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Abstract: Artificial Intelligence (AI) represents a diverse field focused on creating machines 
that can perform tasks typically requiring human intelligence. At the core of AI lies machine 
learning (ML), a fundamental aspect enabling systems to learn and enhance their performance 
through experience rather than explicit programming. Amidst the array of tools in AI, machine 
learning stands out due to its capacity to identify patterns, make forecasts, and adapt to new 
information, ushering in a new era of intelligent systems. Artificial Neural Networks (ANN) 
fall under supervised learning and are inspired by the human brain's structure and functionality. 
ANNs comprise interconnected nodes organized into layers, including an input layer, one or 
more hidden layers, and an output layer. These networks are trained using labeled datasets to 
comprehend intricate patterns and relationships within the data. Optimization algorithms play 
a crucial role in refining machine learning models to achieve optimal performance. These 
algorithms aim to minimize or maximize an objective function representing the model's 
performance metric. Gradient descent, a foundational optimization technique, iteratively 
adjusts model parameters to minimize the error between predicted and actual outcomes. Other 
optimization tools, such as evolutionary algorithms, simulated annealing, and genetic 
algorithms, offer diverse approaches to finding optimal solutions within the expansive space 
of model parameters. 
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1. INTRODUCTION 
The intersection of control-based methodologies and machine learning has opened new 
frontiers in optimizing interconnected networks, marking a significant leap in addressing the 
complexity and dynamism of modern network systems. This analysis focuses on the application 
of machine learning-driven control techniques tailored for multi-network environments. As 
networks expand in scale and heterogeneity, traditional optimization approaches struggle to 
meet the demands for efficiency, adaptability, and reliability. Leveraging machine learning in 
tandem with control strategies presents a promising avenue to navigate the intricate web of 
interdependent networks. Through a meticulous exploration of these integrated optimization 
techniques across multiple networks, this study aims to unravel the nuances, potential, and 
challenges inherent in this evolving paradigm, offering insights into enhancing network 
performance and resilience [1]. 
In the pursuit of enhancing network performance and scalability, the fusion of control-based 
mechanisms with machine learning algorithms has emerged as a transformative approach in 
managing interconnected networks. This analysis is dedicated to scrutinizing the realm of 
optimization techniques centered on control-based machine learning methods, specifically 
tailored for multi-network scenarios. The contemporary landscape of networks is characterized 
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by their interconnectivity, varying protocols, and dynamic interactions, posing intricate 
challenges for traditional optimization strategies. By delving into the utilization of machine 
learning-driven control techniques in optimizing multiple networks, this examination seeks to 
uncover the efficacy, complexities, and potential advancements inherent in these innovative 
methodologies. Exploring this juncture provides a comprehensive understanding of how these 
techniques contribute to fortifying network infrastructures, fostering adaptability, and 
amplifying overall system performance [2]. 
 
2. REVIEW OF LITERATURE 
The literature review spans various aspects of control-based machine learning optimization 
techniques for multi-network environments. Multiple studies investigate the application of 
machine learning algorithms, including deep reinforcement learning, adaptive control 
strategies, and distributed coordination mechanisms [3-10], emphasizing their efficacy in 
managing diverse interconnected networks. Additionally, discussions highlight the challenges 
posed by real-time implementation, scalability, and synchronization among disparate networks. 
These studies collectively underscore the growing significance of machine learning-driven 
control mechanisms in enhancing network efficiency, adaptability, and stability. They explore 
load balancing, stability maintenance, and resource allocation across interconnected networks, 
shedding light on the potential and limitations of these methodologies [11]. Overall, the 
reviewed literature accentuates the evolving landscape of optimization strategies tailored for 
multi-network scenarios, aiming to address the complexities and dynamics inherent in modern 
interconnected systems. The literature surrounding control-based machine learning 
optimization techniques for multi-networks showcases a dynamic evolution in addressing the 
complexities of interconnected systems. Traditional optimization approaches for multi-
network environments have encountered limitations in managing the intricate interactions and 
dependencies among diverse networks [12-15]. Researchers have increasingly turned to 
machine learning, leveraging its adaptive capabilities, to enhance control-based methodologies 
for optimizing these interconnected systems. Studies highlight the potential of machine 
learning algorithms in learning patterns, predicting network behaviors, and dynamically 
adjusting control strategies, offering promising avenues to bolster the efficiency and 
adaptability of multi-network architectures. 
Moreover, the evolution of machine learning in network optimization has spurred a paradigm 
shift in how networks are managed and optimized. By harnessing the power of algorithms 
capable of learning from data and making informed decisions, researchers have explored novel 
ways to address the challenges posed by the dynamic nature of interconnected networks. 
Control strategies, integrated with machine learning techniques, have shown promising results 
in adapting to changing network conditions, mitigating disruptions, and maintaining stability 
across multiple networks. This amalgamation of control-based methodologies with machine 
learning algorithms signifies a transformative step toward more robust and adaptive 
optimization techniques for multi-network environments. 
However, the literature also underscores certain challenges and gaps in the current landscape 
of control-based machine learning optimization for multi-networks. While machine learning 
algorithms exhibit adaptability, scalability, and predictive capabilities, their integration into 
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control frameworks necessitates addressing issues related to interpretability, reliability, and 
real-time implementation. Additionally, achieving seamless coordination and synchronization 
among disparate networks remains a considerable challenge. Understanding and mitigating 
these challenges are crucial for the effective deployment of control-based machine learning 
techniques tailored for multi-network scenarios. 
 
