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Abstract 
While dealing with mobile distributed frameworks, we come across some concerns like: 
mobility, low bandwidth of wireless channels and lack of stable storage on mobile nodes, 
disconnections, limited battery power and high failure rate of mobile nodes.   These concerns 
make traditional Dependable Recovery Line Compilation (IRL-accretion) techniques designed 
for Distributed frameworks  unsuitable for Mobile environments. In this paper, we design a 
bottommost implementation algorithm for Mobile Distributed frameworks, where no 
inoperable reclamation-pinpoints are stockpiled and an effort has been made to optimize the 
filibustering of implementations. We propose to delay the processing of selective epistles  at 
the receiver end only during the IRL-accretion period. A Process is allowed to perform its 
normal reckonings and send epistles  during its filibustering period. In this way, we try to keep 
filibustering of implementations to bare bottommost. In order to keep the filibustering time 
bottommost, we collect the dependency vectors and compute the exact bottommost set in the 
beginning of the algorithm.   The number of implementations that take reclamation-pinpoints 
is curtaild to 1) avoid  awakening of Nm_Nds in doze mode of implementation, 2) curtail 
thrashing of Nm_Nds with IRL-accretion  activity, 3) save limited battery life of Nm_Nds and 
low bandwidth of wireless channels. In coordinated IRL-accretion, if a single implementation 
misses to take its reclamation-pinpoint; all the IRL-accretion effort goes waste, because, each 
implementation has to abort its partially-committed reclamation-pinpoint. In order to take its 
partially-committed reclamation-pinpoint, an Nm_Nd needs to transfer large reclamation-
pinpoint data to its local Nm_SS over wireless channels. The IRL-accretion effort may be 
exceedingly high due to frequent terminations especially in mobile frameworks. We try to 
curtail the forfeiture of IRL-accretion  effort when any implementation misses to take its 
reclamation-pinpoint in coordination with others  
Keywords: Fault tolerance, consistent global state, coordinated IRL-accretion  and mobile 
frameworks . 
 
1.  INTRODUCTION 

A distributed framework is one that runs on a collection of machines that do not have shared 
memory, yet looks to its users like a single computer. The term Distributed frameworks  is used 
to describe a framework with the following characteristics: i) it consists of several computers 
that do not share memory or a clock, ii) the computers communicate with each other by 
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exchanging epistles  over a communication network, iii) each computer has its own memory 
and runs its own operating framework. A distributed framework consists of a finite set of 
implementations and a finite set of channels.  
 
