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Abstract: Modeling and analysis of lifetime data is an important aspect of statistical work in 
a wide variety of applications. However, the data in many applications such as economics, 
engineering, biological studies, environmental sciences, medical sciences and finance can be 
considered as data coming from a mixture population of two or more different distributions. 
Mixture classical distributions have a limited ability to represent real data. A new mixture 
model called Weibull Rayleigh mixture model is introduced in this paper. The proposed model 
is based on components of the composite Weibull Rayleigh distribution. The interest of this 
model is that the density function can take different possible shapes, symmetric and 
asymmetric. Moreover, the behaviour of the related hazard function varies and can increase or 
decrease. The new model turns out to be quite flexible for modeling positive data. The 
maximum likelihood estimation method is applied to obtain the estimators of the parameters 
of the new model based on Type-I, Type-II censored samples and complete samples. The 
statistical characteristics of this distribution are obtained such as moment, incomplete moment, 
order statistic and others. A Monte Carlo simulation study is employed to check the consistency 
of the estimates of model parameters using different sample sizes. The model's performance is 
evaluated by comparing it to other competing distributions using three sets of real data. The 
proposed model is superior to its counterparts' models in representing the different data sets . 
Keywords Weibull Rayleigh distribution, maximum likelihood estimation bias, means squared 
error, Type-I censored samples, Type-II censored samples. 
 
1. Introduction 
Lifetime data are present widely in many different applications. However, the data in 
applications such as economics, engineering, biological studies, medical and environmental 
sciences can be considered as data coming from mixture population of two or more different 
distributions. Most of researchers focus on extending and modifying the existing classical 
distribution in order to provide flexibility in modeling data from different mixture populations 
greater. Recently, mixture modeling has become widely used to model data from different 
mixture populations. The main aim of this paper is a generating new model by applying the 
mixture modeling with Weibull Rayleigh distribution. 
The using of finite mixture models is very old in the history of statistics. The first use of finite 
mixture models was in the nineteenth century in a paper by Newcomb [1] who used it in the 
context of modeling outliers. Pearson [2] studied a mixture of two univariate Gaussian 
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distribution and employed the method of moments for estimating the model parameters. He 
used the mixture approach to analyze a data set containing ratios of forehead to body lengths 
for 1,000 crabs. Figueiredo and Jain [3] used the finite mixture to unsupervised learning 
models. Franco et al. [4] discussed the classification of the aging properties of generalized 
mixtures of two or three Weibull distributions in terms of the mixing weights, scale parameters 
and a common shape parameter. Razali and Al-Wakeel [5] used the mixture of two and three 
Weibull distributions to analyze the data of failure times. Zhang et al. [6] introduced a mixture 
Weibull proportional hazards model to predict the failure of a mechanical system with multiple 
failure modes. Qutb et al. [7] studied a mixture of two Weibull distributions with a common 
shape parameter, based on the generalized order statistics. Huang et al. [8] discussed likelihood 
method for finite multivariate Gaussian mixture models. Zong et al. [9] studied a deep 
autoencoding Gaussian mixture model for unsupervised anomaly.  McLachlan et al. [10] 
provided the methodological and theory for the applications of finite mixture models and 
discussed the role of mixture models in clustering of independent and identically distributed 
data. They also applied the maximum likelihood (ML) estimation and the moment estimation 
methods for parametric mixture models. Teamah et al. [11] introduced a new mixture 
distribution as a result of mixing Fr´echet-Weibull distribution with exponential distribution; 
it is called Fr´echet-Weibull mixture exponential distribution and used the ML estimation for 
estimating the parameters of the mixture distribution. In other hand, many approaches have 
been proposed to generate new families of models by employing one or more additional shape 
parameter(s) to the baseline distribution. The benefit of this induction of parameter(s) is in 
exploring tail properties and improving the goodness-of-fit of the generator family. 
Bourguignon et al. [12] introduced a new generator based on the Weibull random variable 
called the new Weibull-G family by introducing one or more shape parameter to the baseline 
distribution for defining new generators for continuous families of distributions.  
In this paper we will introduce a mixture of two component of Weibull Rayleigh distribution.  
The statistical properties of the proposed mixture distribution are obtained. Also, we will 
provide a comparison of ML estimators of the model parameters based on complete samples, 
Type-I and Type-II censored samples through Monte Carlo simulations. The bias and the mean 
squared error (MSE) are used as measures for comparison. Moreover, the usefulness of the 
proposed distribution is investigated through three numerical applications. 
 
2. Two-Components Mixture Weibull Rayleigh Distribution 
2.1. Definition of Mixture Distribution 
The probability density function (PDF) of the Weibull Rayleigh distribution is given as 
 

𝑓(𝑥) = 2 c 
𝜆 

𝛽
𝑥 𝑒 , 𝑥 ≥ 0, 𝑐, 𝜆, 𝛽 > 0, (1) 

and the cumulative distribution function (CDF) is given as 
 

𝐹(𝑥) =  1 −  𝑒 . 
(2) 
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The hazard rate function (HZF) is given as 
 

 

ℎ(𝑥) = 2 𝑐 
𝜆 

𝛽
𝑥 . (3) 

2.2. Mixture of a Two Weibull Rayleigh Distribution 
A density function for the mixture of two components densities with mixing proportions 𝑝 and 
1 − 𝑝 is defined as 
𝑓(𝑥) = 𝑝𝑓 (𝑥) + (1 − 𝑝) 𝑓 (𝑥) 

𝑓(𝑥) = 2 𝑝 𝑐
𝜆

𝛽
 𝑥 𝑒 + 2(1 − 𝑝) 𝑐  

𝜆

𝛽
 𝑥  𝑒 . 

(4) 

where 𝑝 satisfies the condition, 0 ≤ 𝑝 ≤ 1.The CDF for the mixture model is defined as 
𝐹(𝑥) = 𝑝𝐹 (𝑥) + (1 − 𝑝)𝐹 (𝑥), 

𝐹(𝑥) = 𝑝 1 − 𝑒 + (1 − 𝑝) 1 − 𝑒 . 
(5) 

The reliability function (RF) for the mixture model is given as 
𝑅(𝑥) = 𝑝𝑅 (𝑥) + (1 − 𝑝)𝑅 (𝑥), 

𝑅(𝑥) = 𝑝 𝑒 + (1 − 𝑝) 𝑒 . 
(6) 

The HZF is given as 
 

ℎ(𝑥) = 2𝑝𝑐
𝜆

𝛽
𝑥 + 2(1 − 𝑝)𝑐

𝜆

𝛽
𝑥  . (7) 

The reversed HZF is given as 

𝑟ℎ(𝑥) = 𝑝
2  𝑐

𝜆
𝛽

𝑥 𝑒   

1 − 𝑒

 + 

(1 − 𝑝)
2 𝑐  

𝜆
𝛽

𝑥  𝑒

1 − 𝑒

. 