3. MACHINE LEARNING BASED OPTIMIZATION TECHNIQUES 
3.1 Load Frequency Control 
Load Frequency Control (LFC) stands as a critical mechanism within power systems, dedicated 
to maintaining the delicate balance between the power supply and demand, ensuring the 
stability and reliability of the electrical grid. In essence, LFC acts as the orchestrator, swiftly 
responding to fluctuations in power demand or unexpected disturbances within the grid. Its 
primary function involves swiftly correcting deviations in frequency caused by sudden changes 
in load or generation, guaranteeing that the system remains within acceptable frequency limits. 
By dynamically adjusting the power generation in response to these variations, LFC plays a 
pivotal role in averting grid instabilities, minimizing the risk of equipment damage, and 
preventing blackouts. This intricate control system operates in real-time, leveraging 
sophisticated algorithms and control strategies to swiftly counteract any deviations, thereby 
upholding the grid's operational integrity. Understanding LFC is crucial in comprehending how 
modern power systems manage and mitigate the effects of unforeseen disruptions, ensuring a 
stable and reliable supply of electricity [16]. 

 
Fgure1: Detailed LFC functional block representation 

 
The restructuring of the power system demands significant changes in the power network, 
requiring active involvement from decentralized power utilities encompassing generation, 
transmission, and distribution. With escalating power needs and limited expansion of 
transmission lines due to socio-economic constraints, setting up high-capacity conventional 
power plants becomes challenging [17]. Consequently, power system operators face the 
ongoing task of balancing power demand by combining decentralized power generation 
facilities for the secure and reliable operation of the power grid. The principle of "one nation, 
one grid, one frequency," particularly observed in India, necessitates maintaining frequency 
stability at all times. However, the dynamic nature of the power system results in disturbances, 
faults, and abrupt shifts in load profiles, leading to perturbations that impact the frequency 
profile and, consequently, the entire grid. These disruptions can potentially cause fault 
transmission, equipment damage, and blackouts. To address these minor load perturbations, 



ANALYSIS OF CONTROL BASED MACHINE LEARNING BASED OPTIMIZATION TECHNIQUES FOR MULTI NETWORKS 

 
Journal of Data Acquisition and Processing Vol. 38 (4) 2023      1519 

 
 

Load Frequency Control (LFC) is implemented. LFC regulates the power flow between 
interconnected grid areas through tie lines, swiftly correcting   frequency deviations back to 
zero. Below in Figure 1 is a detailed block diagram illustrating the two areas of LFC. 
 
3.2 Optimizing LFC Controller Gain 
Optimizing the Load Frequency Control (LFC) controller gain involves fine-tuning a crucial 
parameter within the controller to enhance its performance in maintaining system stability. The 
controller gain represents the amplification factor applied to the error signal (the difference 
between the desired and actual frequency) to generate the control signal that adjusts power 
generation or flow within the system. The optimization process aims to find the most suitable 
value for this gain that minimizes frequency deviations, settling time, overshoot, or other 
performance metrics, ensuring a robust and stable system response. Through iterative 
adjustments and simulations, engineers explore various values of the controller gain to strike a 
balance between system stability and responsiveness [18]. Optimizing the LFC controller gain 
involves considering trade-offs. Higher gains may improve the controller's ability to quickly 
correct deviations but could lead to increased overshoot or oscillations. Lower gains might 
result in a more stable response but could lead to longer settling times or sluggish corrective 
actions. Optimizing the LFC controller gain involves finding the optimal value that maximizes 
system stability while minimizing the time and extent of deviations from the desired frequency, 
ensuring an efficient and reliable operation of the power system. 
 