In the mobile distributed framework, some of the implementations are running on mobile hosts 
(Nm_Nds). A  Nm_Nd communicates with other nodes of the framework via a special node 
called mobile support station (Nm_SS) [1]. A cell is a geographical area around a Nm_SS in 
which it can support an Nm_Nd. A  Nm_Nd can change its geographical position freely from 
one cell to another or even to an area covered by no cell. An Nm_SS can have both wired and 
wireless links and acts as an interface between the static network and a part of the mobile 
network. Static network connects all Nm_SSs. A static node that has no support to Nm_Nd can 
be considered as a Nm_SS with no Nm_Nd.  
Checkpoint is defined as a designated place in a program at which normal implementation is 
interrupted specifically to preserve the status information necessary to allow resumption of 
processing  at a later time. IRL-accretion is the implementation of saving the status information. 
By periodically invoking the IRL-accretion implementation, one can save the status of a 
program at regular intervals. If there is a failure one may restart reckoning from the last 
reclamation-pinpoints thereby avoiding repeating reckoning from the beginning. The 
implementation of resuming reckoning by rolling back to a saved state is called rollback 
recovery.  The reclamation-pinpoint-restart is one of the well-known methods to realize reliable 
distributed frameworks. Each implementation stockpiles a reclamation-pinpoint where the 
local state information is stored in the stable storage. Rolling back an implementation and again 
resuming its execution from a prior state involves overhead and delays the overall completion 
of the implementation, it is needed to make an implementation rollback to a most recent 
possible state. So it is at the desire of the user for taking many reclamation-pinpoints over the 
whole life of the execution of the implementation [6, 29, 30, 31]. 
In a distributed framework, since the implementations in the framework do not share memory, 
a global state of the framework is defined as a set of local states, one from each implementation. 
The state of channels corresponding to a global state is the set of epistles sent but not yet 
acknowledged. A global state is said to be “consistent” if it contains no orphan epistle; i.e., a 
epistle whose receive event is recorded, but its send event is lost. To recover from a failure, the 
framework restarts its execution from a previous consistent global state saved on the stable 
storage during fault-free execution. This saves all the reckoning done up to the last reclamation-
pinpointed state and only the reckoning done thereafter needs to be redone. In distributed 
frameworks , IRL-accretion  can be independent, coordinated [6, 11, 13] or quasi-synchronous 
[2]. Message Logging is also used for fault tolerance in distributed frameworks  [22, 29, 30, 
31]. 
In coordinated or synchronous IRL-accretion , implementations take reclamation-pinpoints in 
such a manner that the resulting global state is consistent. Mostly it follows two-phase commit 
structure [6, 11, 23]. In the first phase, implementations take partially-committed reclamation-
pinpoints and in the second phase, these are made enduring. The main advantage is that only 
one enduring reclamation-pinpoint and at most one partially-committed reclamation-pinpoint 
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is required to be stored. In the case of a fault, implementations rollback to last reclamation-
pinpointed state. 
The coordinated IRL-accretion  protocols can be classified into two types: filibustering and 
non-filibustering. In filibustering algorithms, some filibustering of implementations stockpiles 
place during IRL-accretion  [4, 11, 24, 25]  In non-filibustering algorithms, no filibustering of 
implementations is required for IRL-accretion  [5, 12, 15, 21]. The coordinated IRL-accretion  
algorithms can also be classified into following two categories: bottommost-implementation 
and all implementation algorithms. In all-implementation coordinated IRL-accretion  
algorithms, every implementation is required to take its reclamation-pinpoint in an initiation 
[6], [8]. In bottommost-implementation algorithms, bottommost interacting implementations 
are required to take their reclamation-pinpoints in an initiation [11].  
In bottommost-implementation coordinated IRL-accretion  algorithms, an implementation Pi 
stockpiles its reclamation-pinpoint only if it a member of the bottommost set (a subset of 
interacting implementation). An implementation Pi is in the bottommost set only if the 
reclamation-pinpoint initiator implementation is transitively dependent upon it. Pj is directly 
dependent upon Pk only if there exists m such that Pj receives m from Pk in the current IRL-
accretion  interval [CI] and Pk has not stockpiled its enduring reclamation-pinpoint after 
sending m. The ith CI  of an implementation denotes all the reckoning performed between its 
ith and (i+1)th reclamation-pinpoint, including the ith reclamation-pinpoint  but not the (i+1)th 
reclamation-pinpoint. 
 
In bottommost-implementation IRL-accretion  protocols, some inoperable reclamation-
pinpoints are stockpiled or filibustering of implementations stockpiles place. In this paper, we 
propose a bottommost-implementation coordinated IRL-accretion  algorithm for non-
deterministic mobile distributed frameworks , where no inoperable reclamation-pinpoints are 
stockpiled. An effort has been made to curtail the filibustering of implementations and the 
forfeiture of IRL-accretion effort when any implementation misses to take its reclamation-
pinpoint in coordination with others.  
Rao and Naidu [26] proposed a new coordinated IRL-accretion protocol combined with 
selective sender-based epistle logging. The protocol is free from the problem of lost epistles. 
The term ‘selective’ implies that epistles are logged only within a specified interval known as 
active interval, thereby reducing epistle logging overhead. All implementations take 
reclamation-pinpoints at the end of their respective active intervals forming a consistent global 
reclamation-pinpoint. Biswas & Neogy [27] proposed a IRL-accretion  and failure recovery 
algorithm where mobile hosts save reclamation-pinpoints based on mobility and movement 
patterns. Mobile hosts save reclamation-pinpoints when number of hand-offs exceed a 
predefined handoff threshold value.  Neves & Fuchs [18] designed a time based loosely 
synchronized coordinated IRL-accretion  protocol that removes the overhead of 
synchronization and piggybacks integer csn (reclamation-pinpoint sequence number). Gao et 
al [28] developed an index-based algorithm which uses time-coordination for consistently IRL-
accretion  in mobile computing environments. In time-based IRL-accretion  protocols, there is 
no need to send extra coordination epistles . However, they have to deal with the 
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synchronization of timers. This class of protocols suits to the applications where 
implementations have high epistle sending rate. 
 