(8) 

 
The quantile function of 𝑋 with CDF in (5) is given by 

 

𝑄(𝑢) = 𝑝  
𝛽

𝜆
𝐿𝑜𝑔(1 − 𝑢)   +  (1 − 𝑝)

𝛽

𝜆
𝐿𝑜𝑔(1 − 𝑢) . (9) 

2.3.  Graphical description 
The plots of PDF and the HZF are displayed for different values of parameters in 
Figure1. The figure shows several forms for PDF and HZF curve. This indicates that 
the new model is flexible and may be suitable for different types of data. 
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Figure 1. Plots of PDF and HZF of the (MWR) distribution. 
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3. General Properties 
Moment 
The finite mixture of the 𝑟  moments of the two components is given as 
 

�́� = 𝑝 𝜇 =  2 𝑝 𝑐
𝜆

𝛽
 𝑥 𝑒 𝑑𝑥 

+2  (1 − 𝑝) 𝑐  
𝜆

𝛽
 𝑥  𝑒 𝑑𝑥 

𝐸(𝑥 ) = 𝑝
𝛽

𝜆

𝑟

2𝑐
+ 1 + (1 − 𝑝)

𝛽

𝜆

𝑟

2𝑐
+ 1 . 

(10) 
 

The mean is given when 𝑟 = 1 as follows 
 

�́� = 𝑝
𝛽

𝜆

1

2𝑐
+ 1 + (1 − 𝑝)

𝛽

𝜆

1

2𝑐
+ 1 . (11) 

The variance is defined as follows 
 

𝜎 = 𝐸(𝑥 ) − �́� . (12) 

The moments generating function of MWR distribution is represented as 
𝑀 (𝑡) = 𝑝[𝑀 (𝑡)] + (1 − 𝑝)[𝑀 (𝑡)]. 

 

𝑀 (𝑡) = ∫ 𝑒 𝑓 (𝑥)𝑑𝑥 = ∫ 𝑒 𝑝 2 𝑐  𝑥  𝑒         

+(1 − 𝑝) 2 𝑐  
𝜆

𝛽
 𝑥   𝑒 𝑑𝑥. 

(13) 

 
So, the moments generating function of MWR distribution can be written as 

 

𝑀 (𝑡) =
𝑡

𝑟!
𝑝

𝛽

𝜆

𝑟

2𝑐
+ 1  + (1 − 𝑝)

𝛽

𝜆

𝑟

2𝑐
+ 1 . (14) 

 
Incomplete Moments 
The 𝑟 incomplete moment of MWR distribution is given as 

𝑇 (𝑧) = 𝑝 𝜇 = 2 𝑝 𝑐
𝜆

𝛽
 𝑥 𝑒 𝑥

 

𝑑𝑥  

+ 2(1 − 𝑝) 𝑐  
𝜆

𝛽
 𝑥  𝑒

 

𝑥 𝑑𝑥. 

(15) 
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The first incomplete moment of a finite mixture of 𝑘 components equals 

𝑇 (𝑧) = 𝑝 𝜇 = 2 𝑝 𝑐
𝜆

𝛽
 𝑥 𝑒 𝑥

 

𝑑𝑥 

+ 2(1 − 𝑝) 𝑐  
𝜆

𝛽
 𝑥  𝑒

 

𝑥 𝑑𝑥. 

(16) 

 
Mean Deviations 
The mean deviation about the mean 𝜇 of MWR distribution is given as 

𝛿1 = |𝑥 − 𝜇|
 

𝑝 2 𝑝 𝑐
𝜆

𝛽
 𝑥 𝑒  

+ (1 − 𝑝) 2(1 − 𝑝) 𝑐  
𝜆

𝛽
 𝑥  𝑒 𝑑𝑥. 

𝛿1 = 𝑝 2 𝑝 𝑐
𝜆

𝛽
 𝑥 𝑒 + 

(1 − 𝑝) 2 𝑐  
𝜆

𝛽
 𝑥  𝑒 . 

(17) 
and the mean deviation about the median 𝑀 equals 

 

𝛿2 = |𝑥 − 𝑀|
 

𝑝 2 𝑝 𝑐
𝜆

𝛽
 𝑥 𝑒  

+(1 − 𝑝) 2(1 − 𝑝) 𝑐  
𝜆

𝛽
 𝑥  𝑒 𝑑𝑥. 

(18) 
 

Since, the median is given as 𝐹(𝑥; 𝜆, 𝑐, 𝛽) = , these forms can be written as  
 

𝛿1 = 2𝜇 𝐹(𝑥; 𝜆, 𝑐, 𝛽) − 2𝑇 (𝜇), 
and 

𝛿2 =  𝜇 − 2𝑇 (𝑀),  
(19) 

where 𝑇 (𝑧) is the first incomplete moment of 𝑋 obtained from (16). Therefore 

𝛿1 = 2𝜇 𝐹 𝑥; 𝜆 , 𝑐 , 𝛽  −2𝑇 (𝜇 ), 

and 
𝛿2 = 𝜇 − 2𝑇 (𝑀 ), 

(20) 

where 

𝛿1 = 2𝜇 𝑝 1 − 𝑒 + (1 − 𝑝) 1 − 𝑒 − 2𝑇 (𝜇), 

and 

(21) 
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𝛿2 =  𝜇 − 2𝑇 (𝑀). 
 
Rényi Entropy 
The Rényi entropy of MWR model is expressed as 

𝐻 (𝑥) =
1

1 − 𝑆
𝑙𝑜𝑔 2 𝑝 𝑐

𝜆

𝛽
 𝑥 𝑒

 

 

+ (1 − 𝑝) 2(1 − 𝑝) 𝑐  
𝜆

𝛽
 𝑥  𝑒 𝑑𝑥 . 

(22) 

It is a difficult problem to obtain 𝐻 (𝑥) in closed-form for the mixture model. 
 