3.3 ANN Trained LFC Model 
An Artificial Neural Network (ANN) trained Load Frequency Control (LFC) model involves 
leveraging neural network architectures to create a control system for managing and stabilizing 
power grid frequencies. In this context, an ANN is a computational model inspired by the 
human brain's structure and functioning. It consists of interconnected nodes, organized into 
layers (input, hidden, and output layers), which process information and learn patterns from 
data [19]. The ANN trained for LFC is designed to understand the complex relationships 
between various parameters affecting the power grid, such as load variations, power generation, 
and system disturbances. During the training phase, historical data on grid behavior, including 
frequency deviations and control actions taken, is used to teach the neural network how to 
predict the required corrective actions in response to different scenarios. 
The training process involves adjusting the network's internal parameters (weights and biases) 
iteratively to minimize prediction errors. Once trained, the ANN-LFC model can take real-time 
input data from the power grid, such as frequency deviations, and predict the optimal control 
actions needed to maintain or restore the grid's stability. ANNs offer advantages such as 
adaptability to nonlinear relationships and the ability to learn from complex datasets. An ANN 
trained for LFC can potentially provide more accurate and efficient control decisions compared 
to traditional control approaches. However, designing and training an effective ANN-LFC 
model requires careful selection of network architecture, appropriate training algorithms, and 
high-quality training data representative of various grid conditions. 
 
3.4 Optimized ANN LFC Model 
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An optimized Artificial Neural Network Load Frequency Control (ANN-LFC) model 
represents a refined and highly efficient system tailored to regulate power grid frequencies. 
This model undergoes a meticulous optimization process, starting with the selection of the most 
suitable ANN architecture, such as Feedforward Neural Networks (FNN) or Recurrent Neural 
Networks (RNN), carefully chosen to capture the intricate dynamics of the power grid. 
Additionally, the optimization involves selecting the most effective training algorithms. This 
includes exploring gradient descent-based methods, as well as heuristic algorithms such as 
evolutionary algorithms or swarm intelligence [20]. These choices significantly impact the 
model's learning speed, accuracy, and convergence, enhancing its capability to precisely 
predict and control frequency deviations. Moreover, the optimization process involves feature 
engineering to identify the most relevant input parameters that best characterize the power 
grid's behavior. These features enable the model to make accurate predictions and informed 
control decisions. Hyperparameter tuning becomes crucial in adjusting the internal settings of 
the neural network, such as learning rates, batch sizes, and activation functions, fine-tuning 
them to optimize the model's performance while preventing overfitting. 
The optimized ANN-LFC model undergoes rigorous validation and testing across diverse 
datasets and real-time simulations. This ensures its reliability, accuracy, and robustness under 
various operating conditions and disturbances. The culmination of these optimization efforts 
results in an ANN-LFC model that delivers precise and rapid responses to frequency 
deviations. It effectively maintains grid stability by minimizing deviations and swiftly 
recovering from disturbances. The synergy between the refined neural network architecture, 
optimal training algorithms, and carefully curated input parameters empowers the model to 
efficiently regulate power grid frequencies, demonstrating superior performance in load 
frequency control scenarios. 
 
4. RESULTS AND ANALYSIS 
The identified problem refers to a specific benchmark challenge defined by the IEEE standard, 
focusing on a two-area system interconnected by a tie-line. This system operates on a shared 
1000 MVA (mega-volt-ampere) power base, representing a standardized scale for power 
measurements within the system. The parameters essential for understanding and simulating 
this interconnected system are outlined in detail in Table 1, providing critical values and 
specifications related to various components such as transmission lines, generators, loads, and 
control elements. These parameters, serving as the foundation of the benchmark problem, 
encompass crucial details necessary for modeling and analyzing the behavior, performance, 
and interactions within the interconnected two-area system. They essentially form the 
groundwork for studies, simulations, and analyses aimed at evaluating control-based machine 
learning optimization techniques tailored specifically for this standardized scenario.  

Table1: IEEE Two area benchmark parameters 

Area           1 2 

Speed regulation R1=0.05 R2=0.0625 

Frequency sensitive load 
coefficient 

Di=0.6 D2=0.9 
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Inertia Constant H1=5 H2=4 

Governor Time Constant Tg1=0.2sec Tg2=0.3sec 

Turbine Time Constant Tt1=0.5sec Tt2=0.6sec 

 
4.1 Conventional Controller  
Figure 2, illustrates the frequency deviation observed when employing a conventional 
controller, serving as the baseline for all comparative analyses.  