2.  THE PROPOSED IRL-ACCRETION SCHEME  

          2.1 Basic Idea  
 The proposed scheme  is based on keeping track of direct dependencies of implementations. 
Similar to [4], initiator implementation collects the direct dependency vectors of all 
implementations, computes bottommost set, and sends the reclamation-pinpoint request along 
with the bottommost set to all implementations.  In this way, filibustering time has been 
significantly reduced as compared to [11]. 
During the period, when an implementation sends its dependency set to the initiator and 
receives the bottommost set, may receive some epistles , which may add new members to the 
already computed bottommost set [25]. In order to keep the computed bottommost set intact, 
We have classified the epistles , acknowledged during the filibustering period, into two types: 
(i) epistles  that alter the dependency set of the receiver implementation (ii) epistles  that do not 
alter the dependency set of the receiver implementation. The epistles  in point (i)  need to be 
delayed at the receiver side [25].  The epistles  in point (ii)  can be processed  normally. All 
implementations can perform their normal reckonings and send epistles  during their 
filibustering period. When an implementation buffers a epistle of former type, it does not 
implementation any epistle till it receives the bottommost set so as to keep the proper sequence 
of epistles  acknowledged. When an implementation gets the bottommost set, it stockpiles the 
reclamation-pinpoint, if it is in the bottommost set. After this, it receives the buffered epistles , 
if any. The proposed bottommost-implementation filibustering algorithm forces zero 
inoperable reclamation-pinpoints at the cost of very small filibustering. 
In bottommost-implementation synchronous IRL-accretion , the initiator implementation asks 
all communicating implementations to take partially-committed reclamation-pinpoints. In this 
scheme, if a single implementation misses to take its reclamation-pinpoint; all the IRL-
accretion  effort goes waste, because, each implementation has to abort its partially-committed 
reclamation-pinpoint. In order to take the partially-committed reclamation-pinpoint, an 
Nm_Nd needs to transfer large reclamation-pinpoint data to its local Nm_SS over wireless 
channels. Due to frequent terminations, total IRL-accretion  effort may be exceedingly high, 
which may be undesirable in mobile frameworks  due to scarce resources. Frequent 
terminations may happen in mobile frameworks  due to exhausted battery, abrupt 
disconnection, or bad wireless connectivity.    Therefore, we propose that in the first phase, all 
concerned Nm_Nds will take mutable reclamation-pinpoint only. Mutable reclamation-
pinpoint is stored on the memory of Nm_Nd only. In this case, if some implementation misses 
to take reclamation-pinpoint in the first phase, then Nm_Nds need to abort their mutable 
reclamation-pinpoints only. The effort of taking a mutable reclamation-pinpoint is negligible 
as compared to the partially-committed one. When the initiator comes to know that all relevant 
implementations have stockpiled their mutable reclamation-pinpoints, it asks all relevant 
implementations to come into the second phase, in which, an implementation converts its 
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mutable reclamation-pinpoint into partially-committed one. In this way, by increasing small 
synchronization epistle overhead, we try to reduce the total IRL-accretion  effort.  
 
2.2 The Proposed Bottommost-implementation IRL-accretion Algorithm 
   
The The initiator Nm_SS sends a request to all Nm_SSs to send the dd_set vectors of   the 
implementations in their cells. All dd_set vectors are at Nm_SSs and thus no initial IRL-
accretion  epistles  or responses travels wireless channels. On receiving the dd_set [] request, a 
Nm_SS records the identity of the initiator implementation (say mss_ida) and initiator Nm_SS, 
sends back the dd_set [] of the  implementations in its cell, and sets g_chkpt. If the initiator 
Nm_SS receives a request for dd_set [] from some other Nm_SS (say mss_idb) and mss_ida is 
lower than mss_idb,the, current initiation with mss_ida is discarded and the new one having 
mss_idb is continued. Similarly, if a Nm_SS receives dd_set requests from two Nm_SSs, then 
it discards the request of the initiator Nm_SS with lower mss_id. Otherwise, on receiving 
dd_set vectors of all implementations, the initiator Nm_SS computes min_vect [], sends 
mutable reclamation-pinpoint request along with the min_vect []  to all Nm_SSs. When an 
implementation sends its dd_set [] to the initiator Nm_SS, it comes into its filibustering state. 
An implementation comes out of the filibustering state only after taking its mutable 
reclamation-pinpoint if it is a member of the bottommost set; otherwise, it comes out of 
filibustering state after getting the mutable reclamation-pinpoint request.    
 