Shannon entropy 
The Shannon entropy of 𝑋 is represented as 

𝐻 (𝑥) = 𝐸 −𝑙𝑜𝑔 𝑓(𝑥; 𝜆, 𝑐, 𝛽) , (23) 

where the log-likelihood function is given as 
 

𝑙𝑜𝑔 𝑓 𝑥; 𝑐 , 𝜆 , 𝛽

= 𝑙𝑜𝑔  2 +  𝑙𝑜𝑔  𝑝  +   𝑙𝑜𝑔 𝑐 + 𝑐 𝑙𝑜𝑔 𝜆 −  𝑐 𝑙𝑜𝑔 𝛽  + (2𝑐

− 1) 𝑙𝑜𝑔 𝑥 −
𝜆 𝑥

𝛽
+ 𝑙𝑜𝑔  2 +  𝑙𝑜𝑔 (1 − 𝑝) 

+ 𝑙𝑜𝑔 𝑐 + 𝑐 𝑙𝑜𝑔 𝜆  −  𝑐  𝑙𝑜𝑔 𝛽  +  (2𝑐 − 1) 𝑙𝑜𝑔 𝑥 −
𝜆 𝑥

𝛽
. 

                                                                                                                             
(24) 

Thus, it can be reduced to 

 

 
𝐻 (𝑥) =  − 𝑙𝑜𝑔  2 −  𝑙𝑜𝑔  𝑝 −   𝑙𝑜𝑔 𝑐 −  𝑐 𝑙𝑜𝑔  𝜆 +  𝑐 𝑙𝑜𝑔 𝛽  

−  (2𝑐 − 1) 𝐸(𝑙𝑜𝑔 𝑋) + 𝐸
𝜆 𝑋

𝛽
− 𝑙𝑜𝑔  2 − 𝑙𝑜𝑔 (1 − 𝑝) − 

𝑙𝑜𝑔 𝑐 − 𝑐 𝑙𝑜𝑔 𝜆  +  𝑐  𝑙𝑜𝑔 𝛽  −  (2𝑐 − 1)𝐸(𝑙𝑜𝑔 𝑋) + 𝐸
𝜆 𝑋

𝛽
. 

 

(25) 

Distribution of order statistic 
The 𝑟  order statistics for the MWR distribution can be written as 

 

𝑓 , (𝑥) =
𝑛!

(𝑛 − 𝑟)! (𝑟 − 1)!
(−1)

𝑛 − 𝑟

𝑖
 

× 2 𝑝 𝑐
𝜆

𝛽
 𝑥 𝑒 + 2(1 − 𝑝) 𝑐  

𝜆

𝛽
 𝑥  𝑒  

(26) 
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× 𝑝 1 −  𝑒 + (1 − 𝑝) 1 − 𝑒 . 

 
Special Cases: 

 If  r = 1, in 
(26), the PDF of the smallest order statistic can be obtained. 

 If  r =  n, in 
(26), the PDF of the largest order statistic can be obtained. 

 If r = , in 

(26), the PDF of the median observable in the odd sample size case can be obtained. 
 
4. Estimation of Mixture Weibull Rayleigh Distribution 
In this section, the parameters of MWR distribution is estimated by maximum likelihood 
estimation method with complete sample and censoring samples of Type-I and Type  
4.1. Maximum likelihood estimation based on complete sample 
If 𝑥 , 𝑥 , … , 𝑥  is a random sample of size 𝑛 from the MWR distribution, then the log likelihood 
function for the vector of parameters 𝜃 =  (𝑐 , 𝜆 , 𝛽 ) is given as  

 

ℓ(𝑐 , 𝜆 , 𝛽 ) = 𝑙 𝑜𝑔 2 𝑝  𝑐
𝜆

𝛽

 

𝑥  𝑒 . (27) 

 
The ML estimators can be computed by differentiating (27) with respect to each parameter as 

follows 
𝜕ℓ

𝜕𝑐
= 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2𝑝

𝜆
𝛽

 

𝑥 𝑒 1 + 𝑐 𝑙𝑛
𝜆
𝛽

+ 2ln (𝑥 ) −
𝜆 𝑥

𝛽
𝑙𝑛

𝜆 𝑥
𝛽

∑ 2 𝑝 𝑐  
𝜆
𝛽

 

𝑥  𝑒

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

(28
) 

 

𝜕ℓ

𝜕𝜆
=

⎣
⎢
⎢
⎢
⎢
⎡
2𝑝

 𝑐
𝜆

𝜆
𝛽

 

𝑥  𝑒 1 −
𝜆 𝑥

𝛽

∑ 2 𝑝 𝑐  
𝜆
𝛽

 

𝑥  𝑒
⎦
⎥
⎥
⎥
⎥
⎤

, 

 

(29) 
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𝜕ℓ

𝜕𝛽
= −

⎣
⎢
⎢
⎢
⎢
⎡
2𝑝

 𝑐
𝛽

𝜆
𝛽

 

𝑥  𝑒 1 −
𝜆 𝑥

𝛽

∑ 2 𝑝 𝑐  
𝜆
𝛽

 

𝑥  𝑒
⎦
⎥
⎥
⎥
⎥
⎤

, 

 (30) 
 
where  𝑗 = 1,2, and 𝑝 = 𝑝, 𝑝 = 1 − 𝑝. The MLEs for each parameter can be derived either 
by solving the system of non-linear equations in  (21), (22) and (23) numerically or by 
maximizing (20) by optimization techniques using the programming language R.    
 
4.2. Maximum likelihood estimation based on Type-I censored samples 
If 𝑥 , 𝑥 , … , 𝑥  is a random sample of size 𝑛 from the MWR distribution, then the log likelihood 
function of Type-I censored sample for the vector of parameters 𝜃 =  (𝑐 , 𝜆 , 𝛽 ) is given as 

ℓ(𝑐 , 𝜆 , 𝛽 ) = 

𝛿  𝑙𝑜𝑔 2 𝑝  𝑐
𝜆

𝛽

 

𝑥  𝑒  

+(1 − 𝛿 ) 𝑙𝑜𝑔 𝑝  𝑒 . 

  

(31) 

The ML estimators can be computed by differentiating (31) with respect to each parameter as 
follows 

 
𝜕ℓ

𝜕𝑐
= 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2𝛿 𝑝

𝜆
𝛽

 

𝑥  𝑒 1 + 𝑐 𝑙𝑛
𝜆
𝛽

+ 2𝑙𝑛(𝑥 ) −
𝜆 𝑥

𝛽
𝑙𝑛

𝜆 𝑥
𝛽

∑ 2 𝑝 𝑐  
𝜆
𝛽

 

𝑥  𝑒

−

(1 − 𝛿 ) 𝑝  𝑒
𝜆 𝑥

𝛽
𝑙𝑛

𝜆 𝑥
𝛽

∑ 𝑝  𝑒
⎦
⎥
⎥
⎥
⎥
⎤

, 

(32) 

 
𝜕ℓ

𝜕𝜆
= (33) 
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⎣
⎢
⎢
⎢
⎢
⎡
2𝛿 𝑝

 𝑐
𝜆

𝜆
𝛽

 

𝑥  𝑒 1 −
𝜆 𝑥

𝛽

∑ 2 𝑝 𝑐  
𝜆
𝛽

 

𝑥  𝑒

 

−

(1 − 𝛿 ) 𝑝
 𝑐
𝜆

𝜆 𝑥
𝛽

𝑒

∑ 𝑝  𝑒
⎦
⎥
⎥
⎥
⎥
⎤

, 

 
𝜕ℓ

𝜕𝛽
= 

 

⎣
⎢
⎢
⎢
⎢
⎡
−2𝛿  𝑝

 𝑐
𝛽

𝜆
𝛽

 

𝑥  𝑒 1 −
𝜆 𝑥

𝛽

∑ 2 𝑝 𝑐  
𝜆
𝛽

 

𝑥  𝑒

 

 

+

(1 − 𝛿 ) 𝑝
 𝑐
𝛽

𝜆 𝑥
𝛽

𝑒

∑ 𝑝  𝑒
⎦
⎥
⎥
⎥
⎥
⎤

. 