 
The controller's performance metrics are highlighted, showcasing a settling time of 20.86 
seconds, a minimum peak overshoot of 0.91%, and a peak time of 1.87 seconds. These metrics 
denote the controller's ability to regulate and stabilize frequency deviations within the system. 
They indicate the time required for the system to return to a stable state following disturbances, 
the extent to which the frequency surpasses its steady-state value before stabilizing, and the 
duration taken to reach this peak deviation. These benchmarks form a reference point against 
which the effectiveness of alternative control strategies, particularly those integrating machine 
learning optimization techniques, will be evaluated and compared. 
 
4.2 Optimizing LFC Controller Gain 
This statement discusses the comparison between the performance of different optimization 
algorithms, namely PSO (Particle Swarm Optimization), GWO (Grey Wolf Optimizer), SSA 
(Salp Swarm Algorithm), and WOA (Whale Optimization Algorithm), in conjunction with a 
benchmark controller. The assessment specifically focuses on their impact on settling the 
frequency deviation within the system. The findings, presented in Figure 3, display a 
comparison of how each optimization algorithm influences the system's frequency deviation 
settling time, peak overshoot, and peak time in response to disturbances. Among these 
algorithms, the GWO algorithm stands out for its superior performance. It demonstrates the 
shortest settling time of 4.2 seconds, indicating how quickly the system returns to a stable state 
after experiencing deviations. Additionally, GWO showcases the smallest peak overshoot of 
0.46%, signifying minimal deviation from the desired frequency value, and a peak time of 1.22 
seconds, denoting the time taken to reach this maximum deviation. These results suggest that 
among the assessed metaheuristic optimization algorithms, GWO exhibits the most efficient 
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control over the system, offering a swift and precise response to disturbances. Its ability to 
minimize settling time, peak overshoot, and peak time implies a more stable and rapid recovery 
of the system from deviations, making it an optimal choice for enhancing the performance of 
the load frequency control system in regulating the power grid. 

 
4.3 ANN Trained LFC Model 
The results presented in figure 4, depict the performance comparison of different Artificial 
Neural Network (ANN) topologies using heuristic training algorithms within a MATLAB 
environment. The evaluation metrics used for comparison are peak overshoot and peak time, 
which are indicative of the ANN's ability to control and stabilize the system in response to 
disturbances. The analysis of the results suggests that among the considered ANN topologies, 
the Feedforward Backpropagation Neural Network (FNN) exhibits the most favorable 
performance. It demonstrates the lowest peak overshoot and peak time, indicating its superior 
ability to quickly restore system stability with minimal deviation from the desired frequency. 
Following FNN, the Linear Recurrent Neural Network (RNN) and Linear Train Neural 
Network (LNN) sequentially exhibit relatively good performances, albeit not as optimal as the 
FNN. Additionally, in evaluating the impact of training algorithms, it becomes apparent that 
heuristic training techniques outperform numerical optimization techniques in enhancing ANN 
performance for Load Frequency Control (LFC) (Figure 4).  
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4.4 Optimized ANN LFC Model 
The results depicted in Figure 5 showcase the frequency deviation of the Feedforward Neural 
Network (FNN) based topology performance, specifically utilizing training data as the training 
algorithm. This representation highlights the effectiveness of FNN in managing frequency 
deviations within the power grid when compared to other neural network architectures, 
particularly the Recurrent Neural Network (RNN). The graphical representation in Figure 5 
illustrates how the FNN-based topology outperforms the RNN topology in terms of controlling 
frequency deviations within the power grid. The FNN-based model demonstrates superior 
performance, showcasing reduced frequency deviations and more precise control actions 
compared to the RNN topology. This outcome suggests that the FNN architecture, when paired 
with training data as the training algorithm, is more adept at regulating and stabilizing the 
power grid's frequency responses. 

 
Figure 5: Comparative optimized FNN based frequency deviation 

 
The table 2 presents a comparative analysis of the performance metrics for Feedforward Neural 
Network (FNN) and Recurrent Neural Network (RNN) architectures using different 
optimization algorithms in Load Frequency Control (LFC) systems. The evaluated metrics 
include peak time (tp in seconds), settling time (ts in seconds), and maximum peak overshoot 
(Mp in percentage) for each architecture and optimization algorithm pair. Across the various 
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optimization algorithms studied—Salp Swarm Algorithm (SSA), Whale Optimization 
Algorithm (WOA), and Grey Wolf Optimizer (GWO)—the FNN consistently demonstrates 
competitive or superior performance compared to the RNN. Specifically, when employing the 
SSA algorithm, the FNN architecture achieves a peak time of 1.62 seconds, while the RNN 
registers a slightly lower peak time of 1.2 seconds.  