On receiving the mutable reclamation-pinpoint request along with the min_vect [], a Nm_SS, 
say Nm_SSj, stockpiles the following actions. It sends the mutable reclamation-pinpoint 
request to Pi only if Pi belongs to the min_vect [] and Pi is running in its cell. On receiving the 
reclamation-pinpoint request, Pi stockpiles its mutable  reclamation-pinpoint and informs 
Nm_SSj. On receiving positive response from Pi, Nm_SSj updates p-csni,  resets filibusteringi,  
and sends the buffered epistles  to Pi, if any. Alternatively, If Pi is not in the min_vect [] and 
Pi is in the cell of Nm_SSj, Nm_SSj resets filibusteringi  and sends the buffered epistle to Pi, 
if any. For a disconnected Nm_Nd, that is a member of min_vect [], the Nm_SS that has its 
disconnected reclamation-pinpoint, converts its disconnected reclamation-pinpoint into the 
required one.  
During filibustering period, Pi implementations m, acknowledged from Pj, if following 
conditions are met: (i) (!buferi) i.e. Pi has not buffered any epistle (ii) (m.psn <=csn[j]) i.e. Pj 
has not stockpiled its reclamation-pinpoint before sending m (iii) (dd_seti[j]=1) Pi is already 
dependent upon Pj in the current CI or Pj has stockpiled some enduring reclamation-pinpoint 
after sending m.  
Otherwise, the local Nm_SS of Pi buffers m for the filibustering period of Pi and sets bufferi.  
 
When a Nm_SS learns that all of its  implementations in bottommost set  have stockpiled their 
mutable  reclamation-pinpoints   or at least one of its implementation has missed to 
reclamation-pinpoint, it sends the response epistle to the initiator Nm_SS.  In this case, if some 
implementation misses to take mutable reclamation-pinpoint in the first phase, then Nm_Nds 
need to abort their mutable  reclamation-pinpoints only. The effort of taking a mutable  
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reclamation-pinpoint is negligible as compared to the partially-committed one. When the 
initiator comes to know that all relevant implementations have stockpiled their mutable  
reclamation-pinpoints, it asks all relevant implementations to come into the second phase, in 
which, an implementation converts its mutable  reclamation-pinpoint into partially-committed 
one. 
 Finally, initiator Nm_SS sends commit or abort to all implementations. On receiving 
abort, an implementation discards its partially-committed reclamation-pinpoint, if any, and 
undoes the updating of data structures. On receiving commit, implementations, in the min_vect 
[], convert their partially-committed reclamation-pinpoints into enduring ones. On receiving 
commit or abort, all implementations update their dd_set vectors and other data structures.  
    
2.3   An Example 
 We explain the proposed bottommost-implementation IRL-accretion  algorithm with the help 
of an example. In Figure 1, at time t1, P4 initiates IRL-accretion  implementation and sends 
request to all implementations for their dependency vectors. At time t2, P4 receives the 
dependency vectors from all implementations (not shown in the Figure 1) and computes the 
bottommost set (min_vect[]) which is   {P3, P4, P5}. P4 sends min_vect[]to all implementations 
and stockpiles its own mutable reclamation-pinpoint. An implementation stockpiles its mutable 
reclamation-pinpoint if it is a member of min_vect[]. When P3 and P5 get the min_vect[], they 
find themselves in the min_vect[]; therefore, they take their mutable reclamation-pinpoints.   
When P0, P1 and P2 get the min_vect [], they find that they do not belong to min_vect [], 
therefore, they do not take their mutable reclamation-pinpoints. 
 