 

(34) 

Where  𝑗 = 1,2, and 𝑝 = 𝑝, 𝑝 = 1 − 𝑝. The ML estimators for each parameter can be derived 
either by solving the system of non-linear equations in (25), (26) and (27) numerically or by 
maximizing (24) by optimization techniques using the programming language R. 
 
4.3 Maximum likelihood estimation based on Type II censored samples  
If 𝑥 , 𝑥 , … , 𝑥  is a random sample of size 𝑛 from the MWR distribution, then the log likelihood 
function of Type II censored sample for the vector of parameters 𝜃 =  (𝑐 , 𝜆 , 𝛽 )  is given as  

 
ℓ(𝑐 , 𝜆 , 𝛽 ) = 

𝑙𝑜𝑔
𝑛!

(𝑛 − 𝑚)!
+ 𝑙𝑜𝑔 2 𝑝  𝑐

𝜆

𝛽

 

𝑥  𝑒  

+(𝑛 − 𝑚) 𝑙𝑜𝑔 𝑝  𝑒 . 
(35) 
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The ML estimators can be computed by differentiating (35) with respect to each parameter as 
follows 

 
𝜕ℓ

𝜕𝑐
= 

2𝑝
𝜆
𝛽

 

𝑥  𝑒 1 + 𝑐 𝑙𝑛
𝜆
𝛽

+ 2𝑙𝑛(𝑥 ) −
𝜆 𝑥

𝛽
𝑙𝑛

𝜆 𝑥
𝛽

∑ 2 𝑝 𝑐  
𝜆
𝛽

 

𝑥  𝑒

−

(𝑛 − 𝑚) 𝑝  𝑒
𝜆 𝑥

𝛽
𝑙𝑛

𝜆 𝑥
𝛽

∑ 𝑝  𝑒

, 

(36) 

 
𝜕ℓ

𝜕𝜆
= 

2𝑝
 𝑐
𝜆

𝜆
𝛽

 

𝑥  𝑒 1 −
𝜆 𝑥

𝛽

∑ 2 𝑝 𝑐  
𝜆
𝛽

 

𝑥  𝑒

− 

(𝑛 − 𝑚) 𝑝
 𝑐
𝜆

𝜆 𝑥
𝛽

𝑒

∑ 𝑝  𝑒

 

(37) 

 
𝜕ℓ

𝜕𝛽
= 

−

2𝑝
 𝑐
𝛽

𝜆
𝛽

 

𝑥  𝑒 1 −
𝜆 𝑥

𝛽

∑ 2 𝑝 𝑐  
𝜆
𝛽

 

𝑥  𝑒

 

+

(𝑛 − 𝑚) 𝑝
 𝑐
𝛽

𝜆 𝑥
𝛽

𝑒

∑ 𝑝  𝑒

. 

(38) 
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Where  𝑗 = 1,2, and 𝑝 = 𝑝, 𝑝 = 1 − 𝑝. The MLEs for each parameter can be derived either 
by solving the system of non-linear equations in (36), (37) and (38) numerically or by 
maximizing (35) by optimization techniques using the programming language R.  
 
4.4. Estimation of the Reliability, Hazard and Reversed Hazard Rate Functions 
The invariance property of the ML estimators enables us to obtain the ML estimators of 
reliability, hazard, and reversed hazard rate functions by replacing the parameters 𝑐 , 𝜆  and 𝛽  

by their ML estimators in (28), (29) and (30) or (32), (33) and (34) or (36), (37) and (38), 
respectively, as follows: 
 

𝑅(𝑥) = 𝑝𝑒
 

+ (1 − 𝑝)𝑒
 

, 
(39) 

 

ℎ(𝑥) = 𝑝
 2�̂�  𝜆

̂

𝛽
̂

 𝑥 ̂ + (1 − 𝑝)
2 �̂�  𝜆

̂

𝛽
̂

 𝑥 ̂  , (40) 

 

𝑟ℎ(𝑥) = 𝑝

 2�̂�  𝜆
̂

𝛽
̂  𝑥 ̂ 𝑒

 

 

1 − 𝑒
 

 

+(1 − 𝑝) 

2 �̂�  𝜆
̂

𝛽
̂  𝑥 ̂ 𝑒

 

 

1 − 𝑒
 

, 

(41) 

 

where 𝑥 > 0,   �̂� ,  𝜆  , 𝛽 > 0,and  𝜆 , �̂� and 𝛽  are the ML estimators of 𝜆 , 𝑐 , 𝛽  and  𝑗 = 1, 2. 

 
 5. Simulation study  
In this section, a simulation study is proceeded to evaluate the performance of parameters’ 
estimators of mixture Weibull Rayleigh distribution. Assuming the values of MWE parameters 
𝑐 = 15, 𝜆 = 4, 𝑐 = 13 and 𝜆 = 3 with different sizes of sample (𝑛 =

 30, 50, 100 and 150) and mixture weights (𝑝 =  0.4 and 0.5). 
Table 1 and 2 report the averages of ML estimates, bias and MSE using maximum likelihood 
estimation method. 𝛽  and 𝛽  are supposed equal 1. It is noticed from these tables that the 
ML averages with full sample are very close to the initial values of the parameters as the sample 
size  
increases. Also, Bias's and MSEs are decreasing when the sample size is increasing. This is 
indicative of the fact that the estimates are consistent and approaches the population parameter 
values as the sample size increases. Also it is noticed that the estimates are accurate at 𝑝 = 0.5 
more than at 𝑝 = 0.4 according to the biases and MSEs. 
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Table 1. Monte Carlo Simulation Results for (MWR) Distribution: MLE, Bias and MSE for 

Full Sample at 𝑝 = 0.4. 

