal
[4]

Cao-
Singh
al [5]

Lalit
Kumar
et al [15]

Elnozah
y
et al [8]

P. Kumar
et al [12]

Proposed
Algorithm

Avg.
filibusterin
g Time

2Tst 0 0 0 0 2Tst

Average
No. of
reclamation
-pinpoints

Nmin Nmin+
Nmut

Nmin+
Nind

N Nmin+
Nmutp

Nmin

Average
Message
Overhead

3Cbst+
2Cwireless

+2Nmss*
Cst+
3Nmh*
Cwl.

2*Nmin

*
Cpp
+Cbst

3Cbst+2
Cwl+2N

mss* Cst

+3Nmh

* Cwl

2*Cbst +
N *Cpp

3Cbst+2Cwl

+(2N

mss+p)* Cst

+3Nmh

* Cwl

4Cbst+
2Cwireless

+3Nmss*Cst+
5Nmh* Cwl.

Piggybacke
d
Information

Nil Intege
r

Integer Integer Integer Integer

Concurrent
executions

No Yes No No No No

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1485

all relevant implementations take mutable reclamation-pinpoints in the first phase and convert
their mutable reclamation-pinpoints into partially-committed reclamation-pinpoints in the
second phase. In this way, by adding extra synchronization epistle overhead, we are able to
deal with the problem of frequent terminations in coordinating IRL-accretion.

4. Conclusions
 We have proposed a bottommost implementation coordinated IRL-accretion algorithm for
mobile distributed framework, where no inoperable reclamation-pinpoints are stockpiled and
an effort is made to curtail the filibustering of implementations. We are able to reduce the
filibustering time to bare bottommost by computing the exact bottommost set in the beginning.
Furthermore, the filibustering of implementations is reduced by allowing the implementations
to perform their normal reckonings and send epistles during their filibustering period. The
number of implementations that take reclamation-pinpoints is curtaild to avoid awakening of
Nm_Nds in doze mode of implementation and thrashing of Nm_Nds with IRL-accretion
activity. It also saves limited battery life of Nm_Nds and low bandwidth of wireless channels.
We try to reduce the forfeiture of IRL-accretion effort when any implementation misses to
take its reclamation-pinpoint in coordination with others.

References
[1] A. Acharya and B. R. Badrinath, Checkpointing Distributed Applications on Mobile
Computers, In Proceedings of the 3rd International Conference on Parallel and Distributed
Information Systems (PDIS 1994), 1994, 73-80.
[2] R. Baldoni, J-M Hélary, A. Mostefaoui and M. Raynal, A Communication-Induced
Checkpointing Protocol that Ensures Rollback-Dependency Tractability, In Proceedings of the
International Symposium on Fault-Tolerant-Computing Systems, 1997, 68-77.
[3] G. Cao and M. Singhal, On coordinated checkpointing in Distributed Systems, IEEE
Transactions on Parallel and Distributed Systems, 9 (12), 1998, 1213-1225.
[4] G. Cao and M. Singhal, “On the Impossibility of Min-process Non-blocking
Checkpointing and an Efficient Checkpointing Algorithm for Mobile Computing Systems,” In
Proceedings of International Conference on Parallel Processing, 1998, 37-44.
[5] G. Cao and M. Singhal, Mutable Checkpoints: A New Checkpointing Approach for
Mobile Computing systems, IEEE Transaction On Parallel and Distributed Systems, 12(2),
2001, 157-172.
[6] K.M. Chandy and L. Lamport, “Distributed Snapshots: Determining Global State of
Distributed Systems,” ACM Transaction on Computing Systems, 3(1), 1985, 63-75.
[7] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B. Johnson, “A Survey of Rollback-
Recovery Protocols in Message-Passing Systems,” ACM Computing Surveys, 34(3), 2002, 375-
408.
[8] E.N. Elnozahy, D.B. Johnson and W. Zwaenepoel, The Performance of Consistent
Checkpointing, In Proceedings of the 11th Symposium on Reliable Distributed Systems, 1992,
39-47.