 
Table 2: Overall optimized ANN model performance comparison hart 

 tp (s) ts(s) Mp (%) 

FNN RNN FNN RNN FNN RNN 

SSA 1.62 1.2 7.09 7.57 0.27 0.96 

WOA 1.59 1.18 4.96 5.7 0.10 0.50 

GWO 1.53 1.18 6.3 8.49 0.06 0.70 

 
This trend continues across the other algorithms, highlighting the FNN's generally quicker 
response in reaching the peak deviation compared to the RNN. Regarding settling time, the 
FNN architecture consistently shows either comparable or faster settling times compared to the 
RNN for all optimization algorithms. For instance, under the WOA algorithm, the FNN 
achieves a settling time of 4.96 seconds, slightly outperforming the RNN's 5.7 seconds. Similar 
trends are observed across the SSA and GWO algorithms, suggesting the FNN's tendency to 
converge faster towards the desired frequency range after a disturbance.  In terms of maximum 
peak overshoot, the FNN generally exhibits lower overshoot percentages compared to the RNN 
across all optimization algorithms. For instance, with the GWO algorithm, the FNN 
demonstrates a notably lower overshoot of 0.06%, while the RNN records a higher overshoot 
of 0.70%. This trend implies that the FNN architecture tends to achieve more precise control 
over frequency deviations, minimizing the extent of overshoot from the desired frequency 
value compared to the RNN. Overall, the results indicate that, across various optimization 
algorithms, the FNN architecture consistently showcases favorable performance metrics—
quicker peak times, faster settling times, and reduced peak overshoot—compared to the RNN 
in Load Frequency Control systems. This suggests the potential superiority of the FNN 
architecture in regulating power grid frequencies and maintaining stability, making it a more 
promising choice for LFC applications when considering these evaluated performance metrics. 
The table 3 presents a comprehensive comparison of performance metrics across different 
optimization algorithms and neural network architectures within Load Frequency Control 
(LFC) systems. Each algorithm-architecture combination reveals distinct characteristics in 
managing frequency deviations and maintaining stability within power grids. 

Table 3: Comparative analysis of GWO, RNN and WOA-FNN 

 Peak Time 
tp (s) 

Settling 
Time ts 
(s) 

Peak Overshoot 
Mp (%) 

GWO 1.22 4.2 0.46 
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RNN 1.71 5.7 0.23 

WOA-FNN 1.59 4.96 0.10 

 
Firstly, the GWO algorithm, combined with an unspecified neural network architecture, 
showcases efficient control capabilities with a notably short Peak Time of 1.22 seconds, 
indicating a rapid response to disturbances. Its Settling Time of 4.2 seconds suggests quick 
convergence to the desired frequency range, while the moderate Peak Overshoot of 0.46% 
implies controlled deviation from the target frequency, ensuring stability without significant 
overshoot. Secondly, the RNN architecture employing the training data algorithm exhibits 
precision and accuracy in frequency regulation. Despite a slightly longer Peak Time of 1.71 
seconds, the system demonstrates a commendably low Peak Overshoot of 0.23%, showcasing 
the ability to swiftly stabilize the grid without deviating substantially from the desired 
frequency. The Settling Time of 5.7 seconds indicates a steady convergence to the target range, 
emphasizing precision even with a longer response time. 
 
5. CONCLUSION 
The study offered a comprehensive understanding of how optimization techniques and chosen 
neural network architectures, key components in Machine Learning (ML) methodologies, 
interact within a specific application context. In this research, the focus was on multi-area Load 
Frequency Control (LFC), serving as a litmus test for evaluating and validating the selected 
ML techniques. The study aimed to establish a robust framework for optimizing techniques, 
particularly highlighting their effectiveness in fine-tuning the parameters of LFC's PI 
controllers. Among the various metaheuristic optimization methods, the GWO algorithm stood 
out, demonstrating superior performance in adjusting PI control parameters for LFC systems. 
Its efficacy in meeting convergence and settling time objectives was evident, establishing its 
significance in enhancing control mechanisms. Moreover, the study aimed to create an 
optimized ANN model functioning as a secondary LFC controller. Within this scope, the WOA 
algorithm demonstrated remarkable effectiveness in optimizing the weights and biases of the 
FNN, highlighting its potential to enhance the learning capabilities of neural networks in LFC 
systems. This emphasized the significance of leveraging optimization algorithms to refine 
neural network models, potentially improving their efficacy as secondary LFC controllers.  
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