𝒑 𝒏 Results 
Parameters 

𝒄𝟏 = 𝟏𝟓 𝜆𝟏 = 𝟒 𝒄𝟐 = 𝟏𝟑 𝜆𝟐 = 𝟑 

0.4 

30 
MLE 15.1470 3.9922 13.1328 2.9989 
Bias 0.1470 -0.0077 0.1328 -0.0010 
MSE 0.5502 0.0034 0.6738 0.0026 

50 
MLE 15.0433 3.9960 13.0174 2.9979 
Bias 0.0433 -0.0039 0.0174 -0.0020 
MSE 0.2890 0.0008 0.4130 0.0004 

100 
MLE 15.0253 3.9976 12.9541 2.999 
Bias 0.0253 -0.0023 -0.0458 -0.0009 
MSE 0.2123 0.0014 0.3181 0.0012 

150 
MLE 15.0329 3.9992 13.0479 2.9990 
Bias 0.0329 -0.0007 0.0479 -0.0009 
MSE 0.1192 0.0002 0.1487 0.0001 

 
Table 2. Monte Carlo Simulation Results for (MWR) Distribution: MLE, Bias and MSE for 

Full Sample at 𝑝 = 0.5. 

𝒑 n Results 
Parameters 

𝒄𝟏 = 𝟏𝟓 𝜆𝟏 = 𝟒 𝒄𝟐 = 𝟏𝟑 𝜆𝟐 = 𝟑 

0.5 

30 
MLE 15.0967 3.9941 13.1279 2.9972 
Bias 0.0967 -0.0058 0.1279 -0.0027 
MSE 0.5597 0.0022 0.5901 0.0019 

50 
MLE 15.0944 3.9960 13.0612 2.9984 
Bias 0.0944 -0.0039 0.0612 -0.0015 
MSE 0.5321 0.0007 0.5104 0.0005 

100 
MLE 15.0444 3.9984 13.0141 2.9985 
Bias 0.0444 -0.0015 0.0141 -0.0014 
MSE 0.1779 0.0003 0.1659 0.0002 

150 
MLE 15.0245 3.9995 13.0249 2.9988 
Bias 0.0245 -0.0005 0.0249 -0.0011 
MSE 0.1077 0.0002 0.1217 0.0001 

 
Table 3 and 4 report the averages of ML estimates, bias and MSE with Type-I censoring data. 
In these tables, according to the biases and MSEs, it is noticed that the ML averages with Type-
I censored samples are very close to the initial values of the parameters as the sample size 
increases. Also, Bias's and MSEs are decreasing when the sample size is increasing. This is 
indicative of the fact that the estimates are consistent and approaches the population parameter 
values as the sample size increases. In addition, it is observed that the estimates are accurate 
when the percentage is 90% compared with the other percentages 80% and 70% which is clear 
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as sample size increases. This indicates that as the percent of censored data Type-I increases, 
the estimates become more accurate. Also, it is observed that the estimates are accurate when 
mixture weight 𝑝 = 0.5 compared with 𝑝 = 0.4. 
 
Table 3. Monte Carlo Simulation Results for (MWR) Distribution: MLE, Bias and MSE for 

Type-I Censored at 𝑝 = 0.4 

𝒑  𝒏 Results 
Parameters 

𝒄𝟏 = 𝟏𝟓 𝜆𝟏 = 𝟒 𝒄𝟐 = 𝟏𝟑 𝜆𝟐 = 𝟑 

0.4 

90% 

30 
MLE 14.9990 4.0009 13.0002 3.0001 
Bias -0.0009 0.0009 0.0002 0.0001 
MSE 0.0022 0.0016 0.0011 0.0012 

50 
MLE 15.0001 4.0014 12.9991 3.0001 
Bias 0.0001 0.0014 -0.0008 0.0001 
MSE 0.00071 0.0004 0.0007 0.0004 

100 
MLE 15.0000 4.0000 12.9997 3.0000 
Bias 0.0005 0.0002 -0.0003 0.0008 
MSE 0.0004 0.0003 0.0002 0.0002 

150 
MLE 14.9991 4.0001 13.0009 3.0002 
Bias -0.0001 0.0010 0.0010 0.0004 
MSE 0.0003 0.0002 0.0003 0.0003 

80% 

30 

MLE 15.0004 4.0002 12.9976 3.0000 

Bias 4.374e-04 2.409e-04 
-2.359e-
03 

7.321e-05 

MSE 0.0014 0.0014 0.0012 0.0007 

50 
MLE 14.9994 4.0017 13.0007 3.0022 
Bias -0.0006 0.0017 0.0006 0.0022 
MSE 0.0009 0.0007 0.0007 0.0021 

100 

MLE 14.9999 4.0013 12.9994 3.0007 

Bias 
-8.521e-
05 

1.378e-03 
-5.183e-
04 

7.209e-04 

MSE 0.0007 0.0004 0.0004 0.0003 

150 
MLE 15.0008 4.0006 13.0004 3.0012 
Bias 0.0008 0.0006 0.0004 0.0012 
MSE 0.0004 0.0009 0.0008 0.0007 

70% 

30 
MLE 15.0027 4.0015 13.0016 3.0014 
Bias 0.0027 0.0015 0.0016 0.0014 
MSE 0.0051 0.0035 0.0037 0.0027 

50 
MLE 15.0010 4.0019 12.9989 3.0002 
Bias 0.0011 0.0019 -0.0010 0.0002 
MSE 0.0016 0.0033 0.0015 0.0010 

100 MLE 14.9985 4.0015 12.9976 3.0045 
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Bias -0.0014 0.0015 -0.0023 0.0045 
MSE 0.0038 0.0029 0.0073 0.0119 

150 
MLE 14.9992 4.0022 12.9994 3.0008 
Bias -0.0008 0.0022 -0.0006 0.0009 
MSE 0.0010 0.0007 0.0007 0.0006 

 
Table 4. Monte Carlo Simulation Results for (MWR) Distribution: MLE, Bias and MSE for 

Type-I Censored at 𝑝 = 0.5. 