An implementation comes into the filibustering state immediately after sending the dd_set[]. 
An implementation comes out of the filibustering state only after taking its mutable 
reclamation-pinpoint if it is a member of the bottommost set; otherwise, it comes out of 
filibustering state after getting the mutable reclamation-pinpoint request. P4 receives m4 during 
its filibustering period. As dd_set4[5]=1 due to m3, and receive of m4 will not alter dd_set4[]; 
therefore P4 implementations m4. P1 receives m5 from P2 during its filibustering period; 
dd_set1[2]=0 and the receive of m5 can alter dd_set1[]; therefore, P1 buffers m5. Similarly, P3 
buffers m6. P3 implementations m6 only after taking its mutable reclamation-pinpoint. P1 

implementation m5 after getting the min_vect [].P2 implementations m7 because at this 
movement it not in the filibustering state. Similarly, P3 implementations m8. At time t3, P4 
receives responses to mutable check point requests from all relevant implementations (not 
shown in the Figure 1) and concerns partially-committed reclamation-pinpoint request to all 
implementations. A  implementation in the bottommost set converts its  mutable reclamation-
pinpoint into partially-committed one. Finally, at time t4, P4 receives responses to partially-
committed reclamation-pinpoint requests from all relevant implementations (not shown in the 
Figure 1) and concerns the commit request. 
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3. Evaluation of the proposed bottommost-implementation IRL-accretion  
algorithm  
3.1.  Computation of average filibustering time and average number of epistles  stalled   
A The mobile distributed framework considered has N Nm_Nds and M Nm_SSs. Each Nm_SS 
is a fixed host that has wired and wireless interface. The two Nm_SSs are connected using a 
2Mbps communication link.  Each Nm_Nd or Nm_SS has one implementation running on it.  
The length of each framework epistle is 50 bytes. The average delay on static network for 
sending framework epistle is (8*50*1000)/(2*1000000) = 0.2ms. The filibustering time is 
2*0.2=0.4ms. In the proposed algorithm, selective incoming epistles  at an implementation are 
stalled during its filibustering period. We consider the worst case in which all incoming epistles  
are stalled. Blocking period in the proposed scheme is negligibly small; therefore the number 
of epistles  stalled in the algorithms is insignificant.  

Message Sending Rate  0.001 0.01 0.1 1 10 
Average No. of Messages stalled  
in the proposed Scheme 

4*10-7 4*10-6 4*10-5 4*10-4 4*10-3 

 
Table 1:Average number of epistles  stalled during IRL-accretion  
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Figure 1 An Example of the proposed Protocol  
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3.2 Performance of the proposed bottommost-implementation algorithm  
We use the following notations for performance analysis of the algorithms: 
Nmss:      number of Nm_SSs. 
Nmh:      number of Nm_Nds.   
Cpp:      cost of sending a epistle from one implementation to another     
Cst:       cost of sending a epistle between any two Nm_SSs. 
Cwl:      cost of sending a epistle from an Nm_Nd to its local Nm_SS (or vice versa). 
Cbst:      cost of broadcasting a epistle over static network. 
Csearch:  cost incurred to locate an Nm_Nd and forward a epistle to its current    local Nm_SS, 
from a     
             source Nm_SS. 
Tst:        average epistle delay in static network. 
Twl:       average epistle delay in the wireless network. 
Tch:       average delay to save a reclamation-pinpoint on the stable storage. It also includes the 
time to    
             transfer the reclamation-pinpoint from an Nm_Nd to its local Nm_SS. 
N:         total number of implementations 
Nmin:     number of bottommost implementations required to take reclamation-pinpoints.       
Nmut:     number of inoperable mutable reclamation-pinpoints [5].    
Nind:      number of inoperable induced reclamation-pinpoints [15].   
Nmutp       number of inoperable mutable reclamation-pinpoints [12]  
h:          height of the IRL-accretion  tree in Koo-Toueg [11]  algorithm. 
 