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1486

[9] J.M. Hélary, A. Mostefaoui and M. Raynal, Communication-Induced Determination
of Consistent Snapshots, In Proceedings of the 28th International Symposium on Fault-Tolerant
Computing, 1998, 208-217.
[10] H. Higaki and M. Takizawa, Checkpoint-recovery Protocol for Reliable Mobile
Systems, Transactions of Information processing Japan, 40(1), 1999, 236-244.
[11] R. Koo and S. Toueg, Checkpointing and Roll-Back Recovery for Distributed Systems,
IEEE Transactions on Software Engineering, 13(1), 1987, 23-31.
[12] P. Kumar, L. Kumar, R. K. Chauhan and V. K. Gupta, A Non-Intrusive Minimum
Process Synchronous Checkpointing Protocol for Mobile Distributed Systems, In Proceedings
of IEEE ICPWC-2005, 2005.
[13] J.L. Kim and T. Park, An efficient Protocol for checkpointing Recovery in Distributed
Systems, IEEE Transactions on Parallel and Distributed Systems, 1993, 955-960.
[14] L. Kumar, M. Misra, R.C. Joshi, Checkpointing in Distributed Computing Systems, In
Concurrency in Dependable Computing, 2002, 273-92.
[15] L. Kumar, M. Misra, R.C. Joshi, Low overhead optimal checkpointing for mobile
distributed systems, In Proceedings of 19th IEEE International Conference on Data
Engineering, 2003, 686 – 88.
[16] L. Kumar and P.Kumar, A Synchronous Checkpointing Protocol for Mobile Distributed
Systems: Probabilistic Approach, International Journal of Information and Computer Security,
1(3), 2007, 298-314.
[17] L. Lamport, Time, clocks and ordering of events in a distributed system,
Communications of the ACM, 21(7), 1978, 558-565.
[18] N. Neves and W.K. Fuchs, Adaptive Recovery for Mobile Environments,
Communications of the ACM, 40(1), 1997, 68-74.
[19] W. Ni, S. Vrbsky and S. Ray, Pitfalls in Distributed Nonblocking Checkpointing,
Journal of Interconnection Networks, 1(5), 2004, 47-78.
[20] D.K. Pradhan, P.P. Krishana and N.H. Vaidya, Recovery in Mobile Wireless
Environment: Design and Trade-off Analysis, In Proceedings of 26th International Symposium
on Fault-Tolerant Computing, 1996, 16-25.
[21] R. Prakash and M. Singhal, Low-Cost Checkpointing and Failure Recovery in Mobile
Computing Systems, IEEE Transaction On Parallel and Distributed Systems, 7(10), 1996,
1035-1048.
[22] K.F. Ssu, B. Yao, W.K. Fuchs and N.F. Neves, Adaptive Checkpointing with Storage
Management for Mobile Environments, IEEE Transactions on Reliability, 48(4), 1999, 315-
324.
[23] L.M. Silva and J.G. Silva, Global checkpointing for distributed programs, In
Proceedings of the 11th

 symposium on Reliable Distributed Systems, 1992, 155-62.
[24] Sunil Kumar, R K Chauhan, Parveen Kumar, “A Minimum-process Coordinated
Checkpointing Protocol for Mobile Computing Systems”, International Journal of
Foundations of Computer science,Vol 19, No. 4, pp 1015-1038 (2008).
[25] Parveen Kumar, “A Low-Cost Hybrid Coordinated Checkpointing Protocol for mobile
distributed systems”, Mobile Information Systems. pp 13-32, Vol. 4, No. 1, 2007.

HANDLING INTERMITTENT TERMINATIONS IN INFALLIBLE RECUPERATION LINE ACCRETION ETIQUETTES FOR FAULT-TOLERANT
MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 1487

[26] Rao, S., & Naidu, M.M, “A New, Efficient Coordinated Checkpointing Protocol
Combined with Selective Sender-Based Message Logging”, IEEE/ACS International
Conference on Computer Systems and Applications, 2008.
[27] Biswas S, & Neogy S,“A Mobility-Based Checkpointing Protocol for Mobile
Computing System”, International Journal of Computer Science & Information Technology,
Vol.2, No.1,pp135-15,2010.
[28] Gao Y., Deng C., & Che, Y.,“ An Adaptive Index-Based Algorithm Using Time-
Coordination in Mobile Computing”, International Symposiums on Information Processing,
pp.578-585, 2008.
[29] L.M. Silva and J.G. Silva, Global checkpointing for distributed programs, In
Proceedings of the 11th symposium on Reliable Distributed Systems, 1992, 155-62.
[30] Praveen Choudhary, Parveen Kumar,” Minimum-Process Global-Snapshot
Accumulation Etiquette for Mobile Distributed Systems ”, International Journal of Advanced
Research in Engineering and Technology” Vol. 11, Issue 8, Aug 20, pp.937-948

[31] Deepak Chandra Uprety, Parveen Kumar, Arun Kumar Chouhary,”Transient Snapshot
based Minimum-process Synchronized Checkpointing Etiquette for Mobile Distributed
Systems”,International Journal of Emerging Trends in Engineering Research”, Vol 10, No 4,
Aug. 2021.