𝒑  𝒏 Results 
Parameters 

𝒄𝟏 = 𝟏𝟓 𝜆𝟏 = 𝟒 𝒄𝟐 = 𝟏𝟑 𝜆𝟐 = 𝟑 

0.5 

90% 

30 
MLE 15.0002 4.0019 12.9987 2.9994 
Bias 0.0004 0.0019 -0.0012 0.0005 
MSE 0.0008 0.0009 0.0007 0.0006 

50 
MLE 15.0001 4.0027 12.9992 3.0005 
Bias 0.0002 0.0027 -0.0008 0.0005 
MSE 0.0005 0.0005 0.0006 0.0005 

100 
MLE 14.9994 4.0010 12.9986 2.9997 
Bias -5.675e-04 1.063e-03 -1.393e-03 -2.860e-04 
MSE 0.0003 0.0005 0.0005 0.0004 

150 
MLE 15.000 4.0009 12.9994 3.0003 
Bias 2.613e-05 9.727e-04 -5.902e-04 3.521e-04 
MSE 0.0004 0.0003 0.0003 0.0003 

80% 

30 
MLE 15.0003 4.0011 13.0002 3.0009 
Bias 0.0004 0.0002 0.0012 0.0010 
MSE 0.0012 0.0008 0.0019 0.0018 

50 
MLE 14.9983 4.0069 12.9989 3.0053 
Bias -0.0017 0.0069 -0.0011 0.0053 
MSE 0.0031 0.0019 0.00583 0.0024 

100 
MLE 15.0003 4.0013 13.0004 2.9998 
Bias 0.0003 0.00137 0.00046 -0.00015 
MSE 0.0006 0.0004 0.0006 0.0004 

150 
MLE 15.0008 4.0019 12.9997 3.0003 
Bias 0.0008 0.0020 -0.0003 0.0003 
MSE 0.0004 0.0004 0.0005 0.0003 

70% 

30 
MLE 14.9990 3.9998 12.9968 3.0020 
Bias -9.968e-05 -1.048e-04 -3.128e-03 2.050e-03 
MSE 0.0016 0.0032 0.0018 0.0015 

50 
MLE 14.9986 4.0022 12.9999 2.9991 
Bias -1.378e-03 2.295e-03 -1.682e-05 -8.877e-04 
MSE 0.0009 0.0009 0.0016 0.0010 

100 MLE 14.9994 4.0031 12.9997 3.0007 
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Table 5. Monte Carlo Simulation Results for (MWR) Distribution: MLE, Bias and MSE for 

Type II Censored at  𝑝 = 0.4. 

𝒑  𝒏 Results 
Parameters 

𝒄𝟏 = 𝟏𝟓 𝜆𝟏 = 𝟒 𝒄𝟐 = 𝟏𝟑 𝜆𝟐 = 𝟑 

0.4 

90% 

30 
MLE 15.1479 3.9904 13.1298 2.9971 
Bias 0.1479 -0.0095 0.1298 -0.0028 
MSE 0.3306 0.0022 0.6365 0.0008 

50 
MLE 15.0848 3.9946 13.0867 2.9981 
Bias 0.0848 -0.0053 0.0867 -0.0018 
MSE 0.2522 0.0013 0.4871 0.0004 

100 
MLE 15.0714 3.9981 12.9754 2.9980 
Bias 0.0714 -0.0018 -0.0245 -0.0019 
MSE 0.3212 0.0005 0.4316 0.0002 

150 
MLE 15.0336 3.9987 13.0402 2.9990 
Bias 0.0336 -0.0012 0.0402 -0.0009 
MSE 0.0781 0.0003 0.1208 0.0001 

80% 

30 
MLE 15.1000 3.9739 13.0729 2.9985 
Bias 0.1000 -0.0260 0.0729 -0.0014 
MSE 0.1519 0.0115 0.5132 0.0027 

50 
MLE 15.0655 3.9891 13.0768 2.9980 
Bias 0.0655 -0.0108 0.0768 -0.0019 
MSE 0.0956 0.0034 0.3604 0.0004 

100 
MLE 15.0316 3.9974 13.0115 2.9983 
Bias 0.0316 -0.0025 0.0115 -0.0016 
MSE 0.1040 0.0008 0.1392 0.0002 

150 
MLE 15.0159 3.9986 13.0103 2.9989 
Bias 0.0159 -0.0013 0.0103 -0.0010 
MSE 0.0386 0.0005 0.1141 0.0001 

70% 

30 
MLE 15.0979 3.9250 13.1765 2.9972 
Bias 0.0979 -0.0749 0.1765 -0.0027 
MSE 0.1122 0.0394 0.9171 0.0027 

50 
MLE 15.0741 3.9368 13.0819 2.9974 
Bias 0.0741 -0.0631 0.0819 -0.0025 
MSE 0.0688 0.0369 0.6842 0.0005 

Bias -0.0006 0.0031 -0.00028 0.0007 
MSE 0.0007 0.0005 0.0007 0.0006 

150 
MLE 15.0014 4.0047 13.0002 2.9987 
Bias 0.0013 0.0047 0.0002 -0.0012 
MSE 0.00108 0.0013 0.0009 0.0005 
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100 
MLE 15.0199 3.9801 13.0004 2.9979 
Bias 0.0199 -0.0198 0.0004 -0.0020 
MSE 0.0156 0.0099 0.1581 0.0002 

150 
MLE 15.0203 3.9937 13.0183 2.9989 
Bias 0.0203 -0.0062 0.0183 -0.0010 
MSE 0.0135 0.0018 0.0792 0.0001 

 
Table 6. Monte Carlo Simulation Results for (MWR) Distribution: MLE, Bias and MSE for 

Type II Censored at  𝑝 = 0.5. 

𝒑  𝒏 Results 
Parameters 

𝒄𝟏 = 𝟏𝟓 𝜆𝟏 = 𝟒 𝒄𝟐 = 𝟏𝟑 𝜆𝟐 = 𝟑 

0.5 

90% 

30 
MLE 15.1210 3.9916 13.1442 2.9973 
Bias 0.1210 -0.0083 0.1442 -0.0026 
MSE 0.5301 0.0026 0.6562 0.0020 

50 
MLE 15.0956 3.9932 13.0932 3.0005 
Bias 0.0956 -0.0067 0.0932 0.0005 
MSE 0.4461 0.0029 0.5882 0.0025 

100 
MLE 15.1010 3.9980 13.0839 2.9986 
Bias 0.1010 -0.0019 0.0839 -0.0013 
MSE 0.3772 0.0004 0.4883 0.0003 

150 
MLE 15.0220 3.9991 13.0307 2.9988 
Bias 0.0220 -0.0008 0.0307 -0.0011 
MSE 0.0935 0.0002 0.1329 0.0001 

80% 

30 
MLE 15.1777 3.9878 13.1233 2.9979 
Bias 0.1777 -0.0121 0.1233 -0.0020 
MSE 0.7314 0.0046 0.8392 0.0027 

50 
MLE 15.0936 3.9935 13.0788 2.9985 
Bias 0.0935 -0.0064 0.0788 -0.0014 
MSE 0.3279 0.0013 0.4579 0.0005 

100 
MLE 15.1045 3.9961 13.1073 2.9998 
Bias 0.1045 -0.0038 0.1073 -0.0001 
MSE 0.4475 0.0016 0.3934 0.0013 

150 
MLE 15.0051 3.9991 13.0183 2.9988 
Bias 0.0051 -0.0008 0.0183 -0.0011 
MSE 0.0762 0.0003 0.0914 0.0001 

70% 

30 
MLE 15.1846 3.9697 13.1297 2.9983 
Bias 0.1846 -0.0302 0.1297 -0.0016 
MSE 0.4863 0.0161 0.8242 0.0035 

50 
MLE 15.0871 3.9845 13.0877 2.9992 
Bias 0.0871 -0.0154 0.0877 -0.0007 
MSE 0.2909 0.0058 0.5270 0.0015 
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100 
MLE 15.0390 3.9947 13.0292 2.9994 
Bias 0.0390 -0.0052 0.0292 -0.0005 
MSE 0.1363 0.0020 0.2230 0.0012 