Tsearch:   average delay incurred to locate an Nm_Nd and forward a epistle to its current local 
Nm_SS. 
The Blocking Time:  
During the time, when a Nm_SS sends the dd_set [] vectors and receives the reclamation-
pinpoint request, all the implementations in its cell remain in the  filibustering  period. During 
the filibustering, an implementation can perform its normal reckonings, send epistles  and 
partially receive them. In the proposed scheme, filibustering period of an implementation is 
2Tst. 
The Synchronization epistle overhead:   
In worst case, it includes the following: 
The initiator Nm_SS broadcasts send dd_set [], take_mutable_chkpt(), take_partially-
committed_chkpt()  and commit() epistles  to all Nm_SSs:  
4Cbst. 
The reclamation-pinpoint request epistle from initiator implementation to its local Nm_SS and 
its response: 2Cwireless. 
All Nm_SSs send dd_set [] of their implementations and response to mutable and partially-
committed reclamation-pinpoint request: 3Nmss*Cst. 
Nm_SSs send reclamation-pinpoint and commit requests to relevant implementations and 
receive response epistles  
: 5Nmh* Cwl. 
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Total Message Overhead : 4Cbst+ 2Cwireless +3Nmss*Cst+ 5Nmh* Cwl. 
 Number of implementations taking reclamation-pinpoints: In our algorithm, only 
bottommost number of implementations is required to reclamation-pinpoint. 
 
3.3 Comparison with other algorithms: 

The Koo-Toueg [11] algorithm is a bottommost-implementation coordinated IRL-accretion  
algorithm for distributed frameworks . It requires implementations to be stalled during IRL-
accretion . IRL-accretion includes the time to find the bottommost   interacting 
implementations and to save the state of implementations on stable storage, which may be too 
long.  
 In Cao-Singhal algorithm [4], filibustering time is reduced significantly as compared to 
[15]. 
P. Kumar [25] finds the problem with algorithm [4]. The algorithms proposed in [5, 12, 15] are 
non-filibustering, but they suffer from inoperable reclamation-pinpoints. In the proposed 
scheme, the synchronization epistle is on higher side. We add two extra phases, one to collect 
the dependency vectors and another to take the mutable reclamation-pinpoints. First phase is 
added to compute the exact bottommost set in the beginning of the protocol to curtail the 
filibustering time as in [4] & [25]. In order to curtail the forfeiture of IRL-accretion  effort 
when any implementation misses to take its reclamation-pinpoint in coordination with others, 

    Cao-
Singhal 
[4] 

Cao- 
Singh
al [5] 
 

Lalit 
Kumar 
et al [15] 

Elnozah
y 
et al [8] 

P. Kumar  
et al [12] 

Proposed 
Algorithm 

Avg. 
filibusterin
g Time 

2Tst 0 0 0 0 2Tst 

Average 
No. of 
reclamation
-pinpoints 

Nmin Nmin+ 
Nmut 

Nmin+ 
Nind 

N Nmin+ 
Nmutp 

Nmin 

Average  
Message 
Overhead 

3Cbst+ 
2Cwireless 

+2Nmss*
Cst+ 
3Nmh* 
Cwl. 
 

2*Nmin

* 
Cpp 
+Cbst 

3Cbst+2
Cwl+2N 

mss* Cst 

+3Nmh 

* Cwl 

2*Cbst + 
N *Cpp   

3Cbst+2Cwl

+(2N 

mss+p)* Cst 

+3Nmh 

* Cwl 

4Cbst+ 
2Cwireless 

+3Nmss*Cst+ 
5Nmh* Cwl. 
 

Piggybacke
d 
Information 

Nil Intege
r 

Integer Integer Integer Integer  

Concurrent 
executions 

No Yes No No No No 
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all relevant implementations take mutable reclamation-pinpoints in the first phase and convert 
their mutable reclamation-pinpoints into partially-committed reclamation-pinpoints in the 
second phase. In this way, by adding extra synchronization epistle overhead, we are able to 
deal with the problem of frequent terminations in coordinating IRL-accretion.    
 
4. Conclusions  
  We have proposed a bottommost implementation coordinated IRL-accretion algorithm for 
mobile distributed framework, where no inoperable reclamation-pinpoints are stockpiled and 
an effort is made to curtail the filibustering of implementations. We are able to reduce the 
filibustering time to bare bottommost by computing the exact bottommost set in the beginning. 
Furthermore, the filibustering of implementations is reduced by allowing the implementations 
to perform their normal reckonings and send epistles  during their filibustering period.   The 
number of implementations that take reclamation-pinpoints is curtaild to avoid awakening of 
Nm_Nds in doze mode of implementation and thrashing of Nm_Nds with IRL-accretion  
activity. It also  saves limited battery life of Nm_Nds and low bandwidth of wireless channels. 
We try to reduce the forfeiture of IRL-accretion  effort when any implementation misses to 
take its reclamation-pinpoint in coordination with others. 
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