150 
MLE 15.0336 3.9970 13.0170 2.9998 
Bias 0.0336 -0.0029 0.0170 -0.0001 

 
6. Applications 
The main aim of this subsection is to evaluate the performance of the proposed MWR through 
two real data sets. The MWR distribution is fitted to the two real data sets in comparison with 
other distributions with the following density functions using the R programming language:  
1- K
umaraswamy Weibull (KW) distribution by Hassan and Elgarhy [13] 

𝑓(𝑥) = 𝛼𝛽
𝑐

𝛾

𝑥

𝛾
𝑒 1 − 𝑒 1 − 1 − 𝑒 , 

where 𝑥, 𝛼, 𝛽, 𝑐, 𝛾 > 0. 

(42) 

 
2- B
eta Weibull (BW) distribution by Lee et al. [14]. 

𝑓(𝑥) =
𝛤(𝛼 + 𝛽)

𝛤(𝛼)𝛤(𝛽)

𝑐

𝛾

𝑥

𝛾
1 − 𝑒 𝑒 , 

where 𝑥, 𝛼, 𝛽, 𝑐, 𝛾 > 0. 

(43) 

 
3- W
eibull (W) distribution by Lai et al. [15]. 

𝑓 (𝑥) =
𝑎

𝛾

𝑥

𝛾
𝑒 , 

where 𝑥 ≥ 0, 𝑎, 𝛾 > 0.  

(44) 

4- R
ayleigh Distribution. 

𝑝(𝐸) =
2𝐸

𝑠
𝑒 , 

where  𝑠 = ⟨𝐸 ⟩ = 𝑛𝐸  and the brachets ⟨ ⟩ denote the mean value. 
(46) 

 
5- W
eibull Exponential (WE) distribution. 

𝑓(𝑥) =
1

𝛽
𝑐𝑟 𝑥 𝑒 , 

where  𝑥 ≥ 0, 𝑐, 𝑟, 𝛽 > 0. 
6- T
he alpha power exponentiated Weibull-exponential distribution  (APEWED) by Akattawi and 
Aljuhani [16]. 
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𝑓(𝑥) = 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

log 𝛼

𝛼 − 1

𝑎𝑐

𝛾

𝜆𝑒 1 − 𝑒

1 − (1 − 𝑒 )

− log 1 − 1 − 𝑒

𝛾
𝑒 𝛼 𝑖𝑓 𝛼 > 0, 𝛼 ≠ 1

𝑎𝑐

𝛾

𝜆𝑒 1 − 𝑒

1 − (1 − 𝑒 )

− log 1 − 1 − 𝑒

𝛾
𝑒  𝑖𝑓 𝛼 = 1.

 

 
 (45) 
The first data set is given by Bourguignon et al. [12]. The data refers to the strengths of 1.5 cm 
glass fibres, originally obtained by workers at the UK National Physical Laboratory. The data 
set consists of 63 observations as follows: 
 
0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 
1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 
1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 
1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24. 
 
The second data was obtained from Hogg and Klugman [18]. This data represents the losses 
due to windrelated catastrophes. The sorted values include claims of 2,000,000 and for 
convenience they have been recorded in millions, described as: 
 
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 8, 8, 9, 15, 17, 22, 23, 24, 24, 
25, 27, 32, 43. 
 
The MLEs of parameters and the corresponding standard errors (SEs), for all fitted 
distributions to the real data sets are reported in tables 7 and 8 respectively.
     
In order to compare between the distributions, different criteria are considered such as (log-
likelihood), Akaike information criterion (AIC), Akaike information criterion corrected 
(AICC), Bayesian information criterion (BIC) and Hannan -Quinn information criterion 
(HQIC) where: 
𝐴𝐼𝐶 = −2 𝑙𝑜𝑔 𝐿(𝜃) + 2 𝜐, 

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑣 + 2𝑣

𝑛 − 𝑣 − 1
 , 

𝐵𝐼𝐶 = −2 𝑙𝑜𝑔 𝐿(𝜃) + 𝜐 𝑙𝑜𝑔(𝑛), 
𝐻𝑄𝐼𝐶 = −2 𝑙𝑜𝑔 𝐿(𝜃) + 2𝑣 𝑙𝑜𝑔(𝑙𝑜𝑔 𝑛) , 

 
where 𝜐 denotes the number of parameters in the model and 𝑛 denotes the number of 
observations. The best distribution corresponds the lowest values of these measures. 
 
In addition, different goodness-of-fit measures such as the Kolmogorov–Smirnov (KS) test, 
the Anderson Darling (AD) test and Cramer Von-Messes (CM) test are applied to check the 
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validity of the fitted model. The KS, AD and CM test statistics and the relevant 𝑝-values for 
different models with respect to the three real data sets are also reported in tables 9 and 10. 
 
Table 7. The MLEs (SEs in parentheses) for first data set. 

Distribution Estimated Parameters 
WRM 

(�̂� , 𝛽 , 𝜆 , 

�̂� , 𝛽 , 𝜆 )  

1.8811 
(0.2979) 

3.2550 
(8.2114) 

0.6045 
(0.7627) 

7.5250 
(1.5007) 

3.2894 
(2.5805) 

0.6506 
(0.2553) 

KW 

 (𝛼, 𝛽, �̂�, 𝛾 ) 
0.5602 
(0.1610) 

0.2058 
(0.0320) 

6.7861 
(0.3020) 

1.3246 
(0.0035) 

 
 

BW 

 (𝛼, 𝛽, �̂�, 𝛾 ) 
0.5832 
(0.1192) 

0.2132 
(0.0342) 

7.3058 
(0.3238) 

1.3719 
(0.0036) 

 
 

APEWED 

 (𝛼, 𝑎, �̂�, 𝛾, 𝜆) 
3.3254   
2.8898 

4.1670 
1.2421 

1.5415   
(3.5943) 

1.5992  
(1.2354) 

1.2932 
(2.8110) 

 

WEG 

(�̂�, �̂�, 𝛽) 
5.7807 
(0.5761) 

6.8460 
(898.1364) 

4.204864 
(551.6424) 

  
 

W 
(𝛼, 𝛾) 

1.6281 
(0.0371) 

5.780705 
(0.5761) 

   
 

R 
(𝛾) 

1.0895 
(0.0686) 

    
 

 
Table 8. The MLEs (SEs in parentheses) for second data set. 

Distribution Estimated Parameters 
WRM 

(�̂� , 𝛽 , 𝜆 , 

�̂� , 𝛽 , 𝜆 )  

0.8729 
(0.3232) 

8.7899 
(4.5881) 

5.0398 
(0.3481) 

1.0137 
(0.1917) 

0.1729 
(0.1486) 

6.1400 
(2.6909) 

KW 

 (𝛼, 𝛽, �̂�, 𝛾 ) 
0.5829 
(0.0991) 

0.1154 
(0.0189) 

0.7944 
(0.0026) 

0.4741 
(0.0026) 

  

BW 

 (𝛼, 𝛽, �̂�, 𝛾 ) 

1.7457 
(0.6348) 

0.1479 
(0.0257) 

1.0660 
(0.0034) 

1.4967 
(0.0034) 

  

APEWED 

 (𝛼, 𝑎, �̂�, 𝛾, 𝜆) 
0.3484 
(1.7147) 

0.7925 
(0.6759) 

1.8655 
(3.0664) 

1.0594 
(2.6533) 

0.1375 
(0.5290) 

 

WEG 

(�̂�, �̂�, 𝛽) 

1.0095 
(0.1219) 

8.4865 
(1.4950) 

0.8454 
(0.0026) 

   

W 
(𝛼, 𝛾) 

9.5067 
(1.6367) 

1.0016 
(0.1211) 

    

R 
(𝛾) 

9.9055 
(0.8034) 

     

 
Table 9. The goodness-of-fit measures for first data set. 

Distribution Statistic 
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Log.Lik AICC A I C B I C HQIC K SP 
KS.S
T 

CV.
P 

CV.S
T 

AN.S AN.ST 

WRM 
-
9.212
4 

31.92
47 

30.42
47 

43.28
35 

35.48
21 

0.841
6 

0.077
7 

0.99
39 

0.185
6 

0.973
2 

0.0311 

KW 
13.68
21 

36.05
39 

35.36
43 

43.93
68 

38.73
59 

0.184
3 

0.137
5 

0.40
42 

0.915
8 

0.332
8 

0.1707 

BW 
14.03
50 

36.75
97 

36.07
01 

44.64
26 

39.44
17 

0.237
2 

0.130
0 

0.39
87 

0.925
0 

0.348
7 

0.1646 

APEWE
D 

14.29
60 

39.64
46 

38.59
20 

49.30
77 

42.80
65 

0.125
0 

0.148
3 

0.30
25 

1.113
7 

0.273
4 

0.1972 

WEG 
15.20
7 

36.82
0 

36.41
4 

42.84
3 

38.94
2 

0.107
84 

0.152
2 

0.00
00 

20.95
7 

9.5x1
0-6 

4.3x102 

W1 
15.20
68 

34.61
37 

34.41
37 

38.70
00 

36.09
95 

0.107
8 

0.152
2 

0.25
24 

1.240
7 

0.240
3 

0.2151 

R1 
49.79
1 

101.6
54 

101.5
8 

103.7
2 

102.4
2 

1.5x1
0-6 

0.333
9 

9.7x
10-6 

11.42
5 

1.6 
x10-6 

2.3221 

Table 10. The goodness-of-fit measures for second data set. 

Distribution 
Statistic 

Log.Lik AICC A I C B I C HQIC KSP 
KS.S
T 

CV.
P 

CV.S
T 

AN.S AN.ST 

WRM 
115.6
58 

246.0
26 

243.3
16 

253.1
41 

246.8
11 

0.182
6 

0.177
4 

0.18
71 

1.457
1 

0.223
1 

0.2257 

KW 
127.5
4 

264.2
9 

263.0
7 

269.6
2 

265.4
0 

2.3x1
0-4 

0.344
9 

0.01
35 

3.623
1 

0.020
31 

0.6126 

BW 
122.5
87 

254.3
85 

253.1
73 

259.7
23 

255.5
03 

0.023
7 

0.241
6 

0.01
33 

3.634
8 

0.018
2 

0.6318 

APEWE
D 

121.1
76 

254.2
27 

252.3
52 

260.5
39 

255.2
65 

0.211
6 

0.171
9 

0.12
76 

1.745
3 

0.177
7 

0.2587 

WEG 
123.2
6 

253.2
3 

252.5
3 

257.4
4 

254.2
7 

0.071
06 

0.209
55 

0.00
00 

12.66
7 

1.5x1
0-5 

_ 

W1 
123.5
49 

251.4
41 

251.0
98 

254.3
73 

252.2
63 

0.128
2 

0.190
1 

0.08
60 

2.055
4 

0.102
4 

0.3430 

R1 
146.2
9 

294.6
8 

294.5
7 

296.2
1 

295.1
5 

2.3x1
0-8 

0.490
2 

1.5x
10-5 

20.72
7 

6.2x1
0-8 

2.7611 
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Fig. 2 Observed and expected frequencies for each model for data set 1. 

 
Fig.3 Observed and expected frequencies for each model for data set 2. 

 
From tables 9 and 10, it can be seen that the MWR had the lowest values of log likelihood, 
AICC, AIC, BIC and HQIC values, as well as the best KS, AD and CM statistics values and 
𝑝-values, which means that the MWR provided the most proper fit to the three sets of data, as 
compared to the other models 
Figures 2 and 3 show the PDF and CDF of the models for the two data sets. It can be seen, 
from Figures 2 and 3, that the MWR provided the closest fit to the observed distribution (i.e., 
sold line) for the two data sets. 
 
7. Conclusions  
In this study, the MWR distribution was introduced based on mixture approach in order to 
provide flexibility in fitting different types of data. General statistical properties were obtained. 
The maximum likelihood estimation method was employed for estimating the parameters of 
the proposed distribution based on complete samples, Type-I and Type-II censored samples. 
The performances of these MLEs were tested through simulation studies. Three real data sets 
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were considered in order to assess the applicability of the proposed distribution comparing to 
other distributions. The results indicate that the introduced distribution MWR can offer the best 
fit compared to the competing distributions. 
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